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Abstract

Coarse graph theory concerns finding “coarse” analogues of graph theory theorems, replacing dis-
jointness with being far apart. One of the most interesting open questions is to find a coarse analogue
of Menger’s theorem, which characterizes when there are k vertex-disjoint paths between two given
sets S, T of vertices of a graph. We showed in an earlier paper that the most natural such analogue
is false, but a weaker statement remained as a popular open question. Here we show that the weaker
statement is also false.

More exactly, suppose that S, T are sets of vertices of a graph GG, and there do not exist k paths
between S, T, pairwise at distance at least c¢. To make an analogue of Menger’s theorem, one would
like to prove that there must be a small set X C V(G) such that every S — T path of G passes close
to a member of X: but how small and how close? In view of Menger’s theorem, one would hope for
|X| < k and “close” some function of k, ¢ (and indeed, this was conjectured by Georgakopoulos and
Papasoglu, and independently, by Albrechtsen, Huynh, Jacobs, Knappe and Wollan); but we showed
that this is false, even if ¢ = 3 and k& = 3.

Here we upgrade the counterexample: we show that, even if ¢ = k = 3, no pair of constants (for
“small” and “close”) work. For all £, m, there is a graph G and S,T C V(G), such that there do not
exist three S — T' paths pairwise with distance at least three, and yet there is no X with | X| < m
such that every S — T path passes within distance at most £ of X.



1 Introduction

The “disjoint paths problem” asks when there is a set of k vertex-disjoint paths between sets S, T
of vertices of a graph G; and it is answered by a theorem of K. Menger from 1927 [8], that such
paths exist if and only if there is no subset X C V(G) of size < k such that every S — T path has
a vertex in X. But what if we want the paths to be at least a certain distance from one another?!
This question is motivated both by the developing area of “coarse graph theory”, which is concerned
with the large-scale geometric structure of graphs (see Georgakopoulos and Papasoglu [5]), and by
the algorithmic question of deciding whether such paths exist (see Bienstock [3], Kawarabayashi and
Kobayashi [7], and Baligdcs and MacManus [2]).

A coarse analogue of Menger’s theorem was conjectured by Albrechtsen, Huynh, Jacobs, Knappe
and Wollan [1], and independently by Georgakopoulos and Papasoglu [5]:

1.1 False conjecture: For all integers k,c > 1 there exists £ > 0 with the following property. Let
G be a graph and let S, T C V(G). Then either

e there are k paths between S, T, pairwise at distance at least c; or

o there is a set X C V(G) with | X| < k — 1 such that every path between S,T contains a vertex
with distance at most £ from some member of X.

Both sets of authors proved the result for k£ = 2, but we showed in [9] that 1.1 is false for all & > 3,
even if ¢ = 3 and G has maximum degree three. The case ¢ = 3 is of special interest, because it is
easy to see that if the result is true when ¢ = 3 (for some value of k) then it is true for all ¢ > 3 and
the same value of k (apply the result when ¢ = 3 to the cth power of G). And indeed, the conjecture
remains open when ¢ = 2, and we have nothing to say about that case in this paper.

Since the most natural extension of Menger’s theorem is false, we fall back onto what seems the
next most natural, the following weaker statement:

1.2 False conjecture: For all integers k,c > 1 there exist m, ¢ > 0 with the following property.
Let G be a graph and let S, T C V(G). Then either

e there are k paths between S, T, pairwise at distance at least c; or

o there is a set X C V(G) with | X| < m such that every path between S, T contains a vertex with
distance at most £ from some member of X.

We proposed this in [9], but now we will show that this too is false, even if ¢ = k = 3. More exactly,
we will show:

1.3 For all integers £,m > 1, there is a graph G and subsets S, T C V(G) such that:
e there do not exist three paths between S, T that pairwise have distance at least three; and

o for every set X C V(G) with | X| < m, there is a path P between S, T such that distq(P, X) > .

