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Better Bounds for Max Cut

B. BOLLOB�AS and A. D. SCOTTFor a multigraph G, let f(G) be the size of a largest cut of G. We de�ne f(m) tobe the minimum of f(G) over graphs of size m, and fw(m) to be the minimumover multigraphs of size m. For n su�ciently large, and 0 � �k2� � n, wedetermine f(m) for m = �n2�+ �k2� and give the extremal graphs. Furthermore,by considering the weighted problem, we determine f(m) and fw(m) to withinan additive constant for every m, and �nd the extremal graphs for many valuesof m. This extends independent work of Alon and Halperin.In the second part of the paper, we turn to the problem of �nding e�cientalgorithms for obtaining large bipartite subgraphs. We give a linear timealgorithm that, for a multigraphG withm edges and n vertices, �nds a bipartitesubgraph with fw(m) edges. We give an algorithm running in time O(2ck4 +m + n) that �nds a bipartite subgraph with at least m=2 +pm=8 + k edgesif one exists and otherwise provides an optimal partition. We also provide alinear time weak approximation algorithm for f(m)�m=2�pm=8.In the �nal part of the paper, we generalize our results to the relatedproblems Max k-Cut and Max Directed Cut.1. IntroductionThe well-known Max Cut problem asks for a largest cut of a graph G. A cutof maximal size clearly corresponds to a bipartite subgraph of maximal size,and we shall use both formulations. Max Cut is NP-hard and has been thefocus of extensive study, both from the algorithmic perspective in computer



2 B. Bollob�as and A. D. Scottscience and the extremal perspective in combinatorics. The extremal prob-lem asks how small a largest bipartite subgraph of a graph with m edgescan be, and which graphs achieve this bound. The algorithmic problem asksfor e�cient algorithms that determine or approximate the maximal size ofa bipartite subgraph and that provide large bipartite subgraphs. An impor-tant survey of the Max Cut problem is given by Poljak and Tuza [32]; anexcellent bibliography from the perspective of combinatorial optimization isgiven by Laurent [26].This article is a combination of survey and research paper. We shallindicate some recent progress on the Max Cut problem, from both combina-torial and algorithmic perspectives, and prove a number of new results. Thearticle was originally written in the autumn of 1997 for the Erd}os Work-shop in Budapest in the summer of 1998. Early in 1998, we became awareof the work of Alon and Halperin [2], who also addressed the extremal MaxCut problem. They determined the recurrence (5) for the extremal functionfw(m); however, they did not determine the extremal graphs or considerthe algorithmic aspects of the problem. Although our approach is similar toAlon and Halperin's, we give the details for clarity of exposition, and alsoso that we can obtain the extremal graphs for (4) and for some cases of (5).In addition, the arguments are used in later sections on algorithms.For a graph G, let f(G) be the maximal number of edges in a bipartitesubgraph of G. For m > 0, we de�ne f(m) to be the minimum value of f(G)for graphs G with m edges. As observed by Erd}os, f(m) � m=2. This canbe seen by noting that a random bipartition of a graph G gives a cut withexpected weight e(G)=2. In 1973, answering a question of Erd}os, Edwards([9], see also [10]) proved that(1) f(m) � &m2 +rm8 + 164 � 18' :We remark that, in fact, we can demand signi�cantly more from abipartition: it was shown in [6] that every graph G with m edges has abipartition V (G) = V1 [ V2 such that (1) is satis�ed and, in addition, fori = 1; 2,(2) e(Vi) � m4 +rm32 + 1256 � 116 :



Better Bounds for Max Cut 3This is an example of a judicious partitioning result, in which we demandthat every class in a vertex partition satis�es some inequality. We remarkthat the result is best possible when m = �2l+12 �, in which case K2l+1 is theunique extremal graph (for l � 2). We shall not consider judicious partitionsfurther in this paper; however, a discussion of related results and problemscan be found in [7].The Edwards bound (1) is exact for complete graphs. Thus if m = �n2�then f(m) = f(Kn) = bn2=4c. In fact, if n 6= 4 then Kn is the uniqueextremal graph (for n = 3, two additional extremal graphs are obtainedby taking an edge-disjoint union of two copies of K3). For other valuesof m, however, the situation is less simple. Indeed, Erd}os [11] conjecturedthat the di�erence between f(m) and (1) can be arbitrarily large. This wasproved by Alon [1], who showed that there exist c; c0 > 0 such that, if n issu�ciently large and m = 2n2,(3) f(m) � n2 + n2 + cpn � m2 +rm8 + c0m1=4:Alon also showed that, for some c00 > 0 and every m > 0,f(m) � m2 +rm8 + c00m1=4:Thus the Edwards formula is exact for m = �n2� and out by O(m1=4) whenm is about halfway between �n2� and �n+12 �.Our �rst aim in this paper is to determine f(m) exactly for a range ofvalues between �n2� and �n+12 �. Indeed, suppose m = �n2�+ �k2�, where n andk are non-negative integers with 0 � �k2� � n. The (two) graphs obtainedby taking an edge-disjoint union of Kn and Kk show thatf(m) � �n24 �+ �k24 �while any graph obtained by deleting �n+12 � � �n2� � �k2� edges from Km+1shows that f(m) � $(n+ 1)24 % :



4 B. Bollob�as and A. D. ScottIn x 2 we shall prove that, provided m is su�ciently large,(4) f(m) = min(�n24 �+ �k24 � ;$ (n+ 1)24 %) :Furthermore, the graphs we have described include all the extremal graphsunless k = 4, when the graphs that can be obtained from an edge-disjointunion of Kn and two copies of K3 are also extremal.Note that �(n+ 1)2=4� is smaller than bn2=4c+ bk2=4c ifn�rn2 + "(n; k) � �k2� � nwhere ��"(n; k)�� is O(1). If there is some integer k with �k2� in this range,then since f(m) is monotonic increasing and f��n+12 �� = �(n+ 1)2=4� , itfollows that, for �n2�+ �k2� � m � �n+12 �,f(m) = $(n+ 1)24 % :We obtain the surprising consequence that f(m) is constant on intervals oflength up to about pn=2 � (m=2)1=4.In x3 we turn to the problem of determining f(m) for arbitrary valuesof m. Our arguments are similar to those of x2, but we are faced with someadditional technical di�culties, which make it necessary to consider graphsin which the edges are weighted. For a graph G with edge-weighting w, letf(G) be the maximal weight of a cut of G. Let fw(m) be the minimum off(G) over graphs whose edges are weighted with nonnegative integers andhave total weight m (or, equivalently, over multigraphs with m edges). It iseasily seen that fw(m) � f(m). We prove that, for su�ciently large m,(5) fw(m) = min��(n+ 1)24 � ;�n24 �+ fw�m��n2��� ;where the integer n is de�ned by �n2� � m < �n+12 �. This provides a recursiveformula for fw(m). (This recurrence was found independently by Alon and



