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Abstract

We construct asymptotically optimal adjacency labelling schemes for every heredi-
tary class containing 2Ω(n2) n-vertex graphs as n→∞. This regime contains many
classes of interest, for instance perfect graphs or comparability graphs, for which
we obtain an adjacency labelling scheme with labels of n/4 + o(n) bits per vertex.
This implies the existence of a reachability labelling scheme for digraphs with labels
of n/4 + o(n) bits per vertex and comparability labelling scheme for posets with
labels of n/4 + o(n) bits per element. All these results are best possible, up to the
lower order term.

1 Introduction
When representing graphs, say with adjacency lists or matrices, vertex identi�ers are usually
just pointers in the data structure. In contrast, a graph is implicitly represented when each
vertex of the graph carries enough information so that some properties, for instance adjacency,
can be e�ciently determined from the identi�ers in a local manner (cf. [19, 26]). The standard
example is that of interval graphs: if G is an interval graph with n vertices1, we can assign
to each vertex u some interval I(u) ⊆ [1, 2n] with integer endpoints so that u, v are adjacent
if and only if I(u) ∩ I(v) 6= ∅. Clearly, to represent G it su�ces to store the corresponding
intervals. Although G may have a quadratic number of edges, such an implicit representation
uses 2 log n + O(1) bits per vertex2. Compact representations have several advantages, not
only for memory storage, but also from algorithmic perspectives.

The route to more e�cient representations is conceptually simple: it is a matter of exploit-
ing the structure of the graph class to spell out as few adjacencies as possible and derive the
rest from the existing information. On the other hand, how can we argue that a representation
is best possible?

*M.B. and L.E. are supported by the ANR Projects DISTANCIA (ANR-17-CE40-0015) and GrR (ANR-18-CE40-
0032), and by LabEx PERSYVAL-lab (ANR-11-LABX-0025).

1Throughout the paper, n is implicitly the number of vertices in the graph at hand.
2Throughout the paper, log n denotes the binary logarithm of n.
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Let us de�ne the problem more formally. We say that a graph class G admits an adjacency
labelling scheme with labels of f(n) bits if, for any integer n, we can label the vertices of any
n-vertex graph of G with strings of f(n) bits such that, using only the labels assigned to u and
v, we can determine whether u and v are adjacent in the graph. An adjacency labelling scheme
is e�cient if the encoding takes polynomial time and the decoding takes constant time in the
word RAM model with words of Θ(log n) bits (see Section 2.4 for the details). An adjacency
labelling scheme describing a graph G also describes all the induced subgraphs of G, so it is
customary to consider adjacency labelling schemes for hereditary classes of graphs, that is,
classes of graphs that are closed under taking induced subgraphs.

Given a graph class G and an integer n, the set of n-vertex graphs3 of G is denoted by Gn.
If G admits an adjacency labelling scheme with labels of f(n) bits, then the total number of
bits describing an n-vertex graph G ∈ G is n · f(n), and thus |Gn| 6 2n·f(n). Given a class G
and an integer n, let µG(n) = 1

n
log |Gn| (we will write µ(n), if G is clear from context). Note

that µG(n) 6 n
2

for any G. The observation above can be restated as follows.
Observation 1.1. For every class G, no adjacency labelling scheme for G has less than µG(n)
bits per vertex.

A natural question is whether this lower bound of µ(n) can be attained. There are exam-
ples of non-hereditary classes for which this lower bound cannot be attained [26], so in the
remainder of the paper we only consider hereditary classes.

In the regime µ(n) = Θ(log n), the Implicit Graph Conjecture [19, 26] posits that every
hereditary class G with µG(n) = O(log n) has an adjacency labelling scheme with labels of
O(log n) = O(µ(n)) bits per vertex. Although the conjecture has been proved in some special
cases, it is still open in general (see [7, 11] for recent results and references on the conjecture).
Note that in this regime the conjecture only posits that there is an adjacency labelling scheme
with labels of at most a constant times µ(n) bits per vertex.

The purpose of our paper is to show that the lower bound µ(n) is attained (up to lower
order terms) in the denser regime µ(n) = Θ(n), which also has many applications. We prove
the following.

Theorem 1.2. Let G be a hereditary graph class. For each δ > 0, G has an e�cient adjacency
labelling scheme using µG(n)+δn bits per vertex. Moreover, this can be turned into an adjacency
labelling scheme using µG(n) + o(n) bits per vertex, which is tight up to the o(n) term.

Theorem 1.2 shows that in this regime, graphs from G can not only be compressed in an
optimal way, but that the representation can be uniformly distributed among the vertices, with
e�cient encoding and decoding. To the best of our knowledge, this was already known only in
the speci�c cases where G is the class of all graphs, or the class of all bipartite graphs (see [2, 6]
for recent sharper results on these two classes).

Note that Theorem 1.2 is applicable to a wide range of graph classes, for instance classes
of graphs of bounded chromatic number (such as bipartite graphs), or classes of graphs ex-
cluding some (induced) subgraphs (such as perfect graphs, chordal graphs, or split graphs).
An example is the class of string graphs on S for some surface S, i.e. the class of intersection
graphs of continuous curves embedded in S. It follows from [3, Corollary 3] that for this class
µ(n) = (1 − 1/ω(S) + o(1)) · n

2
, where ω(S) denotes the size of the largest complete graph

embeddable in S. Using Theorem 1.2, this directly implies the following.
3All the graphs considered in this paper are unlabelled, so all the graphs are considered up to isomorphism.
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Corollary 1.3. For any surface S, the class of string graphs on S has an adjacency labelling
scheme using (1− 1/ω(S)) · n

2
+ o(n) bits per vertex, which is asymptotically tight.

Another interesting example for us is the class of graphs excluding the 5-cycle C5 as an
induced subgraph. It is well known that for this class, we have µ(n) = n

4
+ o(n) (more will be

said about this in Section 2.1). We thus obtain the following as an immediate consequence of
Theorem 1.2.

Corollary 1.4. The class of graphs with no induced C5 has an adjacency labelling scheme using
n/4 + o(n) bits per vertex, which is asymptotically tight.