Our counterexample has some vertices of large degree, but it can easily be modified into a
counterexample with only one vertex of degree more than three, while keeping ¢ = k = 3. We will
explain this in section 3.

'If X and Y are vertices, or sets of vertices, or subgraphs, of a graph G, then diste(X,Y) denotes the distance
between X, Y, that is, the number of edges in the shortest path of G with one end in X and the other in Y.



2 The counterexample

For all integers ¢, m > 1, we will give a construction for a quadruple (G, r,S,T') called (in this paper)
an (¢, m)-block, where G is a graph, r € V(G), and S, T are disjoint subsets of V(G) \ {r}, both of
size m. Later we will prove (by induction on m) that it has the properties that:

o distg(u,v) > 2¢ for every two vertices u,v € {r}USUT;

e for every choice of X C V/(G) with |X| < m, there is a path P between S,T such that
distg(P, X U{r}) > ¢; and

e for every two vertex-disjoint S —T paths P, @, either one of P, Q) contains r, or distg(P, Q) < 2.

This will prove 1.3. (To see this, replace S,T by SU{r}, T U{r}.) We call r the root.

The construction for an (¢,1)-block is easy: let G’ be a path of length 2¢ + 1 with ends s, ¢, and
let S = {s} and T = {t}; let r be a new vertex, and let G be obtained from G’ by adding r as a
vertex of degree zero. Then (G,r,S,T) is an (¢, 1)-block.

The construction for (¢,2)-blocks was given in [9], but here it is again (slightly modified for
convenience), illustrated in figure 1. Each dotted curve in the figure represents a path of length

r

Figure 1: The dotted curves represent paths of length 2¢ + 1.

2¢ + 1, with interiors that are pairwise disjoint; let us call them “dotted paths”. If we delete the
interiors of the “horizontal” dotted paths at the bottom of the figure, we obtain a subdivision of a
uniform binary tree, rooted at r, of depth 6 in the figure?; and to make an (£, 2)-block, we need this
tree to have depth at least 2¢ + 2. The path formed by the horizontal edges in the figure is called its
base path; it starts in S and ends in 7', and has no other vertices in SUT. Let sg € S and ¢ty € T be
the vertices not in the base path. In the figure there are 32 vertices shown in the base path; they are
the leaves of the binary tree. In general there are 22/T! such vertices, if the binary tree has depth
20 + 2. We call these the anchors of the base path. (The base path has many vertices that are not
anchors, since it is a union of dotted paths). Let us number the anchors of the base path vi-----v,
in order, where v1 € S and v, € T.

An (¢;m + 1)-block is defined to be a certain combination of (¢, m)-blocks, explained below.
Roughly, we replace each anchor of an (¢,2)-block by a set of m vertices, and replace each dotted
path between anchors by an (¢, m)-block, and then we identify all the roots.

Here then, more exactly, is the inductive construction. We assume that we have an (¢, m)-block
(H,r,S,T), and we will assemble copies of it to make an (¢,m + 1)-block. Take an (¢,2)-block

2The “depth” of a uniform binary tree is the number of vertices in paths from root to leaf.



(Ho,70,S0,Tp) as in Figure 1, and number the anchors of its base path vi,...,v,, as described
above. Let Sy = {v1,s0} and Ty = {vn,to}. For 1 < i < n, let V; be a set of m new vertices; and
for 1 <i < n, let (H;,70,Vi,Vit1) be a copy of (H,r,S,T), where all vertices of H; are new except
those in V; U V41 U{rg}. Let J be obtained from Hy by deleting all vertices of its base path and all
internal vertices of all its dotted paths (so J is a binary tree of depth 2¢ + 1). Let G be the graph
obtained from the union of J, Hy, ..., H,—1 by adding a path of length 2¢ + 1 between u and each
vertex of V;, for each u € V(J) and each v; with 1 < ¢ < n such that w,v; are joined by a dotted
path of Hy. We call these last spines of G. Let S = Vi U{so} and T'=V,,U{yo}. Then (G,ro,S,T)
is an (¢, m + 1)-block. (We illustrate this when m = 2 in figure 2.)