Better Bounds for Max Cut 5Halperin [2] and implies (4).) To prove a recursion, note that if we wereto know fw(m) for every m � m0, where m0 is su�ciently large, then (5)determines fw(m) for all m. In any case, (5) determines fw(m) to within anadditive constant. Furthermore, by considering Kn+1 and graphs of formKn [H with e(H) = m� �n2�, it is easy to see thatf(m) � min($(n+ 1)24 % ;�n24 �+ f �m��n2��) :Setting C = maxm<m0 ��f(m)� fw(m)�� , it follows that for every m > 0,��f(m)� fw(m)�� � C:It seems likely that f(m) = fw(m) for every m > 0.We use the results of x3 in x4, where we return to the problem of �ndingextremal graphs for Max Cut. Writing m = �n12 � + � � � + �nk2 �, where theni are nonnegative integers with �ni2 � < ni+1 for i < k, we determine f(m)provided nk�1 is su�ciently large: if bn2i =4c+ � � �+ bn2k=4c < �(ni + 1)2=4�for each i, then f(m) =Pki=1bn2i =4c; we also give the extremal graphs.In the second part of the paper we concentrate on algorithmic results.Max Cut is NP-hard (see [24], [16]), even for quite restricted classes ofgraphs ([21], [5]), and it is therefore of interest to �nd polynomial timealgorithms that give large bipartite subgraphs. A number of authors havegiven algorithms that yield a bipartite subgraph at least as large as thatguaranteed by the Edwards bound (1) (see remarks in Section 2, whereseveral algorithms are also discussed; see also [35]). In Section 5 we givea linear time algorithm that is optimal in terms of edge-weight: for anygraph with integer edge-weights and total weight m, the algorithm yields abipartite graph of weight at least fw(m).Much recent progress on the Max Cut problem has concerned the exis-tence of good approximation algorithms. Building on results in the theoryof probabilistically checkable proofs, H�astad [18] has shown that, for any" > 0, it is NP-hard to approximate Max Cut within a factor 17=16 � ".On the positive side, Goemans and Williamson [17] have given a 1:1383-approximation algorithm. (For the Max k-Cut problem Kann, Khanna,Lagergren and Panconesi [23] have shown that it is NP-hard to approxi-mate within a factor 1 + 1=34k; while Frieze and Jerrum [15] have given an



6 B. Bollob�as and A. D. Scottalgorithm that approximates within a factor (1� 1=k + 2 ln k=k2)�1.) Fur-thermore, it is known that good approximation algorithms exist for densegraphs (see [4], [25], [13]). Note that the di�culty for these algorithms liesin recognising and partitioning graphs G for which f(G) is large. Graphsfor which f(G) is small can be partitioned by the trivial greedy algorithmthat yields a cut of weight at least w(G)=2.In Sections 6 and 7 we concentrate on graphs of weight m for whichf(G) is close to fw(m). Mahajan and Raman [29] have shown that thereare algorithms running in time O(n3+m24k) and O(2ck2 +m+n) that �nda cut of size at least dm=2e + k in a graph with m edges and n vertices, ifsuch a cut exists. In Section 6, we show that, for any �xed integer k, thereis an algorithm running in time O(2ck4 +m+ e) th at �nds a cut of weightat least m=2+pm=8+ k in a graph with integer edge-weights, e edges andtotal weight m if such a cut exists and otherwise �nds an optimal cut. InSection 7 we concentrate on the quantity f(G) � m=2 �pm=8: we notethat it is NP-hard to approximate this quantity within a factor (9=8 � "),but provide a linear time algorithm that approximates its logarithm.In the �nal part of the paper we consider two related problems. InSection 8, we consider the Max k-Cut problem for k > 2. We prove versionsof our results on bipartitions for the k-partite case. Finally, in Section 9,we consider the problem of �nding large bipartite subgraphs of a directedgraph, and give some extremal results.Throughout the paper, we use w for an integer-valued edge-weighting.For disjoint sets of vertices we write E(X;Y ) for the set of edges betweenX and Y , e(X;Y ) = ��E(X;Y )�� and w(X;Y ) = Pe2E(X;Y ) w(e). We willalso sometimes write e(x; Y ) and w(x; Y ) for e�fxg; Y � and w�fxg; Y � .Part I: The Extremal Problem2. Max Cut for graphsOur main aim in this section is to �nd the exact value of f(m) for everysu�ciently large m of form �n2� � m = �n2�+�k2� � �n+12 �, and determine theextremal graphs. The value of f(m) can also be obtained from the resultsof the next section and from Alon and Halperin [2]. However, our aim in



Better Bounds for Max Cut 7this section is also to determine the extremal graphs, which turn out to besurprisingly varied.Note that, for any m, we can obtain an upper bound for f(m) bywriting m = �n12 � + �n22 � + � � � �nr2 �, where each ni in turn is chosen to beas large as possible; then by considering Kn1 [ � � � [ Knr , it is clear thatf(m) � bn21=4c + � � � + bn2r=4c. A straightforward calculation shows that,for every m,(6) f(m) � m2 +rm8 + (8m)1=4 +O(m1=8);while taking k � p2n� 1 in the theorem below shows thatf(m) � m2 +rm8 + �1 + o(1)� (8m)1=4for in�nitely many values of m.Theorem 1. For n > 5� 108, every graph G withe(G) = �n2�+�k2�where 0 � �k2� � n� 1satis�es(7) f(G) � min(�n24 �+ �k24 � ;$ (n+ 1)24 %) :Furthermore, the extremal graphs are the two graphs obtained by takingan edge disjoint union of Kn and Kk if bn2=4c+ bk2=4c � b(n+ 1)2=4c andk 6= 4; and all graphs obtained by deleting �n+12 � � �n2� � �k2� edges fromKn+1 if bn2=4c+ bk2=4c � b(n+ 1)2=4c. If k = 4 then the extremal graphs



8 B. Bollob�as and A. D. Scottare obtained by taking an edge-disjoint union of Kn and K4 (two graphs)or Kn and two copies of K3 (seven graphs).We will make use of several lemmas in our proof of Theorem 1. Lemma 2is due to Edwards [9]; recently a short proof was given by Erd}os, Gy�arf�asand Kohayakawa [12]. Poljak and Turz��k [33] gave an O(n3) algorithm for�nding a bipartite subgraph of the type guaranteed in the lemma; Ngocand Tuza [30] improved upon this by giving an algorithm running in timeO(m). The proof that we give is similar to the proofs of Erd}os, Gy�arf�as andKohayakawa and of Ngoc and Tuza, but is slightly simpler and also yieldsan O(m) algorithm.Lemma 2. For a connected graph G,f(G) � e(G)2 + jGj � 14 :Proof. Given an ordering of the vertices of G, we can partition V (G) byusing the greedy algorithm: at each step a vertex is added to whichever classcontains fewer of its predecessors (or to either class if both classes containthe same number). If we write e(v) for the number of predecessors of v thatare adjacent to v then Pv2V (G) e(v) = e(G), and the size of the bipartitegraph between the two vertex classes is at leastXv2V (G) �e(v)=2� = e(G)2 + k2where k is the number of vertices with an odd number of predecessors.It is therefore enough to �nd an ordering of V (G) in which at least(n � 1)=2 vertices have an odd number of predecessors. For jGj � 1 thisis trivial. If jGj = n > 1, then we �rst �nd a set of vertices S such thatG[S] is a star and G n S is connected. Let T be a spanning tree of G.If two endvertices of T are adjacent, say v and w, then let S = fv; wg.Otherwise, let T 0 be the tree obtained by removing all endvertices of T , letv be any endvertex of T 0 and let S contain v, together with all endverticesof T adjacent to v. In either case, S contains a vertex vs together with anindependent set of neighbours of vs and G n S is connected. We repeat theprocess with G n S, continuing until at most one vertex remains.