Given a partially ordered set (poset, in short) (P,<), the comparability graph of P is the
graph whose vertices are the elements of P , and in which two vertices are adjacent if and
only if the two corresponding elements of P are comparable. A graph G is perfect if for any
induced subgraph H of G, the chromatic number and the clique number of H coincide. It
is well known that comparability graphs are perfect. Note that the class of graphs with no
induced C5 contains the class of perfect graphs, and thus the class of comparability graphs,
hence Corollary 1.4 also applies to these classes (and is tight for them as well).

The key ingredient in the proof of Theorem 1.2 is Szemerédi’s Regularity Lemma, which
we describe in Section 2. The downside of this tool is that even though our results are best
possible asymptotically, the o(n) term in Theorem 1.2 is such that 1

n
· o(n) is an extremely

slowly decreasing function of n. Moreover, the “e�cient" algorithm hides huge constants
for encoding and decoding. In the case of comparability graphs (for which we present two
important applications below), we can signi�cantly improve the lower order term and the
complexity of our encoding and decoding compared to Corollary 1.4. The proof is short and
does not use any deep result.

Theorem 1.5. The class of comparability graphs admits an adjacency scheme with labels of
n/4 + O(n3/4 log2 n) bits per vertex and an e�cient adjacency labelling scheme with labels of
n/4 +O(n(log log n)2/ log1/4 n) bits per vertex.

We now describe two important consequences of Theorem 1.5 for comparability labelling
schemes in posets and reachability labelling schemes in digraphs.

Comparability in posets

We say that a class P of posets admits a comparability labelling scheme with labels of f(n) bits
if for every integer n, we can label the elements of any n-element poset of P with strings of
at most f(n) bits such that it can be determined whether x and y are comparable in the poset
(and if so, whether x 6 y) using only the labels assigned to x and y.

Given a poset (P,<), we can consider a linear ordering x1, . . . , xn of P (i.e. an ordering
such that i < j whenever xi < xj). If each element xi stores its index i (this costs O(log n)
bits), then whenever two elements x and y are comparable they can decide whether x < y or
y < x by looking at their indices. Consequently, by appending indices of the elements to an
adjacency labelling scheme for the comparability graphs of the posets in a classP , we obtain a
comparability labelling scheme for the classP , with onlyO(log n) additional bits per element.
We thus obtain the following as an immediate consequence of Theorem 1.5.

Corollary 1.6. The class of all posets admits a comparability labelling scheme with labels of
n/4+O(n3/4 log2 n) bits per element and an e�cient comparability labelling scheme with labels
of n/4 +O(n(log log n)2/ log1/4 n) bits per element.
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Munro and Nicholson [24] proved that posets can be represented in n2/4 + o(n2) bits in
such a way that queries of the form ‘a 6 b?’ can be answered by inspecting only a constant
number of bits. Corollary 1.6 shows that an encoding of the same total size can be obtained
by distributing the information uniformly between the elements of the poset.

Reachability in digraphs

We say that a vertex u can reach a vertex v in a directed graph (digraph, in short) if there is a
directed path in the digraph from u to v. We say that a class C of digraphs admits a reachability
labelling scheme with labels of f(n) bits if for any integer n, we can label the vertices of any
n-vertex digraph of C with strings of at most f(n) bits such that it can be determined whether
u can reach v in the digraph using only the labels assigned to u and v.

It is well-known (see for instance [14]) that reachability queries in digraphs can be reduced
to comparability queries in posets as follows. Given a digraphD, we start by contracting each
strong component of D into a single vertex. Let D′ be the resulting acyclic digraph, and
suppose that ayclic digraphs have a reachability labelling scheme with labels of f(n) bits.
Then a reachability labelling for D′ can be turned into a reachability labelling for D by giving
to each vertex v of D the labelling in D′ of the strong component containing v, followed by
a O(log n) bit label uniquely identifying each strong component. This gives a reachability
labelling scheme for all digraphs with labels of f(n) +O(log n) bits per vertex.

So it su�ces to design a reachability labelling for acyclic digraphs. Given an acyclic digraph
D, and two vertices u, v inD, we write u < v if there is a directed path from u to v. SinceD is
acyclic, (D,<) forms a poset and comparability queries in this poset are precisely reachability
queries in D. This immediately implies the following.

Corollary 1.7. The class of all digraphs admits a reachability labelling scheme with labels of
n/4 +O(n3/4 log2 n) bits per vertex and an e�cient reachability labelling scheme with labels of
n/4 +O

(
n(log logn)2

log1/4 n

)
bits per vertex.

This improves upon a recent result by Dulęba, Gawrychowski and Janczewski [14], who
proved that digraphs admit an e�cient reachability labelling scheme with labels of size n/3 +
o(n).

Induced-universal graphs

Forgoing all complexity concerns, compact labelling (resp. reachability, comparability) schemes
for a class of graphs can be seen from a purely structural perspective, which is that of universal
graphs.

Given a graph class G, we say that G admits induced-universal graphs on f(n) vertices if
for every n, there is a graph on f(n) vertices that contains every n-vertex element of G as an
induced subgraph.

As observed in [19, 20], admitting universal graphs on f(n) vertices is equivalent to admit-
ting an adjacency labelling scheme using log(f(n)) bits4. Indeed, to label an n-vertex element
of G, it su�ces to embed it in the universal graph on f(n) vertices as an induced subgraph, and
label its vertices with their corresponding names in the universal graph. Conversely, given an
adjacency labelling scheme using h(n) bits, we de�ne a universal graph on 2h(n) vertices as
follows. Let all possible labels on h(n) bits form its vertex set, and let the edges be de�ned by

4Here we need to add the condition that the encoding function is injective, which in general only costs
O(log n) additional bits per vertex and can thus be included in the lower order term.
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the labelling scheme applied to each pair of labels. The resulting graph has 2log(f(n)) vertices
and contains every n-vertex element of G as induced subgraph.

Theorem 1.2 therefore has the following immediate transposition in the realm of induced-
universal graphs.