7o

Figure 2: An (¢, 3)-block (except that the binary tree should have depth 2¢ + 2, and not just five as
in the figure). The dotted curves represent paths of length 2¢ + 1. Each gray area (together with rg)
is an (¢,2)-block, and each contains neighbours of ry (not shown in the figure.)

It is easy to check that if (G,r,S,T) is an (¢, m)-block, then every two vertices in {r} USUT
have distance at least 2¢ + 1, and now we will check the other properties mentioned in the bullets at
the start of this section.

2.1 If (G,r9,5,T) is an (£,m + 1)-block, and P,Q are paths between S,T, then either one of P,Q
contains rq, or distg(P, Q) < 2.

Proof. We proceed by induction on m, and the result is true when m = 1 by the result of [9], so we
assume it is true for (¢,m)-blocks. We use the notation given in the construction for an (¢,m + 1)-
block. Roughly, G was obtained from Hy by blowing up the vertices and edges of its base path; now
we want to shrink them back to Hy, and carry P,(Q to some paths P’, Q" of Hy. More exactly, let
Z=V(J)UViU---UV,. The ends of P both belong to Z; so P is the concatenation of a sequence
of paths of GG, each with distinct ends in Z and no internal vertex in Z, say Pi,...,FP,;. Each P; is
either an edge of J, or a spine, or a path of some H;. We may assume that no F; contains ry. For
1 < i < n, let B; be the dotted path of Hy with ends v;, vj41. For 1 <i < g, define a subgraph P/ of
Hj as follows.

e If P, is an edge of J let P/ = P;.



If P; is a spine with ends v € V(J) and some vertex in some Vj, let P/ be the dotted path of
Hj between u, v;.

If P; is a path of some H; with both ends in Vj}, let P/ be the one-vertex path with vertex v;.

If P; is a path of some H; with both ends in V)1, let P/ be the one-vertex path with vertex

Vjt1-

If P; is a path of some H; with one end in V; and the other in Vj 1, let P/ = B;.

It is not necessarily true that P{U- - -UP; is a path of Hy from Sy to Tj, because it might pass through
the same vertex more than once, and indeed PJ, ... ,Pg’ need not all be distinct. But concatenating
Pi, ..., P, yields a walk from Sy to Tp, and therefore P U---U P, includes a path P’ from Sy to Tp.
Define ' similarly, with P replaced by . We may assume that no internal vertex of P’ or of Q'
belongs to Sy U Tp.

(1) We may assume that there exists i € {1,...,n} such that v; € V(P') NV (Q').

Since (Hy, ro, So, Tp) is an (¢, 2)-block, and neither of P’, Q' contains g, it follows that dist g, (P’, Q") <
2. Now there are two cases, depending whether P’, )’ are vertex-disjoint or not. If P/, Q" are vertex-
disjoint, then since distg, (P, Q") < 2, it follows that the corresponding path of Hy joining them uses
no dotted paths, and so is a path of J; and hence distg(P, Q) < 2, and the result holds. So we may
assume that there is some vertex z € V(P')NV(Q'). If z € V(J), then z € V(P) N V(Q) and the
result holds, so we may assume that = ¢ V(J). It remains to show that we may choose x to be an
anchor of Hy. If not, then = belongs to the interior of some dotted path of Hy; but then the whole
of that path belongs to P’ N Q’, and one end of the path is an anchor. This proves (1).

(2) We may assume that there exists i € {1,...,n — 1} such that B; C P'N Q' .