Better Bounds for Max Cut 9We order the vertices ofG one star at a time. Given a star S, let R be theset of vertices we have already ordered. Let S+ be those vertices of S n fvsgwith an odd number of neighbours in R and let S� = S n�S+[fvsg� . AfterR, take S+ (in any order), followed by vs, followed by S� (in any order).Note that the vertices in S+[S� all have an odd number of predecessors inthis ordering, and jS+ [ S�j � jSj=2. Thus in the complete ordering, sincethe stars together contain at least n� 1 vertices, at least (n� 1)=2 verticeshave an odd number of predecessors.It is easy to see that this proof gives an algorithm that runs in timeO(m). Note that the tree T can be updated e�ciently between the removalof successive stars.In the proof above, we can avoid the need to generate a star partitionby constructing more directly an ordering of the vertices. Begin with anyordering v1 < � � � < vn of V (G) in which every vertex except v1 has atleast one predecessor. For each vertex calculate the number of predecessors,and let X be the set of vertices with an even number of predecessors. Foreach x 2 X n v1 �nd the largest predecessor of x. This can clearly all bedone in time O(m). Now suppose that two vertices have the same largestpredecessor, say v. Reorder V (G) by moving x and y to immediately beforev, leaving x and y in the same order. The parity of v does not change, sinceit has gained two predecessors, while x and y now have an odd number ofpredecessors. No other vertex has changed its set of predecessors. However,some vertices that previously had x or y as largest predecessor may nowhave v: we can check this by examining the neighbours of x and y. Bya similar argument, if any x 2 X has largest predecessor y 2 X, thenmoving x to a position immediately before y gives an ordering in which xand y have an odd number of predecessors and only neighbours of x (in theoriginal ordering) can have a new largest predecessor. Repeating this stageof the algorithm, we note that each vertex is moved at most once (whenits parity changes), and that we examine the neighbours of a vertex onlywhen we move it (note also that we need only look at successors of a vertex,and no vertex gains successors before being moved). Thus this part of thealgorithm runs in time O(m + n) = O(m). Finally, suppose that no twovertices in X have the same largest predecessor and no vertex in X haslargest predecessor in X. Now if x 2 X has no predecessors then eitherx = v1, or (since vertices are only ever moved downwards) x must havebeen moved at some point in the algorithm, which implies x 62 X. Thusevery x 2 X n v1 has a largest predecessor in V (G) nX. It follows that we



10 B. Bollob�as and A. D. Scotthave an injection X n v1 ! V (G) nX, so jXj � (n� 1)=2 + 1, and thus atleast n�jXj � (n� 1)=2 vertices have an odd number of predecessors. Thealgorithm is now completed greedily as before.Note that Lemma 2 furnishes a quick proof of the Edwards formula (1).Indeed, given a graph G, we may assume G is connected or else identify onevertex from each component. Let n = jGj, so e(G) � �n2�: it follows fromthe lemma that f(G) � e(G)=2 + (n � 1)=4, and (1) follows by a simplecalculation.Lemma 3 was noted by several authors (see [3], [27], [28], [1]). We proveit here for completeness.Lemma 3. For a nonempty graph G,f(G) � �12 + 12�� e(G):Proof. Fix a colouring of G with t = �(G) colours, and let the colourclasses be V1; . . . ; Vt. Let S [ T be a random partition of [t] into a set ofsize bt=2c and a set of size dt=2e. Then, writing m = e(G), the expectednumber of edges between Si2S Vi and Si2T Vi is�� t24 � =�t2��m � � t2 � 14 =�t2��m = �12 + 12t�m:Therefore some partition satis�es this inequality.Lemma 3 also gives a fast proof of the Edwards formula, as observedindependently by Alon [1] and Hofmeister and Lefmann [20].We will also need a lemma concerning partitions of graphs whose edgesare weighted with (positive or negative) integers. Note that as a consequenceof this lemma, for m = �n2� we obtain the extremal graphs for the formulaof Edwards.Lemma 4. Let H be a graph whose edges have integer weights. If n is aninteger with w(H) � �n2�



Better Bounds for Max Cut 11then there is a partition of H into two sets such that the total weight ofedges between the sets is at least bn2=4c. For n 6= 4, the unique extremalgraph is Kn with all edges of weight 1. For n = 4 the extremal graphs areK4 with all edges of weight 1 and the graphs obtained by taking the edgesum of two copies of K3 with all edges of weight 1.Proof. The proof that such a partition exists is straightforward, since wemay consider H as a weighted complete graph, by adding an edge of weight0 between every pair of nonadjacent vertices. If H contains an edge withweight at most 0 then contracting that edge does not decrease the weightof the graph. Therefore we may assume that H is a complete graph and alledges have weight at least 1, so jHj � n. A random partition of V (H) intosets of size � jHj=2� and � jHj=2� yields a bipartite subgraph of expectedweight at least bn2=4c.To derive the extremal graphs, note �rst that we can assume that alledges have nonnegative weight, since contracting an edge with negativeweight increases the total weight, and we can then do better than bn2=4c inthe argument above (this remark also applies if w(H) > �n2�). If H is notKn with all edges of weight 1, then we can contract to a complete graphwith at least one edge of weight greater than 1. Thus jHj < n and all edgeshave weight at least 1. Writing h = jHj, a random bipartition into sets ofsize dh=2e and bh=2c yields a bipartite subgraph of expected weight at least(8) bh2=4c�h2� w(H) = �h24 ��n2�=�h2�:If h < n � 1 or h = n � 1 and n is odd then (8) is strictly larger thanbn2=4c. Otherwise, h = n � 1 is odd and, since all edges have weightat least 1, H is the edge sum of Kn�1 with all weights 1 and a graphH� with V (H�) = V (H) and weight �n2� � �n�12 � = n � 1. Furthermore,all bipartitions of V (H) into two sets of size bh=2c and dh=2e yield abipartite subgraph of size exactly bn2=4c, since otherwise some partitionwould exceed the expectation (8). Since every bipartition of Kn�1 into twosets of size �(n� 1)=2� and �(n� 1)=2� gives a bipartite subgraph of size�(n� 1)2=4� = n2=4�n=2, it follows that every bipartition of H� into setsof size �(n� 1)=2� and �(n� 1)=2� gives a bipartite subgraph of size n=2.If H� is not complete, let v be a vertex that is not adjacent to everyother vertex of H�. We can partition V (H�) n v into two sets V1 and V2



12 B. Bollob�as and A. D. Scottwith jV1j = jV2j = (n � 2)=2, such that ���(v) \ V1�� > ���(v) \ V2�� . Then adding v to V1 or V2 gives two partitions into sets of size �(n � 1)=2� and�(n � 1)=2� that yield bipartite subgraphs with di�erent sizes. It followsthat H� is complete: the only possibility is n = 4, H� = K3 with all edgesof weight 1. Thus for n > 4, H must be Kn, with all edges of weight 1. Forn = 4, a simple case check shows that H can also be any graph obtained bytaking the edge sum of two copies of K3 with all edges of weight 1.Another bound on f(G) was given by Poljak and Turzik [31], whoshowed that every connected graph G with edge-weighting w has a bipartitesubgraph of weight at least12w(G) + 14 minT w(T )where the minimum is taken over spanning trees T of G. Poljak and Turzikshow that there is an algorithm running in timeO(n3) that �nds the requiredsubgraph; Poljak and Tuza [32] show that the algorithm runs in time O(mn).We show that there is an O(m) algorithm: note that for unweighted graphs,we obtain a cut of weight at least e(G)=2+� jGj�1�=4, thus giving anotherproof of Lemma 2.Theorem 5. There is an algorithm running in time O(m) that �nds inevery connected graph G withm edges and edge-weighting w a cut of weightat least 12w(G) + 14 minT w(T ):Before proving this theorem we need a lemma. We say that a collectionof induced stars or single vertices S1; . . . ; St in a graph G is a tree-like star-covering if every vertex in G belongs to some Si and the graph with verticesS1; . . . ; St and edges between Si and Sj i� Si \ Sj 6= ; is a tree.Lemma 6. There is an algorithm running in time O(m) that �nds a tree-like star-covering of any connected graph G with m edges.Proof. Recall that a rooted spanning tree T of a graph G is a depth-�rstsearch (DFS) tree if, for every uv 2 E(G), either the path from the root r