Corollary 1.8. Let G be a hereditary graph class. Then for any integer n there is a graph Gn on
2µG(n)+o(n) vertices containing all n-vertex graphs of G as induced subgraph. This is optimal up
to the lower order term.

Organisation of the paper We outline the results from the literature that we will need in
Section 2. We make use of near-optimal dictionaries, for which we state the required results
in Section 2.4. We prove Theorem 1.2 in Section 3. In Section 4 we give a labelling scheme
for comparability graphs with a trade-o� between the number of bits used for the labels and
the decoding time and then deduce Theorem 1.5. We conclude with some remarks and open
problems in Section 5.

2 Preliminaries
In the section, we state the auxiliary results from the literature that we need for the proofs of
Theorem 1.2. and Theorem 1.5.

2.1 Hereditary Classes
Let H(a, b) be the set of graphs whose vertex set can be partitioned into a cliques and b in-
dependent sets. The colouring number χc(G) ∈ N ∪ {∞} of a hereditary graph class G is the
supremum of the integers r ∈ N for which there exist a, b ∈ Z>0 with a + b = r such that
H(a, b) ⊆ G (it can easily be checked that χc(G) is �nite if and only if G is not the class of all
graphs). The following was proved by Alekseev [1] and Bollobás and Thomason [9, 10].

Theorem 2.1 (Alekseev-Bollobás-Thomason [1, 9, 10]). Let G be a hereditary class of graphs
with r = χc(G) > 1. Then

|Gn| = 2(1−1/r+o(1))n2/2.

Note that if a hereditary class G contains all bipartite graphs or all split graphs, then
χc(G) > 2 and thus |Gn| > 2(1/4+o(1))n2 and µG(n) > n/4 + o(n) by Theorem 2.1. This ap-
plies in particular to the class of comparability graphs, and to any class of graphs excluding
some non-bipartite graph (such as C5) as an induced subgraph.

On the other hand, observe that for any a, b∈Z>0 with a+b= 3, the 5-cycleC5 is contained
in H(a, b). This shows that if G is the class of graphs with no induced C5, then χc(G) < 3,
and thus χc(G) = 2 by the paragraph above. By Theorem 2.1, and the paragraph above this
implies that |Gn| = 2(1/4+o(1))n2 and µG(n) = n/4 + o(n), and the same applies to the class of
comparability graphs.

2.2 Regularity
For a graphG and two disjoint subsets of verticesA,B ⊆ V (G), let e(A,B) denote the number
of edges of G with an endpoint in A and an endpoint in B. If A and B are non-empty, de�ne
the density of edges between A and B by d(A,B) = e(A,B)

|A||B| . For ε > 0, the pair (A,B) is
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called ε-regular if |d(A,B)− d(X, Y )| < ε for every X ⊆ A and Y ⊆ B with |X| > ε|A| and
|Y | > ε|B|.

An ε-regular partition of the set of vertices V of a graph G is a partition of V into pairwise
disjoint vertex sets V0, . . . , Vt, for some t, such that

1. |V0| 6 ε|V |;

2. |V1| = · · · = |Vt|;

3. all but at most ε
(
t
2

)
of the pairs (Vi, Vj) for 1 6 i < j 6 t are ε-regular.

The fact that such partitions exist with a number of parts depending only on ε (and not on the
size of the graph) is the well-known Szemerédi Regularity Lemma. We will need an e�cient
constructive version of this lemma.

Lemma 2.2 (Algorithmic version of Szemerédi Regularity Lemma [4]). For every ε > 0 and
t0 ∈ N, there is an integer N = N(ε, t0) such that for every graph G with n > N vertices, the
graph G has an ε-regular partition V0, V1, . . . , Vt where t0 6 t 6 N . Moreover, such a partition
can be found in time O(nω), where 2 6 ω < 2.373 is the exponent of matrix multiplication.

It should be noted that N = N(ε, t0) has a “terrible” dependence in ε [4]: the iterated
logarithm log∗N (the number of times we have to iterate the logarithm to go from N to 1) is
a polynomial in 1/ε (of degree about 20). The dependence of the running time on ε is upper
bounded by N and comes from the number of times the partition is re�ned.

The edges between pairs of parts of low or high density will be easy for us to label using
the dictionaries of the next section, and we can also label the irregular edges since there are
not too many of those. These edges will only contribute to the o(n)-term. The following two
results allow us to show that the remaining edges (those between pairs (Vi, Vj) that are both
regular and neither dense nor sparse) contribute exactly the leading term we are aiming for.
Recall thatH(a, b) was de�ned in Section 2.1.

Lemma 2.3 (Lemma 10 in [3]). Given δ > 0 and m, r ∈ N, there exist an ε0 > 0 and n0 ∈ N
such that the following holds. Let G be a graph with disjoint vertex sets W1 . . . ,Wr such that
|Wi| > n0 for all i ∈ [r], and the pair (Wi,Wj) is ε0-regular and of density at least δ and at most
1 − δ for all distinct i, j ∈ [r]. Then there exist a, b ∈ Z>0 with a + b = r such that G contains
all graphs fromH(a, b) of at mostm vertices as induced subgraphs.

We will also need the following classical result in extremal graph theory.

Theorem 2.4 (Turán’s theorem [28]). Let r ∈ N. Any Kr+1-free graph G on n vertices has at
most

(
1− 1

r

)
· n2

2
edges.

2.3 Orientations and Bipartite Graphs
An orientation of an undirected graph G is a directed graph obtained from G by choosing one
of the two possible directions for each edge of G. We use the following result to e�ciently
label adjacencies in graphs that are not very dense.

Lemma 2.5 (Lemma 3.1 in [5]). A graph G = (V,E) has an orientation in which every out-
degree is at most d if and only if maxH⊆G

|E(H)|
|V (H)| 6 d.
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For the results of Section 4 we also need an optimal adjacency labelling scheme for bipartite
graphs from [14]. A scheme with labels of the same order, but with a better lower order term
can also be deduced from [2] or [6], but without an explicit decoder.