By (1) we may assume that v; € V(P' N Q') for some i € {1,...,n}. Suppose first that i = 1.
Thus vy is the first vertex of both P’, Q’. Neither of P’,Q’ contain sg, since no internal vertex of P’
or of @' belongs to Sy U Ty; so both P/, Q" contain By and the claim holds. Similarly the claim holds
if 2 = n, so we assume that 2 < i < n — 1. Now both P’,Q’ include two of the three dotted paths
of Hy incident with v;, and so include one in common. If that one is a spine, then its end in V(J)
belongs to P’ N Q' and we are done as before; and otherwise one of B;, B;_1 € P’ N Q’. This proves

(2)-

Consequently both P, have subpaths with one end in V;, one end in V;;1, and all internal
vertices in H;. Since (H;,ro, Vi, Vit1) is an (¢, m)-block, and neither of P, contains r¢, it follows
that disty, (P, Q) < 2, and hence distg(P, Q) < 2. This proves 2.1. |

Next we need to show:

2.2 If (G,19,S,T) is an (¢, m + 1)-block, and X C V(G) with |X| < m, then there is a path P of
G between S, T with distg(P, X U{ro}) > ¢.



Proof. Again, we may assume the result holds for (¢,m)-blocks, and use the notation of the
construction. For each x € X, let C, be the set of vertices v of G with distg(v,z) < ¢, let C =
U.ex Cx, and let Cy be the set of all v with distg (v, 70) < £. We need to show that there is an S —T
path disjoint from C' U Cj. In fact we will prove that there is such a path within the union of the
H;’s and the spines. In Figure 3 we show a section of the union of the H;’s and spines. Let us label
the vertices of J that are ends of spines as in the figure. (Thus, sg = u1, and tg = up_1.)

Us4-1
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Figure 3: Part of the construction for an (¢,m + 1)-block. The dotted curves represent paths of
length 2¢ + 1. Each gray area (together with rg) is an (£, m)-block, and really has m (not four as in
the figure) vertices at either end. Each contains neighbours of 7y (not shown in the figure.)

We may assume that m > 2, and so every vertex in S UT has degree at least three in G. We
begin with:

(1) We may assume that for every path R of G of length at least 20 + 1 in which all internal vertices
have degree two in G, no internal vertex of R belongs to X.

If + € X is an internal vertex of such a path R, then by extending R as much as possible, we
may assume that both ends of R have degree at least three. Let R have ends a,b. Since R has
length at least 2¢ + 1, not all of V(R) belongs to C,, and we may assume that some vertex of R
between x,b is not in Cy. Let X' = (X \ {z}) U {a}. Every path of G within distance ¢ of z, and
with no end in the interior of R, is within distance ¢ of a. So if the result is true for X’ then it is
true for X, so by repeating this at most | X| times, we may assume there is no such z. This proves (1).

(2) We may assume that for some i € {1,...,n — 1}, every path of H; \ ro between V;, Viy1 in-
tersects C'.

Suppose not, and for 1 < i < n — 1 let P; be a path of H; \ ro between V;,V;;1 that is vertex-
disjoint from C. For 2 < i < n, the end of P,y in V; and the end of P; in V; are joined by a path
(Q; say) of H; of length 2¢ + 1 (or zero, if the two ends are equal) and all its internal vertices have
degree two, so by (1), no vertex of @; belongs to X. Since its ends are not in C, no vertex of Q); is
in C'; and

PLUQUPRUQ2U---UQp_1UP, 4



is a path satisfying the theorem. This proves (2).

Let ¢ be as in (2). For each z € X, C, contains at most one vertex in V; U Vi1, since they
pairwise have distance at least 2¢ + 1. Consequently C' NV (H;) is the union of at most |X| balls of
H; of radius £. But from the inductive hypothesis, for any set of at most m — 1 such balls, there is a
path of H; \ ro between V;, V;11 avoiding their union: so C, NV (H;) # 0 for each x € X. It follows
that X C V(H;_1) UV (H;)UV(H;11) (defining Hy, H,, to be null), since no vertex of X is in a spine
by (1). Moreover, V;_1 NC = () (again, defining Vp, V;,41 = 0), since C, NV (H;) # () for each z € X;
and similarly V;;o N C = (0. If 7 is odd, the vertex called u; (see Figure 3) exists, and provides a way
to avoid C, via two spines incident with u;; so we assume that i is even. Thus H;_1, H;+1 exist. We
may assume that C' does not contain V; (because if it does, then i — 1 also satisfies (2) and is odd).
Since C, NV (H;) # 0 for each z € X, and each of the sets C, NV (z € X) as size at most one, it
follows that C' NV (H;—1) is the union of at most |[C NV;| < |Vi| —1 = m — 1 balls of radius ¢, and
so from the inductive hypothesis, there is a path of H;_1 \ {ro} between V;_o, V;_; that is disjoint
from C. But then we can extend this path via two spines incident with u;y; to provide a route that
avoids C'. This proves 2.2. |