Better Bounds for Max Cut 13to u in T contains v or the path from r to v contains u. In other words, ifwe delete v 2 V (T ), then the components of T n v containing each of thechildren of v are not joined by any edge. A DFS tree can be found in timeO(m) (see, for instance, [30]).Let T be a DFS tree in G with root x. For every v 2 V (T ) that is notan endvertex of T let Tv be the induced star containing v and its children.If v is an endvertex of T then let Tv = fvg. Then �Tv : v 2 V (T )	 is atree-like star covering of G.Proof of Theorem 5. Keeping the notation of the proof of Lemma 6, letT0 = �Tv : dT (x; v) � 0 mod 2	and T1 = �Tv : dT (x; v) � 1 mod 2	 :Each of T0 and T1 is a collection of disjoint induced stars and single vertices,and every edge of T is contained in some member of T0 or T1. We partitionwhichever of T0 and T1 has the greater weight, say Ti one star at a time.Suppose we have a partial partition V1 [V2 and wish to partition a star Tv.We greedily assign v to one class and Tv n v to the other so that the weightof the partial partition is increased by at least w(Tv ; V1 [ V2)=2 + w(Tv)=2.Repeating for all stars, we obtain a cut of weight at least12w(G) + 12w(Ti) � 12w(G) + 14w(T ):The algorithm clearly runs in time O(m).Finally, it will be useful to have the following remark.Lemma 7. If W � V (G) and H = G[W ] thenf(G) � f(H) + 12�e(G) � e(H)� :



14 B. Bollob�as and A. D. ScottProof. Partition H, then add the remaining vertices from G one at a timeto whichever class has fewer neighbours. The resulting partition clearlysats�es the inequality.With these lemmas in hand, we turn to the proof of Theorem 1.Proof of Theorem 1. Let n0 = 5� 108. Suppose that n > n0 and G is agraph with(9) m = �n2�+�k2� < �n+ 12 �edges and(10) f(G) � min(�n24 �+ �k24 � ;$ (n+ 1)24 %) :We shall prove that G is one of the extremal graphs given in the statementof the theorem. Note that we may assume that G is connected by identifyingone vertex from each component.We begin by showing that G consists of a very large complete graph onn�O�pn � vertices, together with O�pn � `exceptional vertices'.Clearly jGj � n and k < p2n+ 12 . Note also that n > 140(n3=4+k+1).If k < 2, we are done by Lemma 4; so we may assume k � 2. Let � = �(G).Now by (9),(11) bn2=4c+ bk2=4c � m2 + n+ k4 ;and so it follows from (10) that(12) f(G) � m2 + n+ k4 :Therefore, by Lemma 2,(13) jGj � n+ k + 1:



Better Bounds for Max Cut 15Furthermore, Lemma 3 and (12) imply thatm2� � n+ k4and so by (9) � � 2mn+ k > n� k � 1:Now if G contains 2k + 2 independent edges, we can cover G by jGj �(2k + 2) � n� k � 1 edges and vertices, which is equivalent to colouring Gwith at most n � k � 1 colours. It follows that G contains at most 2k + 1independent edges and therefore that some set Y of at most 4k+2 verticesmeets all edges of G. Let X = V (G) n Y ; then G[X] is complete, and(14) jXj = jGj � jY j � n� 4k � 2:We have partitioned G into a large complete graph G[X] and a smallset Y which we shall regard as a set of exceptional vertices. Note that itfollows from (14) that any partition of X into two sets of equal size (or sizesdi�ering by 1) corresponds to a bipartite subgraph of G[X] of size(15) $ jXj24 % � e(X)2 + jXj � 14 � e(X)2 + n� 4k � 34Throughout the proof, we shall consider partial partitions of V (G) in whichwe partition Y and some vertices from X, and then extend these to parti-tions of V (G) in which X is split as evenly as possible.We now show that every vertex in Y has either very many or very fewneighbours in X. Indeed, suppose some v 2 Y has ���(v) \X�� � 5k=2 + 2and ��X n �(v)�� � 5k=2 + 2. We partition G as follows. Since n > n0we have n > 5k + 4, so we can �nd a partition X = X1 [ X2 withjX1j � jX2j � jX1j+ 1 and(16) �� ���(v) \X1�� � ���(v) \X2�� �� � 5k2 + 2:



16 B. Bollob�as and A. D. ScottAdding v to whichever of X1 and X2 contains fewer of its neighbours, itfollows from (14) that we obtain a bipartition of H = G�X [ fvg� with atleast e(H)2 + jXj � 14 + 5k4 + 1 > e(H)2 + n+ k4edges between the two classes. Thus, by Lemma 7,(17) f(G) � f(H) + 12�e(G) � e(H)� > m2 + n+ k4 ;which contradicts (12). We may therefore assume that for every v 2 Y ,either ���(v) \X�� < 5k=2 + 2 or ��X n �(v)�� < 5k=2 + 2. LetY + = �v 2 Y : ���(v) \X�� > jXj � 5k=2 � 2	Y � = �v 2 Y : ���(v) \X�� < 5k=2 + 2	 :Then Y + [ Y � is a partition of Y .Next we show that the subgraph induced by X[Y + is nearly complete.Indeed, we claim that e�G[X [ Y +]� < 5k=2 + 2. If not, then let W � Y +be minimal such that(18) e�G[X [W ]� � 5k2 + 2:Since ��X n �(v)�� < 5k=2 + 2 for every v 2 Y +, we have5k=2 + 2 � e�G[X [W ]� � 5k + 4:Since n > n0, it follows that n > 4(5k+4), so we can �nd a partition V1[V2of X [W such that jV1j � jV2j � jV1j+1 and all the edges of G[X [W ] are



Better Bounds for Max Cut 17contained in V1. Then since �jX[W j2 � � e(X [W ) + (5k=2) + 2, it followsfrom (18) and (14) thatf�G[X [W ]� � jV1j jV2j� $ jX [W j24 %
� 12�e(X [W ) + 5k=2 + 2� + jXj+ jW j � 14> 12e(X [W ) + n+ k4 ;and we are done, as in (17). Thus we may assume that(19) e�G[X [ Y +]� < 5k2 + 2;so G[X [ Y +] is nearly a complete graph. In particular,(20) f�G[X [ Y +]� � $ jX [ Y +j24 %

Now we show that there are not too many edges between Y � andX [ Y +. Note �rst that every vertex v 2 Y � has fewer than 5k=2 + 2neighbours in X [ Y +: otherwise, since e�G[X [ Y +]� < 5k=2 + 2 and���(v) \X�� < 5k=2 + 2 (and since jXj > 6(5k=2 + 2) = 15k + 12 which, asn > n0, follows from (14)) we can �nd a partition of X [ Y + into sets W1and W2 with jW1j � jW2j � jW1j+ 1 such that all edges of G[X [ Y +] arecontained in W1 and �� ���(v) \W1�� � ���(v) \W2�� �� � 5k=2 + 2. Arguing inthe same way as from (16) we arrive at a contradiction. Thus(21) ���(v) \ (X [ Y +)�� < 5k + 42for every v 2 Y �.