Lemma 2.6 (Theorem 3.2 in [14]). The class of bipartite graphs has an adjacency labelling
scheme with labels of size at most n/4 + 10 log n. The labelling can be constructed in timeO(n2)
and adjacency queries can be answered in constant time in the word RAM model with words of
size Θ(log n). In fact, the decoding scheme inspects at most ten dlog ne-bit words.

2.4 Succinct Dictionaries for Neighbourhoods
Throughout this paper, log stands for the logarithm to the base 2, and the natural logarithm is
denoted by ln.

We will need an encoding of subsets S of [n] = {1, . . . , n} from which we can answer
membership queries such as “x ∈ S?” e�ciently. It is easy to encode a subset of size at most k
from [n] by using (k+1)dlog ne bits to write down the size of the subset and then the elements
in increasing order (each element in base 2, as a dlog ne-bit word). Membership queries can
then be performed using binary search. This gives the following folklore result which will
su�ce for the proof of Theorem 4.1.

Theorem 2.7 (Folklore dictionaries). For any integer n > 2 and k ∈ [n], any subset of [n] of
size at most k can be encoded in time O(k log n) using at most (k + 1)dlog ne 6 4k log n bits of
storage, such that membership queries can be answered by inspecting at most 4 log k · log n bits.

A more e�cient scheme has been introduced by Fredman, Komlós and Szemerédi [16],
but this would not signi�cantly impact the asymptotics of our decoding time in the proof of
Theorem 4.1 and we therefore opt to use the simplest solution.

For our other results, we will use a scheme that encodes subsets using a number of bits
close to the information-theoretic minimum, while also requiring only constant query time
in the classical word RAM model [17]. In this model we have access to an array whose cells
contain w-bit words (or equivalently integers in the interval [2w]). Each word can be accessed
in constant time. Moreover, usual arithmetic operations between integers in the interval [2w]
and bitwise logical operations between w-bit strings can be performed in constant time as
well. The constant decoding time for Theorem 1.2 and Theorem 4.2 are all measured in this
model as well as the constant decoding time from the earlier work of Dulęba, Gawrychowski
and Janczewski [14] on reachability labelling schemes.

The information-theoretic minimum for encoding subsets of [n] of size k= k(n) is dlog
(
n
k

)
e

bits. Let H(p) = −p log(p) − (1 − p) log(1 − p) denote the binary entropy function. Then
log

(
n
k

)
6 H(k/n) · n where H(p) → 0 as p → 0. Theorem 1.1 in [25] shows that subsets

of size k from [n] can be encoded at the information-theoretic minimum up to lower order
terms with constant membership query time in the word RAM model. By adding at most
m elements to the universe [n], we can complete all sets of at most m elements of [n] into
m-element subsets of [n+m]. We obtain the following corollary.

Theorem 2.8 (E�cient static dictionaries [25]). For any integer n > 2 and k ∈ [n], subsets of
size at most k from [n] can be encoded in time O(n3) using at most

2H(k/n) · n+O

(
k(log log k)2

log k
+ log log n

)
bits of storage, with constant membership query time in the word RAM model with word size
Θ(log n).
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A similar result was obtained by Brodnik and Munro in [12], with a slightly worse lower
order term and no explicit analysis of the time complexity of the encoding.

Our main use of Theorem 2.8 is in the following form.

Corollary 2.9. Let ε > 0 be given. For every n-vertex graph with an orientation on the vertices in
which each vertex has out-degree at most εn, we can encode the adjacencies of the graph in time
O(n3) using labels of at most 2H(ε)n + O (n(log log n)2/ log n) bits per vertex, with constant
adjacency query time in the word RAM model with word size Θ(log n).

To see how this follows from Theorem 2.8, note that we can number the vertices of the
graph with the elements of [n] and can then let each vertex store the set of its out-neighbours.
Deciding whether two vertices u and v are adjacent is equivalent to deciding whether u lies
in the out-neighbourhood of v or v lies in the out-neighbourhood of u.

3 Adjacency Labelling in Hereditary Classes
We show that, for every hereditary class of graphs G, there is an adjacency labelling scheme
using (1− χc(G)−1 + o(1)) · n

2
bits per vertex. This implies Theorem 1.2 by Theorem 2.1 and

Observation 1.1.

Proof of Theorem 1.2. Let G be a hereditary graph class, with r = χc(G) > 1. We can assume
that r is �nite, by using the simple adjacency labelling scheme of Moon [22] with labels of at
most n

2
+ log n bits if G is the class of all graphs (see also [2, 6] for more recent work on this

case). We will show that there exists a continuous function f : R>0 → R such that f(x)→ 0
as x→ 0 and a function n2 : R>0 → N, such that for all δ ∈ (0, 1), for all G ∈ G on n > n2(δ)
vertices, we can construct labels of at most (1 − 1

r
+ f(δ)) · n

2
bits per vertex in time O(n3),

such that it can determined from the labels of two vertices whether they are adjacent.
By de�nition of the colouring number, for all a, b ∈ Z>0 such that a+b= r+1, there exists

a graph Ha,b ∈ H(a, b) such that Ha,b 6∈ G. Let m = max |V (Ha,b)|, where the maximum is
taken over the (�nite number of) a, b ∈ Z>0 such that a+ b = r + 1.

Let δ ∈ (0, 1) be given and let ε0 and n0 be given from Lemma 2.3 applied for the δ and
m de�ned above and r = χc(G). We set ε = min{ε0, δ} and t0 = dδ−1e. Let N = N(ε, t0) be
given from Lemma 2.2. We set n1 = n0(1− ε)−1N .

LetG ∈ G be an n-vertex graph with n> n1. We apply Lemma 2.2 toG to �nd an ε-regular
partition (V0, . . . , Vt) of V in time O(nω) with t0 6 t+ 1 6 N parts. Note that N = N(ε, t0)
depends on δ and G but does not depend onG. By de�nition of n1 and t0 we �nd n0 6 |Vi|6 δn
for all i ∈ [t]. We de�ne a 4-colouring c of the edges of the complete graph Kt with vertex set
[t], as follows.