From 2.1 and 2.2, it follows that (¢, m — 1)-blocks provide a counterexample to 1.2 for each value
of /,m > 1, and so this proves 1.3.

3 What remains?

In view of this counterexample, is there anything even weaker that might be true and provide some
sort of coarse extension of Menger’s theorem? There are several possibilities to consider:

Bounded degree

Imposing an upper bound on the maximum degree looks promising at first, because Gartland, Ko-
rhonen and Lokshtanov [4] and Hendrey, Norin, Steiner, and Turcotte [6] proved it with ¢ = 2: they
proved

3.1 For every integer A > 1 there exists C > 0 with the following property. Let G be a graph, let
k > 1 be an integer, and let S,T C V(G); then either

o there are k paths between S, T, pairwise at distance at least two; or

o there is a set X C V(G) with | X| < kC such that every path between S, T contains a vertex of
X.

But when ¢ > 3, we can nearly make a counterexample. In the definition of an (¢, m + 1)-block,
there are currently vertices of large degree: the vertices of J that are the ends of spines, and the
root, and the vertices in the sets V;. It is easy to modify the construction to keep the vertices in V;
of degree at most three: attach a leaf to each vertex in S UT, and call these new vertices S and T
instead. (When we chain them together to make an (¢, m + 1)-block, they become of degree three
instead of degree one, but that is fine.) For a vertex u € V(J) that is an end of spines, it is (in
general) currently incident with 2m spines, and one edge of J. But we can partition these spines into



two groups in the natural way, and replace each group with a binary tree with root u and leaves the
corresponding set V;; so that problem goes away as well. Thus, the only problem is the root vertex.
In summary, we can make a counterexample to 1.2 in which only one vertex has degree more than
three, but we don’t see how to fix this last vertex.

Bounded pathwidth

Our counterexamples contain arbitrarily large binary trees, and so have unbounded pathwidth. We
will prove in a later paper [10] that not only 1.2 but also 1.1 is true in graphs of bounded pathwidth:

3.2 For all ¢,k,w > 1, there exists { such that if G has pathwidth at most w, and S,T C V(G),
then either:

e there are k paths between S, T, pairwise at distance at least ¢; or

o there is a set X C V(G) with | X| < k — 1 such that every path between S,T contains a vertex
with distance at most £ from some member of X.

Our counterexample to 1.2 contains subdivisions of arbitrarily large complete graphs, and indeed
contains them with arbitraily large “fatness” (see [5] for definition). It is easy to show (and several
people have pointed out) that 1.2 is true for graphs of bounded tree-width. Is it true for every proper
minor-closed class?

Planar graphs

That suggests that we study whether 1.2 is true for planar graphs, but in that case, it seems possible
that 1.1 itself is true. Indeed, 1.1 might be true for graphs of bounded genus: our counterexample to
1.1 in Figure 1 has unbounded genus, because it contains arbitrarily many vertex-disjoint nonplanar
subgraphs.

We have begun to work on trying to prove 1.1 for planar graphs, and have been able to prove
it in the case when the graph is planar and all the vertices in S U T are incident with the infinite
region [11]. (Despite its appearance, that was difficult!) We think we can also prove it in the cylinder
case, when the graph is planar and some two regions include SUT": and perhaps there is an approach
to the general coarse Menger conjecture for planar graphs that is like that in [12, 13]. But this needs
much further work.
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