18 B. Bollob�as and A. D. ScottNow suppose that e(Y �;X [ Y +) > 70n3=4:Let Y0 � Y � be minimal such that e(Y0;X [ Y +) > 70n3=4, and letU = �(Y0) \ (X [ Y +). Note that the minimality of Y0 and (21) implythat jU j < 70n3=4+5k=2 + 2. Since n > n0 it follows that jU j < jXj=2. LetY0 = Y1 [ Y2 be a random partition, where each vertex of Y0 is in Y1 or Y2independently with probability 1=2. LetU1 = �u 2 U : ���(u) \ Y1�� > ���(u) \ Y2��	and let U2 = U n U1. For u 2 U , let du = ���(u) \ Y0�� and de�ne�(u) = �� ���(u) \ Y1�� � ���(u) \ Y2�� �� . ThenE��(u)� = E���S(du)��� ;where we write S(du) for the position after du steps of a simple symmetricrandom walk on Z starting from 0. It is easily checked that E �� S(d)�� � pd=2,and so E� e(Y1; U2) + e(Y2; U1)� = 12e(U; Y0) + 12 Xu2U E��(u)�� 12e(U; Y0) + 12 Xu2U d1=2u =2� 12e(U; Y0) + e(U; Y0)=12n1=4;since du � jY0j � jY j � 4k + 2 < 9pn and so d1=2u > du=3n1=4; alsoE� e(Y1; Y2)� = 12e(Y0):



Better Bounds for Max Cut 19Since jU j < jXj=2, we can extend the partition U1 [ U2 of U to a partitionT1 [ T2 of X [ Y + with jT1j � jT2j � jT1j+ 1. Then, by (19) and (14),e(T1; T2) � $ jX [ Y +j24 %� e�G[X [ Y +]�� 12e(X [ Y +) + jX [ Y +j � 14 � 52k � 2> 12e(X [ Y +) + n� 14k � 114 :Thus, partitioning X [ Y + [ Y0 into T1 [ Y2 and T2 [ Y1, we see thatf�G[X [ Y + [ Y0]� � E� e(T1 [ Y2; T2 [ Y1)�= E� e(T1; T2) + e(Y1; Y2) + e(Y1; U2) + e(Y2; U1)�> 12e(X [ Y + [ Y0) + n� 14k � 114 + e(U; Y0)12n1=4> 12e(X [ Y + [ Y0) + n+ k4 ;provided e(U; Y0) > (45k + 33)n1=4, which follows from e(U; Y0) > 70n3=4,since n > n0. Thus it follows from Lemma 7 and (12) that we may assume(22) e(Y �;X [ Y +) � 70n3=4:Next we prove that jX[Y +j = n or n+1. Now since jY �j � jY j � 4k+2,we have e(Y �) � �4k + 22 � = 8k2 + 6k + 1:



20 B. Bollob�as and A. D. ScottSo, since n > n0, it follows thate(X [ Y +) � e(G) � e(Y �)� e(Y �;X [ Y +)� �n2�+�k2�� (8k2 + 6k + 1)� 70n3=4� �n2�� 152 k2 � 132 k � 1� 70n3=4> �n2�� 16n:So in order to have enough vertices for the edges, we must have jX [Y +j �n� 16, and thus by (12),(23) jY �j � k + 17:Now if jX [ Y +j � n� 1, then e(X [ Y +) � �n�12 � and so, since n > n0,e(Y �) � �n2�+�k2�� e(X [ Y +)� e(Y �;X [ Y +)� �k2�+ n� 1� 70n3=4> �k2�+ n2 ;which contradicts (23). So jX[Y +j � n. Similarly, we have jX[Y +j � n+1,since, by (19),�n+ 22 �� e�G[X [ Y +]� > �n+ 22 �� 5k2 � 2> �n2�+�k2�:



Better Bounds for Max Cut 21We have shown that jX [Y +j = n or jX [Y +j = n+1. If jX [Y +j = n+1then, by (20), f(G) � $(n+ 1)24 %
with equality i� Y � = ;, in which case G consists of Kn+1 with �n+12 ��medges deleted.Otherwise jX [ Y +j = n. Now let H be the weighted graph consistingof all edges of E(Y �) [ E(Y �;X [ Y +) with weight +1 and all edges ofE�G[X [ Y +]� with weight �1, so H has total weight �k2�. It follows fromLemma 4 that H has a cut of weight at least bk2=4c.Note that since n > n0 it follows from (14), (19) and (22) that jHj �jY j + e(Y �;X [ Y +) � 4k + 2 + 70n3=4 + 5k=2 + 2 < jXj=2. We cantherefore extend a partition of H to a partition of G in which X [ Y + isevenly partitioned, sof(G) � �n24 �+ f(H) � �n24 �+ �k24 �with equality i� H �= Kk, with all edges of weight 1 (or H �= K4 or H �= 2K3when k = 4). It follows immediately that G[X [ Y +] is complete, and theextremal graphs are as described in the statement of the theorem.What prevents us from extending the argument in the proof of Theo-rem 1 to graphs with �n2�+ �k2�+ �l2� edges? The problem is that when weremove the copy of Kn in the argument above, we are left with a graph withweighted edges. If we have �k2� edges then Lemma 4 gives us the unique ex-tremal graph, whereas to deal with �k2�+ �l2� edges we would need a versionof Theorem 1 for weighted graphs. Our aim in the next section is to provesuch a theorem. In particular, it will enable us to determine f(m) exactlyfor a much wider range of m, and to within an additive constant for everyvalue of m. It will not, however, yield all the extremal graphs.



22 B. Bollob�as and A. D. Scott3. Max cut for multigraphsOur aim in this section is to determine f(m) to within an additive constantfor every integer m, and to determine f(m) exactly for a larger range ofvalues of m. In order to do this, we consider graphs with integer edge-weightings: note that, if all weights are positive, we can think of these asmultigraphs, where the weight of an edge indicates its multiplicity. As inthe unweighted case, for a graph G with edge-weighting w, we write f(G)for the maximal weight of a bipartite subgraph of G. We de�ne fw(m) tobe the minimum of f(G) over graphs G with w(G) = Pe2E(G) w(e) = mand all weights non-negative integers.Note that the restriction to positive integers means that fw(m) is theminimum of f(G) over a �nite set of multigraphs. Thus there is a (veryslow) algorithm to determine f(m). However, we do not lose anything byallowing negative weights: if w(G) = m and G has an edge xy with negativeweight, then consider the graphH = G=xy obtained by contracting the edgexy to a single vertex z and de�ning w(vz) = w(vx) + w(vy) for v 6= x; y.Repeating the process until we obtain a graph H with no edges of negativeweight, it is clear that w(H) � w(G). Since fw(m) is monotone increasing,it follows that f(G) � f(H) � fw(m).What can we say about fw(m)? Clearly it is subadditive: since f(G [H) = f(G) + f(H) for any graphs G and H, it follows that fw(m + r) �fw(m) + fw(r) and, similarly, f(m + r) � f(m) + f(r). Furthermore, itfollows from Lemma 4 that, for m = �n2�, we have fw(m) = f(m) = bn2=4c.All the work in this section will go into proving a lower bound for fw(m)for other values of m.We begin with Theorem 8, which provides a recursive lower boundon fw(m) and hence f(m) (as noted in the introduction, this was provedindependently by Alon and Halperin [2]). The approach we use in provingthe theorem is similar to that used in the proof of Theorem 1. Howeversince we are dealing with weighted graphs the details are rather di�erent.Theorem 8. Let G be a graph with integer-valued edge-weighting w.Suppose w(G) =m. Then, provided m > m0,(24) f(G) � minn�1 ��n24 �+ fw�m��n2��� ;