• We colour the edge ij red if (Vi, Vj) is not ε-regular.

• We colour the edge ij black if d(Vi, Vj) > 1− δ and (Vi, Vj) is ε-regular.

• We colour the edge ij white if d(Vi, Vj) < δ and (Vi, Vj) is ε-regular.

• We colour the edge ij grey if δ 6 d(Vi, Vj) 6 1− δ and (Vi, Vj) is ε-regular.

Using a constant number of bits, we store this auxiliary graph of constant size (including the
colour of the edges) in the label of each vertex. We also store the size of the corresponding
parts of G (note that it su�ces to store |V0| and n since |V1| = · · · = |Vt|, which takes at most
2dlog ne bits). Recall that |Vi| 6 δn for all i ∈ {0, . . . , t}. We order the vertices within their
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own part arbitrarily. For each vertex v ∈G, we record the index i of the part Vi containing v, as
well as the position of v in the order on Vi. We then allocate a further bδnc bits for each vertex,
where the j-th bit encodes whether v is adjacent to the j-th vertex of its part. Furthermore,
we allocate an additional bδnc bits to record the adjacencies from each vertex to the part V0.

It now remains to encode the adjacencies between Vi and Vj for 1 6 i < j 6 t. For this,
we apply di�erent labelling schemes depending on the colour of the edge ij.

We �rst consider the grey edges.
Claim 3.1. The subgraph Y ofKt induced by the grey edges can be oriented so that each vertex
in Y has out-degree at most

(
1− 1

r

)
· t

2
.

Proof. Suppose that Y contains a copy of Kr+1 induced on i1, . . . , ir+1 and set Wj = Vij for
j ∈ [r + 1]. Since ε 6 ε0, the pairs (Wi,Wj) are ε0-regular for all distinct i, j ∈ [r + 1]. By
Lemma 2.3, we �nd that there exist a, b ∈ Z>0 with a + b = r + 1 such that G contains an
induced copy of every graph in H(a, b) on at most m vertices. In particular G contains an
induced copy of Ha,b. Since G is hereditary, we �nd Ha,b ∈ G, a contradiction.

Hence Y is Kr+1-free. Turán’s theorem (Theorem 2.4) shows that for every subgraph Y ′
of Y , |E(Y ′)| 6

(
1− 1

r

)
|V (Y ′)|2/2. The claim now follows from Lemma 2.5.

Let T be an orientation of the edges of Y such that every vertex has out-degree at most(
1− 1

r

)
t
2
. We now encode the corresponding adjacencies in G as follows. For each vertex

v ∈ Vi (with i ∈ [t]), we encode the set of elements j ∈ [t] for which i is oriented from i to j in
T . We then encode the adjacencies between v ∈ Vi and Vj naively by appending a bit string of
length |Vj| 6 n/t to its label, where (as before) the k-th bit in the string indicates whether or
not v is adjacent to the k-th vertex of Vj . By the bound on the out-degrees in the orientation
T of Y , this adds a total of at most(

1− 1

r

)
· t

2
· n
t

=

(
1− 1

r

)
n

2

bits to each label, plus a constant number of bits for storing the corresponding out-neighbourhood
of i in T .

We now take care of the red edges.
Claim 3.2. The subgraph R of Kt induced by the red edges can be oriented so that each vertex
in R has out-degree at most

√
ε · t.

Proof. It is enough to show that R is (
√
ε · t)-degenerate, i.e. R has a vertex ordering such

that each vertex has at most
√
ε · t neighbours preceding it in the order (note that given such

ordering, orienting all edges from successors to predecessors gives the desired orientation). If
R is not (

√
ε · t)-degenerate, then it contains a subgraph R′ of minimum degree more than√

ε·t, and thus with more than
√
ε·t vertices. It follows thatR′ contains at least 1

2
(
√
ε·t)2 = ε t

2

2

edges, contradicting the fact that R′, as a subgraph of R, contains at most ε
(
t
2

)
edges.

By the claim, we can encode the edges in G corresponding to the red edges using at most√
ε ·n+O(log n) bits as in the case of the grey edges. Indeed, we �x an orientation satisfying

the claim, and use a constant number of bits to record the orientation. For each x∈ Vi and each
pair (Vi, Vj) such that ij is a red edge that has been oriented from Vi to Vj in the orientation
of R resulting from the claim above, we record the adjacencies from x to Vj naively using a
bit string of length n/t > |Vj|. Since the out-degrees in the red graphR are at most

√
ε · t, this

adds a total of at most (
√
ε · t)(n/t) =

√
ε · n bits to each label.
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We next turn our attention to the white edges. Recall that a white edge ij corresponds to
an ε-regular pair (Vi, Vj) of density at most δ.
Claim 3.3. Let (Vi, Vj) be a pair corresponding to a white edge ij. Then we can �nd in time
O(n2) an orientation of the edges between Vi and Vj so that each vertex has out-degree at most
2δn/t.

Proof. As in the previous claim, it is enough to show that the subgraph of G induced by the
edges between Vi and Vj is (2δn/t)-degenerate (�nding the corresponding vertex ordering
can easily be done in time O(n2)). If it is not, then it contains some nonempty subgraph with
minimum degree more than 2δn/t. Let Wi and Wj be the intersection of the vertex set of
this subgraph with Vi and Vj , respectively. But then min(|Wi|, |Wj|) > 2δn/t > ε|Vi| = ε|Vj|
(where we have used |Vi| 6 n/t and ε 6 δ) while d(Wi,Wj) > 2δ > δ + ε. This contradicts
the fact that (Vi, Vj) is an ε-regular pair of density at most δ.

Let W be the (bipartite) subgraph of G induced by all the edges connecting sets Vi and
Vj such that ij is a white edge. The claim above implies that W has an orientation such that
each vertex has out-degree at most t · 2δn/t = 2δn. Hence by Corollary 2.9, we can encode
the adjacencies of W using at most 2H(2δ)n+ o(n) bits.

The black edges can be handled similarly, by encoding non-adjacencies instead of adja-
cencies. More speci�cally, we consider the graph with vertex set V in which we add an edge
between v ∈ Vi and w ∈ Vj whenever ij is a black edge and vw are not adjacent in G (in other
words, we consider the complement of G and only keep edges between pairs of sets Vi, Vj
such that the edge ij is black). By symmetry, the analysis above shows that this graph has
an orientation such that each vertex v has out-degree at most 2δn, and we can again apply
Corollary 2.9.

In total, we used at most(
2δ +

1

2

(
1− 1

r

)
+
√
ε+ 2 · 2H(2δ) + o(1)

)
· n

bits in each label. Note that ε 6 δ and that (1 + 2δ) ·H(2δ)→ 0 as δ→ 0. So we have proved
that for n su�ciently large that the labels have at most(

1− 1

r
+ f(δ)

)
· n

2
=

(
1− 1

χc(G)
+ f(δ)

)
· n

2

bits for a function f such that f(δ)→ 0 when δ→ 0. This completes the analysis of the length
of the labels.

For each of the encodings described above, we reserve a block of bits and start the block
with the length of the block. This allows us to e�ciently navigate to the next block.

We now explain how the decoder works. Given vertices v, w, the decoder �rst reads o� the
indices i, j ∈ {0, . . . , t} with v ∈ Vi and w ∈ Vj . If i = 0 then the decoder reads the position
of v in the order on V0, and reads o� whether v is adjacent to w from the label of w. A similar
procedure applies if j = 0 or if i= j. So we may assume i > j > 1. We read o� the colour of the
edge ij in the auxiliary graph Kt from the label of either of the two vertices, and depending
on the colour we read di�erent parts of the labels again.

For grey or red edges, we read o� the orientation of the grey or red subgraphs respectively
to determine whether v encoded the adjacency vw or vice versa, and can then �nd the desired
bit in the string of either v or w that encodes whether there is an edge between v and w. For

10



the black or white edges, we jump to the part of the label of v that encodes the adjacencies
(or non-adjacencies) between v and the sets Vj such that ij is a white or black edge. The bit
string stored there is used to do a membership test as to whether w is part of the special set
stored for v corresponding to its out-neighbourhood in the orientation of Claim 3.3. If the
edge ij is white we need a positive answer to the membership test, while if ij is black we
want a negative answer. This can be done in constant time by Corollary 2.9. We then repeat
this procedure with v and w switched in order to determine whether v and w are adjacent.

Finally, we describe how to obtain an ‘almost5 e�cient’ adjacency labelling scheme using
(1 − 1

r
+ o(1))n bits from the schemes above that depend on δ > 0. We encode n into the

label of each vertex; the decoder uses this to select a δ = δ(n) which tends to zero (implying
f(δ) = o(n)), while maintaining n > n2(δ(n)). We can for example choose δ(n) of the form
C(log∗ n)−1/20m, where m is a constant depending on the graph class de�ned in the second
paragraph of this proof.

4 Adjacency Labelling in Comparability Graphs
We �rst give the simple version of our labelling scheme for comparability graphs, which allows
for a trade-o� between the number of bits used for the label and the decoding time (measured
here by the number of bits inspected by the decoder).

Theorem 4.1. For any s = s(n), the class of comparability graphs has an adjacency labelling
scheme with labels of at most

n/4 + 1000s−1/3n log2 n+ 2s

bits (assuming n > 4), which can be constructed in time O(s2/3n3). Moreover the decoder only
needs to inspect at most 2s+ 1000 log2 n bits.

Proof. Let G = (V,E) be a comparability graph with underlying partial order (V,<). The
partial order induces a natural orientation of the edges of G, by orienting each edge uv ∈ E
with u < v from u to v. In the remainder of the proof, it will be convenient to mix the notation
for oriented graphs (N+(x) and N−(x) for the out-neighbourhood and in-neighbourhood of
x, for instance) with the notation for posets. We �rst take a linear ordering v1, v2, . . . , vn of
(V,<) (i.e. an ordering such that if vi < vj then i < j) and let each vertex vi store its position
i in the order (this uses a single word of dlog ne bits).

Given a pair x, y of vertices of G with x < y, we say that a vertex z is covered by the pair
x, y if x < z < y. We say that a pair x, y of vertices of G with x < y is heavy if the number
of vertices covered by the pair x, y is at least γn for γ = 3s−1 lnn. Note that for every heavy
pair x, y, we have xy ∈ E. Any pair of vertices x, y ofG that is not heavy is said to be light (in
particular all pairs of non-adjacent vertices in G are light). Observe that if x, y is a heavy pair
and z is a vertex of G chosen uniformly at random, then z is covered by the pair x, y (in the
sense de�ned above) with probability at least γ. It follows that for any collection B of heavy
pairs in G, there is a vertex z covered by a fraction of at least γ of the heavy pairs of B, and
such a vertex z can be easily found in time O(n2).

We now construct a set S of at most s vertices as follows. Let B be the set of all heavy
pairs in G. As long as B 6= ∅ and |S| < s, we �nd a vertex z covered by a fraction of at

5The constant in the running time in Lemma 2.2 depends linearly onN and so the encoder will still take time
polynomial in n, but the number of bits that are inspected by the decoder is no longer constant (since N now
depends on n). However, we can make the dependence as good as we like by letting δ tend to zero more slowly.
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least γ of the pairs of B, as described above. We then add z to S and remove from B all the
pairs covering z. Each time we add an element to S, the size of B is multiplied by a factor
at most 1 − γ 6 exp(−γ), so there is no heavy pair remaining after this procedure, since
exp(−γs)n2 = exp(−3 lnn)n2 < 1. So, the set S has the property that for any heavy pair x, y,
there is a vertex z ∈ S such that x < z < y or y < z < x (i.e. the heavy pair x, y covers z).
Moreover, S can be constructed in time O(sn2).