Better Bounds for Max Cut 23where we de�ne fw(r) = 0 for r < 0.Proof. Let G be a graph with w(G) = m and f(G) = fw(m) that does notsatisfy (24). We can consider G as a weighted complete graph by de�ningw(xy) = 0 if x and y are nonadjacent. If G contains an edge xy withnonpositive weight then replace G with G=xy. Clearly w(G=xy) � w(G)and f(G=xy) � f(G). Repeating this process, we may assume that G is aweighted complete graph with all edges of positive weight. Let m = w(G)and de�ne the integer n by(25) �n2� � m < �n+ 12 �:Since G is complete and every edge has weight at least 1, we have jGj � n.We will use the fact that, as in (6), for some c; c0 > 0 and every integer m,(26) f(m) � m2 +rm8 + cm1=4 < m2 + n4 + c0pn:We will use c1; c2; . . . to refer to constants in the proof below; suitableconstants can easily be determined. In several places, we shall assume thatn is larger than some �xed constant.Note that the proof of Lemma 3 carries over straightforwardly to theweighted case (see also Section 5). In particular, since G is complete, itfollows from the weighted version of Lemma 3 thatf(G) � �12 + 12jGj�mand so by (26), m2jGj � n4 + c0pn:Since m � �n2�, we have jGj � n(n� 1)n+ 4c0pn(27)



24 B. Bollob�as and A. D. Scott= n� 11 + 4c0=pn> n� c1pn:We now �nd a small set of vertices that meets all edges with weightgreater than 1. Let M be a matching of maximal weight in G. Considerthe random partition V (G) = V1 [ V2, where for each edge xy 2 M weindependently assign x 2 V1 and y 2 V2 or x 2 V2 and y 2 V1 with equalprobability; if there is a vertex not covered by M , we assign it to V1 or V2with equal probability. The expected weight of edges between V1 and V2 isw(M) + 12�w(G) � w(M)� = 12w(G) + 12w(M):It follows from (26) that any matching in G has weight at most(28) n2 + 2c0pn:Now let e1; . . . ; ek be a maximal set of independent edges ofG with w(ei) > 1for i = 1; . . . ; k. Extend this arbitrarily to a maximal matching M . ThenjM j � � jGj � 1�=2, so by (27),w(M) � jGj � 12 + k > n� c1pn� 12 + kand so by (28) we have k � 12�c1pn + 1� + 2c0pn � c2pn. Let Y be theset of vertices spanned by e1; . . . ; ek. Then(29) jY j = 2k � 2c2pnand any edge of weight greater than 1 is incident with Y . Let X = V (G)nY :then by (27) and (29)(30) jXj � jGj � jY j � n� (c1 + 2c2)pn:Note that X induces a complete graph with all edges of weight 1.



Better Bounds for Max Cut 25Now for y 2 Y , consider the edges between y and X, and order themin increasing order of weight (order edges of the same weight arbitrarily).Let Z1 be the vertices in X incident with the �rst � jXj=2� edges and letZ2 = X nZ1. Consider the partition of X [ fyg into Z1 [fyg and Z2: sincethis partitions X into sets of size � jXj=2� and � jXj=2� , we see thatf�X [ fyg� � $ jXj24 %+ w(y; Z2)� 12w(X) + jXj � 14 + 12w(y;X) + 12 (w(y; Z2)� w(y; Z1))= 12w�X [ fyg� + jXj � 14 + w(y; Z2)� w(y; Z2)2 :Hence, by Lemma 7 and (30),f(G) � 12w(G) + n� (c1 + 2c2)pn� 14 + 12�w(y; Z2)� w(y; Z1)�and so, by (26),(31) w(y; Z2)� w(y; Z1) � (2c0 + c2 + c1=2)pn+ 1 < c3pn:It follows, in particular, that for each y 2 Y there is an integer t(y) suchthat all but at most c3pn of the edges between y and X have the sameweight t(y).We have de�ned t(v) for v 2 Y ; set t(v) = 1 for v 2 X. Then t(v)denotes the \typical" weight of edges incident with a vertex v. We couldobtain a graph H with the same vertex weights as G from a completegraph on Pv2V (G) t(v) vertices by partitioning its vertices into sets �Tv :v 2 V (G)	 , where jTvj = t(v): contracting each set Tv to a single vertexv� gives a graph in which all but O�pn � edges from each vertex v� haveweight t(v) (since all but O�pn � vertices v� in H correspond to verticesv in X for which t(v) = 1). We shall show that in fact G is not too far



26 B. Bollob�as and A. D. Scottfrom H. Note that the edge in H between vertices v� and w� has weightt(v)t(w). With this in mind, for an edge xy in G we de�neu(xy) = t(x)t(y) �w(xy):Thus u denotes the weight we have to add to each edge of G in order toobtain the graph H.We know that u(e) = 0 for every edge e in G[X]. Suppose that for somey 2 Y we have Xx2X ��u(xy)�� � c4pnwhere we de�ne c4 = 2c0+c2+c1=2+1. Then since w(xy) = t(y) for all but atmost c3pn edges between y andX, and w(y;X) =Px2X � t(y)+u(xy)� , wecan partition X into Z1 [Z2 as before (except that we order edges betweeny and X with increasing u-weight). The total weight (with weighting w) ofedges between Z1 [ fyg and Z2 is then at least(32) $ jXj24 %+w(y;X)2 +12 Xx2X ��u(yx)�� > w�X [ fyg�2 + jXj � 14 + c4n1=42 ;and hence by Lemma 7 and (30)f(G) � 12w(G) + 14�n� (c1 + 2c2)pn� 1� + 12c4pn> m2 + n4 + c0pn;which contradicts (26).Thus we may assume that, for every y 2 Y ,(33) Xx2X ��u(xy)�� < c4pn:



Better Bounds for Max Cut 27Suppose that Xx2X Xy2Y ��u(xy)�� > c5n3=4where c5 = 4c3=44 . It follows from (33) that we can pick a subset Y 0 of Ysuch that(34) c5n3=4 < Xx2X Xy2Y 0 ��u(xy)�� < c5n3=4 + c4pn:Then the number of vertices x 2 X such that u(xy) 6= 0 for some y 2 Y 0 isat most c5n3=4+ c4pn < n=4, provided n is su�ciently large. We constructa partition of Y 0 [ X as follows. Let Y 0 = Y1 [ Y2 be a random partitionof Y 0, where each y 2 Y 0 is in Y1 or Y2 independently with probability 1=2.Let X 0 be the set of vertices x 2 X such that w(xy) 6= 0 for some y 2 Y 0.Let Z1 = Y1 [ �x 2 X 0 : u(x; Y1) < u(x; Y2)	and Z2 = Y2 [ �x 2 X 0 : u(x; Y2) � u(x; Y1)	 :Finally, extend the partial partition Z1 [ Z2 to a partition of X [ Y 0 byadding the remaining members of X arbitrarily so that the �nal partitionW1 [W2 satis�es(35) Xv2W1 t(v) � Xv2W2 t(v) � Xv2W1 t(v) + 1:(Note that this is possible since Z1[Z2 contains at most n=2 elements of X,provided n is su�ciently large.) Now by Lemma 9 below, for x 2 X 0 we haveE �� u(x; Y1) � u(x; Y2)�� � E�PUi=1�1� � 12pU , where U = Py2Y 0 ��u(xy)�� .



28 B. Bollob�as and A. D. ScottSo by (33), (34) and (35), the expected weight of edges joining W1 and W2is at leastE��t(X [ Y 0)2=4� + u(Y 0)=2 +Xx2Xmax �u(x; Y1); u(x; Y2)��� 12w(X [ Y 0) + jXj � 14 + E Xx2X ��u(x; Y1)� u(x; Y2)��2� 12w(X [ Y 0) + jXj � 14 + 14 Xx2X� Xy2Y 0 ��u(xy)���1=2
� 12w(X [ Y 0) + jXj � 14 + c5n3=44pc4n1=4� 12w(X [ Y 0) + jXj � 14 + c4pn:As in (32), this yields a contradiction, so we may assume that(36) Xx2X Xy2Y ��u(xy)�� < c5n3=4:It follows that there are at most c5n3=4 vertices of X which are incident toan edge e with u(e) 6= 0.Let G0 be the graph with edges �e 2 E(G) : u(e) 6= 0	 with edge-weighting u and vertices �v 2 V (G) : u(vw) 6= 0 for some w 2 V (G)	 .Then, by (29) and (36),jG0j � c5n3=4 + jY j � c6n3=4which by (27) is smaller than n=4 for su�ciently large n.Finally, let W1 [W2 be a partition of G0 such that the total weight ofedges between W1 and W2 is at least f(G0). Since jG0j < n=4 provided n



Better Bounds for Max Cut 29is su�ciently large, it follows from (30) that we can extend W1 [W2 to apartition V1 [ V2 of V (G) such that�� t(V1)� t(V2)�� � 1:Let t =Pv2V (G) t(v). Thenw(G) = Xvw2E(G) t(v)t(w) + Xvw2E(G) u(vw)� �t2�+ u(G0);while the weight of edges between V1 and V2 is at leastt(V1)t(V2) + u(V1; V2) � � t24 �+ f(G0):Therefore f(G) � � t24 �+ f(G0)� � t24 �+ fw�w(G) ��t2�� :We have used an estimate in the proof above that is an immediateconsequence of the following trivial lemma. We are interested in randomsums P "iai, where the ai are independent Bernoulli random variablestaking values +1 and �1 with probability 1=2. We shall write � instead of"i.Lemma 9. Let s1+ � � �+sk be a partition of n and t1+ � � �+ tl a re�nementof s1 + � � �+ sk. Then E ���� kXi=1 �si���� � E ���� lXi=1 �ti����:



30 B. Bollob�as and A. D. ScottProof. It is enough to consider the simple re�nement when l = k + 1,si = ti for i < k and sk = tk + tk+1. We may couple the sums P�si andP�ti so that �si and �ti have the same sign for i < k, while �sk, �tk and�tk+1 are independent. Let S =Pk�1i=1 �si =Pk�1i=1 �ti. We must showE jS � skj � E jS � tk � tk+1j:Now for real numbers � � � � 0 and L � 0,jL+ �j+ jL� �j � L+ �+ jL� �j� L+ �+ jL� �j+ � � �= jL+ �j+ jL� �j;so in general for j�j � j�j and any L,jL+ �j+ jL� �j � jL+ �j+ jL� �j:Conditioning on the value of S, we see that since jtk � tk+1j � jtk + tk+1j,we have��S + (tk � tk+1)�� + ��S � (tk � tk+1)�� � jS + tk + tk+1j+ jS � tk � tk+1jand soE jS � tk � tk+1j � 12 jS + tk + tk+1j+ 12 jS � tk � tk+1j = E jS � skj:The result follows immediately.For what value of n is the quantity in Theorem 8 minimized? Suppose�n02 � � m < �n0+12 �, say m = �n02 � + r. Clearly we must have n � n0 + 1,and it follows from (30) that we may assume n > n0 � cpn0. We claimthat (24) is minimized with n = n0 or n = n0 +1. Now since the argument



Better Bounds for Max Cut 31of Lemma 3 applies to multigraphs as well as graphs, we can deduce theEdwards formula for multigraphs:fw(m) � m2 +rm8 +O(1):Since fw(m) � f(m), it follows from (6) that(37) fw(m) = m2 +rm8 +O(m1=4):If n = n0 � t, with 0 � t � cpn, thenm��n2� = t(n0 � t) +�t2�+ rso by (37),�n24 �+ fw�m��n2��= m2 + n4 + t(n0 � t) + �t2�+ r8 !1=2 +O(n0t+ r + 1)1=4:Provided n is su�ciently large, and 0 � t < cpn0, this is minimal whent = 0. We conclude the following.Theorem 10. For every su�ciently large positive integer m,(38) fw(m) = min($(n+ 1)24 % ;�n24 �+ fw�m��n2��) ;where n is de�ned by �n2� � m < �n+ 12 �:



32 B. Bollob�as and A. D. ScottAs remarked in the introduction, probably fw(m) = f(m) for every m.Even if this is not true, it seems likely that (38) holds with f(m) in placeof fw(m) when m is su�ciently large.4. Extremal graphs for Max CutWe can apply Theorem 10 to obtain extremal graphs and multigraphs inmore cases than Theorem 1 and Lemma 4. Let us note �rst that any integerm can be written in the formm = �n12 �+�n22 �+ � � �+�nk2 �for some k > 0, where n1 > � � � > nk � 2 and each ni in turn is chosen tobe as large as possible. For 1 � i < k, letMi = �n214 �+ � � �+ �n2i�14 �+ $(ni + 1)24 %
and de�ne M = �n214 �+ � � �+ �n2k4 �then it follows by repeated application of Theorem 10 that, provided nk�1is su�ciently large, fw(m) = minfM1; . . . ;Mk�1;Mg:For 1 � i < k, we can obtain a graph G with m edges and f(G) = Mi bydeleting �ni+12 �� �ni2 �� � � � � �nk2 � edges from the graph(39) Kn1 [ � � � [Kmi�1 [Kni+1;



Better Bounds for Max Cut 33while the graph(40) Kn1 [ � � � [Knkhas m edges and no bipartite subgraph with more than M edges. Note thatin both (39) and (40), we could instead take any edge-disjoint union of thecomplete graphs. Thus there may be many possible extremal graphs.Recall that in the case k = 2, Theorem 1 asserts that for su�cientlylarge m, the extremal graphs are precisely the graphs (39) and (40) andtheir variants obtained by taking di�erent edge-disjoint unions (note thatthe case nk = 4 is special, since we can take two copies of K3 instead ofK4).Keeping the notation of the last few paragraphs, we can extend Theo-rem 10 for graphs as follows.Theorem 11. Let m be a positive integer and de�ne k, n1; . . . ; nk, andM1; . . . ;Mk�1;M as above. Suppose that(41) M < min fM1; . . . ;Mk�1g:Then, provided nk�1 is su�ciently large,f(m) =Mand the extremal graphs are obtained by taking an edge-disjoint unionof Kn1 ; . . . ;Knk , unless nk = 4, in which case there is an additional setof extremal graphs obtained by taking an edge-disjoint union of Kn1 ; . . . ;Knk�1 ;K3;K3.Proof. We argue by induction on k. For k = 1, the result followsimmediately from Lemma 4. For k � 2, we know from Theorem 10 andexample (40) that f(m) = fw(m) = M . Let G be a graph with m edgesand f(G) = f(m). As in the proof of Theorem 1, we can decompose G asthe edge-sum of Kn and H, where H is a weighted graph in which all edgesare weighted �1. Furthermore, any partition of H can be extended to anoptimal partition of Kn, so f(G) = f(Kn) + f(H) and we must therefore