We now arbitrarily order the elements of S as u1, . . . , us, and each vertex ui of S stores
its index i. Each vertex v of G stores a bit string of 2|S| = 2s bits such that the (2j − 1)-th
bit of the string tells whether v < uj and the 2j-th whether v > uj . For any pair x, y, we can
�nd whether there is a vertex z ∈ S such that x < z < y by inspecting at most 2s bits. This
is enough to determine adjacencies for all heavy pairs, as for any heavy pair x, y, there is an
edge between x and y if and only if there is a vertex z ∈ S such that x < z < y or y < z < x
(and such a vertex z can be identi�ed by inspecting the labels of x and y).

It remains to determine adjacencies between light pairs of vertices. We consider the sub-
graph G0 of G induced by all edges xy such that x, y forms a light pair. As explained above,
it remains to �nd an adjacency labelling of this subgraph. In this paragraph we �x a vertex x
in G0, and let G−0 (x) denote the subgraph of G0 induced by the in-neighbourhood N−(x) in
G0. Note that each vertex y of G−0 (x) has out-degree at most γn in G−0 (x), since otherwise
x, y would form a heavy pair, and thus would not be adjacent in G0. We claim that the adja-
cencies of G−0 (x) can be labelled using at most 4γn log n 6 10s−1n log2 n bits in the label of
each vertex of G−0 (x). Each vertex stores the set of indices i of its out-neighbours vi in G−0 (x)
using at most 4γn log n bits via the scheme of Theorem 2.7 (using k = bγnc). This reduces
determining whether two vertices x, y are adjacent in G−0 (x) to two membership queries: “is
y in the out-neighbourhood of x in this graph?” and “is x in the out-neighbourhood of y in
this graph?”). The two membership queries require reading at most 8 log(γn) · log n6 8 log2 n
bits and the encoding can be done in time O(n log n).

Similarly, if we denote by G+
0 (x) the subgraph of G0 induced by the out-neighbourhood

N+(x) in G0, then we can encode the adjacencies in G+
0 (x) e�ciently because each vertex of

G+
0 (x) has in-degree at most γn in G+

0 (x). Later in the proof, we will use this scheme for a
handful of well-chosen vertices x of G0, with the goal of covering most of the light edges of
G with few graphs G−0 (x) and G+

0 (x).
We say that a vertex z of V is popular if it has in-degree and out-degree at least δn in G

with δ = s−1/3 lnn. Otherwise z is said to be a unpopular. Recall that a pair x, y covers z if
x < z < y or y < z < x. Observe that if we take a pair of vertices x, y uniformly at random
in V , then any given popular vertex z is covered by the random pair x, y with probability at
least δ2 = s−2/3 ln2 n. It follows that for any collection of popular vertices, there is a pair x, y
in G that covers a fraction of at least δ2 of the vertices in the collection, and such a pair can be
found in time O(n3). Hence we may �nd a set T of vertices of size at most 2t, with t = s2/3,
in time O(n3s2/3), such that all popular vertices are covered by some pair of T , since

(1− δ2)tn 6 exp(−tδ2)n 6 exp(−s2/3s−2/3 ln2 n)n < 1.

For each vertex x ∈ T we store the adjacencies inside G+
0 (x) and G−0 (x) as explained above,

at a total cost of 4t · 10s−1n log2 n = 40s−1/3n log2 n bits in the label of each vertex of V .
For each popular vertex z, we encode a pair x, y in T with x < z < y in the label of z. That

uses at most 2dlog ne6 4 log n bits. For any neighbour v of z inG0, either v > z in which case
z, v ∈ G+

0 (x), or v < z in which case z, v ∈ G−0 (y). Hence we can hence determine whether
a popular vertex z and some vertex v are adjacent in G0 by inspecting the adjacency labelling
schemes corresponding to G−0 (x), G+

0 (x), G−0 (y) and G+
0 (y), where x, y is a heavy pair of T
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(encoded in the label of z) that covers z. This last step requires reading at most 4 · 8 log2 n bits
in the labels of z and v.

It remains to handle the adjacencies between unpopular vertices. Let ` = bs−1/3n lnnc.
By de�nition of unpopular, in the subgraph of G induced by these vertices, all vertices have
out-degree at most ` or in-degree at most `. Let V + be the set of vertices of out-degree at
most `, and let V − be the set of vertices of V (G) \ V + of in-degree at most `. By the same
argument as we used to label the adjacencies of G−0 above, we can record the adjacencies in
the subgraph of G induced by V + and in the subgraph induced by V − at a cost of at most
4` log n bits in the label of each vertex using Theorem 2.7. The subgraph B induced by the
edges between V + and V − is bipartite, so we can record the adjacencies in this subgraph at
a cost of n/4 + 10 log n bits in the label of each vertex by Lemma 2.6. When deciding if u is
adjacent to v from the labels, we �rst read their index in the linear order and then at most
16 log ` · log n bits to see if one is in the in- or out-neighbourhood of the other. If this is not the
case, we then inspect a further at most 20 log n bits (by Lemma 2.6) to verify if the vertices are
adjacent in B. The vertices u and v are adjacent if and only if at least one of these two tests
has a positive answer.

We can hence label the adjacencies between the unpopular vertices at a cost of at most
n/4 + 20s−1/3n log2 n bits in the label of each vertex, and the decoder for the adjacencies in
this subgraph inspects at most 40 log(s−1/3n lnn) log n 6 100 log2 n bits of the labels.

In total, each label has at most

n/4 + (40 + 20)s−1/3n log2 n+ 2s+ 100 log n

bits. Moreover the labelling can be constructed in time O(n3s2/3 + sn2) = O(n3s2/3) and the
decoding can be done by inspecting at most 2s+ 1000 log2 n bits.

Setting s1/3 =n1/4, Theorem 4.1 gives labels ofn/4+O(n3/4 log2 n) bits with encoding time
O(n7/2) and decoding time O(n3/4). With s = log9 n, we obtain labels of n/4 + O(n/ log n)
bits with encoding time O(n3 log6 n) and decoding time O(log9 n).

In order to get the constant decoding time required for Theorem 1.5, we perform a tighter
analysis of the proof above to show the following result.

Theorem 4.2. The class of comparability graphs admits an adjacency labelling scheme with
labels of

n/4 +O

(
n(log log n)2

log1/4 n

)
bits, with constant query time in the word-RAMmodel with words of size Θ(log n). The encoding
can be done in time O(n4).

Sketch. We follow the proof of Theorem 4.1. When creating the set S of s vertices, since we
do not necessarily make S large enough, there may be some heavy pairs that do not cover any
vertex of S. Let B′ ⊆ B denote those pairs. We set s = d−2 ln(γ)/γe so that

|B′| 6 exp(−γs)n2 6 γ2n2.

Let G1 be the (undirected) subgraph of G induced by all edges uv such that u, v is a heavy
pair from B′. Then the vertices of G1 can be ordered greedily as v1, . . . , vn such that each
vertex has at most 2γn neighbours preceding it in the order. Indeed, if a subgraph of G1 had
minimum degree at least 2γn, then it would have at least 2γn vertices and hence G1 would
have at least 1

2
(2γn)2 > (γn)2 edges, contradicting the fact that |B′| 6 (γn)2. This gives us an
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orientation of G1 in which each vertex has out-degree at most 2γn. Using Corollary 2.9, we
�nd an adjacency labelling for G1 with labels of size

4H(2γ)n+O(n(log log n)2/ log n)

in time O(n2) with constant query time.
Similarly, when constructing the set T of size t, we might have some popular vertices z

remaining that do not have a pair x, y ∈ T with x < z < y. We set t = d− ln(δ)/δ2e so that
this set R of remaining popular vertices has size at most

|R| 6 exp(−δ2t)n 6 δn.

We apply Corollary 2.9 to encode the neighbourhoodsNG(v)∩R for each vertex v ofG using
at most 2H(δ)n+O(n(log log n)2/ log n) bits.

For x ∈ T , the out- and in-degree in G−0 (x) and G+
0 (x) respectively are bounded by γn.

When encoding the adjacencies of the graphs G−0 (x) and G+
0 (x), we use Corollary 2.9 instead

of Theorem 2.7 to encode the neighbourhoods. The graph induced by the unpopular vertices
has for each vertex either the in- or the out-degree bounded by δn. To encode the adjacencies
in these graphs, we again apply Corollary 2.9. In total, we used at most

n/4 + 4(H(2γ) + tH(γ))n+ (2 + 4)H(δ)n+ 2s+O(n(log log n)2/ log n)

bits. It can be checked that H(p) = −p log p − (1 − p) log(1 − p) 6 −2p log p for p ∈ (0, 1
2
).

The result now follows by setting

δ = log−1/4 n,

γ = log−3/4 n,

t = d− ln(δ)/δ2e = O(log1/2 n · log log n),

s = d−2 ln(γ)/γe = O(log3/4 n · log log n).

All the parts that were encoded using the dictionaries from Corollary 2.9 can be decoded in
constant time in the word RAM model. We also need to check for every pair of vertices x, y
whether there is a vertex z ∈ S with x < z < y. For each x, we create two strings s+

x and s−x
of length |S| = s = O(log n) that record whether the i-th vertex of S is in N+(x) or N−(x)
respectively. Given two vertices x and y, we can �nd whether there is a z ∈ S with x < z < y
by computing the bitwise AND-function on s+

x and s−y . These two strings correspond to a
constant number of words and therefore this can be done in constant time in the word RAM
model with words of Θ(log n) bits.

5 Conclusion
Our main result shows that for all hereditary graph classes G, there exists an adjacency la-
belling scheme using µG(n) + o(n) bits per vertex, which is optimal up to the o(n) term. For
hereditary graph classes with χc(G) = 1, the leading term in our label size is o(n); for those
graphs classes the following problem remains open.

Problem 5.1. Is it true that every hereditary family of graphs G with µG(n) = Ω(log n) has an
adjacency labelling scheme using labels of size (1 + o(1))µG(n)?
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We remark that it is already di�cult to obtain the correct leading term for the size of Gn
when χc(G) = 1. In the range log n 6 µG(n) = o(n), it was proved in [8] that the behaviour
of µG(n) when n→∞ can be fairly erratic, with examples showing that the function µG(n)
can oscillate between the two extremes of the range as n grows. However, it might be the case
that for some speci�c hereditary classes containing 2o(n

2) n-vertex graphs, labelling schemes
using labels of size (1 + o(1))µG(n) can be obtained (for instance using sparse versions of the
regularity lemma).

We have shown that we can represent a poset using labels of n/4+O(n3/4 · log2 n) bits per
vertex. Kleitman and Rothschild [21] showed that there are at most 2n

2/4+Cn3/2 logn posets for
some constantC and hence an improvement of the lower order term beyondO(

√
n) would be

especially interesting. In order to get the better lower order term, we did need to sacri�ce the
decoding time signi�cantly. We also leave open whether it is possible to get the best of both
worlds: can we get a reachability labelling scheme for digraphs with labels of n/4 + O(nc)
bits for some constant c < 1 with constant query time in the word RAM model?

We conclude with a nice related problem. It is known that planar graphs have an adjacency
labelling scheme with labels of O(log n) bits since the work of Muller [23] and Kannan, Naor
and Rudich [19, 20] (and it was proved recently that labels of (1 + o(1)) log n bits can indeed
be obtained, close to the lower bound of log n bits [13]). A natural question is whether planar
digraphs also have a reachability labelling scheme with labels of O(log n) bits. This is related
to the question of whether planar posets have constant boolean dimension (see [15]). The best
known reachability labelling scheme for planar digraphs is due to Thorup [27]; it uses labels
of O(log2 n) bits.

UpdateMay 7, 2021 In an earlier version of the paper, we claimed the existence of a univer-
sal poset on 2(1+o(1))n2/4 elements, but we recently found a �aw in our argument. We concluded
the existence from our comparability labelling scheme, but although this leads to a universal
graph for the class of comparability graphs, this universal graph need not be a comparability
graph itself. Unfortunately, we have to take back the claim and we in particular leave open
the question raised by Hamkins [18] on the minimal size is of a poset that is universal for all
posets of size n.
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