34 B. Bollob�as and A. D. Scotthave n = n1 and so w(H) = �n22 � + � � � + �nk2 �. If H has an edge xy withnegative weight, then contracting xy gives a weighted graph H 0 withw(H 0) > �n22 �+ � � �+�nk2 �:It follows from Theorem 10 and the inductive hypothesis thatf(H 0) � �n214 �+ � � � + �n2k4 �+ 1and so, since f(H) � f(H 0), we obtain f(G) � f(Kn1) + f(H) > M , whichis a contradiction.Thus all edges of H must have weight +1, so we can consider H as anunweighted graph, with �n22 �+ � � � + �nk2 � edges. For 2 � i < k, letM 0i = �n224 �+ � � �+ �n2i�14 �+ $(ni + 1)24 %and let M 0 = �n224 �+ � � �+ �n2k4 �it follows from (41) thatM 0 < minfM 02; . . . ;M 0k�1g:Thus we may apply the inductive hypothesis to H: the result followsimmediately.A similar argument gives the following result for weighted graphs.Theorem 12. Under the conditions of Theorem 11,fw(m) =M



Better Bounds for Max Cut 35and the extremal weighted graphs are the edge sums of Kn1 ; . . . ;Knk , unlessnk = 4, in which case the edge sums of Kn1 ; . . . ;Knk�1 ;K3;K3 are alsoextremal.Proof. We argue as in the proof of Theorem 11, except that we use thedecomposition of Theorem 21 below. Note that in the decompositionK�t �Hif f(K�t ) = bt2=4c then K�t must not have been contractedWhat happens when M � minfM1; . . . ;Mkg? We conjecture that thenatural extension of Theorem 1 should hold: the extremal grahs are obtainedby deleting edges in (39). The weighted case seems more complicated.Part II: Algorithms for Max Cut5. An extremal algorithm for Max CutIn this second part of the paper, we turn from extremal questions to theproblem of �nding polynomial time algorithms that give large bipartitesubgraphs of a graph or edge-weighted graph. In this section we describe alinear time algorithm that, given a graph with total edge weight m, givesa bipartite subgraph of weight at least f(m). In subsequent sections, wegive a linear time algorithm that, for graphs G of weight m, �nds a cut ofweight at least m=2+pm=8+k if such a cut exists a nd otherwise �nds anoptimal cut, and an algorithm that approximates the order of magnitude off(G)�m=2�pm=8.We remark that it often appears to be easier to �nd e�cient algorithmsfor partitioning unweighted graphs than it is for partitioning weightedgraphs. We shall assume below that we are dealing with graphs that haveinteger edge-weightings, where we al low both positive and negative weights.We may also assume that our graphs are connected: given a graph G withn vertices and e edges, we can identify a vertex from each component intime O(e + n) to obtain a graph H with f(G) = f(H); any biparti tion ofH yields an equivalent bipartition of G in time O(n). (We should also notethat we have assumed that all arithmetical operations can be performed inunit time, regardless of the magnitude of edge-weights.)



36 B. Bollob�as and A. D. ScottThe main result of this section is the following linear time algorithm.Theorem 13. There is an algorithm that, given a graph G with e edges,integer-valued edge-weighting w and total weight m �nds a cut of weight atleast fw(m) in time O�e+ jGj� .By taking w � 1, we obtain the following immediate corollary forunweighted graphs.Corollary 14. There is an algorithm that, given a multigraph G with medges and n vertices, �nds in time O(m+n) a bipartite subgraph of G withat least fw(m) edges.Many of the results from Sections 2 and 3 have e�cient correspondingalgorithms. Let us note �rst that Theorem 5 has the following immediatecorollary.Lemma 15. There is an algorithm that, given a connected graph G withn vertices and e edges, and an edge-weighting w with positive integers andtotal weight m, �nds in time O(e+n) a bipartite subgraph of G with weightat least w(G)2 + jGj � 14 :We shall �nd it useful to have the following lemma.Lemma 16. There is an algorithm that, given a graph G with e edges andedge-weighting w, �nds in time O(e + n) a contraction of G to a completegraph in which all edges have positive weight.Proof. Begin by deleting all edges with weight 0. We then take a greedycolouring of G (which takes time O(n+e)) and contract each colour class toa single vertex to obtain a weighted complete graph H with jHj = O�pe � .We now repeated ly contract edges of nonpositive weight until we obtaina graph with all edge weights positive. Since each contraction takes timeO�pe � and there are at most O�pe � contractions, the algorithm termi-nates in time O(e) (note that we can deal with all edges with nonpositiveweight in time O(e) by processing one vertex at a time).



Better Bounds for Max Cut 37We shall also need algorithmic versions of Lemmas 3, 4 and 7, and aresult concerning weighted matchings. Most of the following lemma can befound in Hofmeister and Lefmann [19].Lemma 17. We consider graphs G with n vertices, e edges and edge-weighting w.(i) There is an algorithm running in time O(e+n) that, given a matchingM in G, �nds a cut with weight at least12w(G) + 12w(M):(ii) There is an algorithm running in time O(e+ n) that, given a properk-colouring of G, �nds a cut with weight at least�12 + 12k�w(G):In particular, there is an O(e+n) algorithm that �nds a cut with weight atleast �12 + 12jGj�w(G):(iii) Given a weighted graph G and a partial partition V1 [ V2 of V (G),we can �nd in time O(e+ n) a cut of weight at leastw(V1; V2) + 12�w(G) � w(V1 [ V2)� :(iv) There is an algorithm running in time O(e+n) that �nds a matchingof weight at least w(G)=n.Proof. Parts (i), (ii) and (iv) are obtained by applying algorithms from[19]. Note that if jGj is odd, we may add in an isolated vertex.Part (iii) follows by using the greedy algorithm: add each vertex ofV (G) n (V1 [V2) in turn to whichever side of the partition gives the heaviercut.



38 B. Bollob�as and A. D. ScottWe now prove the main result of this section.Proof of Theorem 13. Let m0 be large enough for (38) to apply: that is,for m � m0, and �n2� � m < �n+12 �, fw(m) = min��(n+ 1)2=4� ; bn2=4c +fw�m��m2 ��	 . By (1) (for weighted graphs) and (6), there is m1 such that,provided m � m1,(42) m2 +rm8 � 1 � fw(m) � m2 +rm8 + 2m1=4:The main part of our algorithm will apply to edge-weighted graphs withweight at least M = max fm0;m1;Kg, where K is a large �xed constant;we deal separately with graphs of smaller weight.We begin by contracting G to a complete weighted graph with thealgorithm from Lemma 16. We may thus assume that G is a completeweighted graph with e edges, all of positive weight, and that w(G) = m.We shall show that we can �nd a cut of weight at least fw(m) in time O(e).If w(H) � M , then since there are only �nitely many graphs withpositive edge weights and total weight at mostM (that is, multigraphs withat most M edges), we can examine all partitions of H in �xed time, or elsestore all optimal partitions as a look-up table. Note that this may introducea large constant into the time or space complexity of the algorithm: wereturn to this point after the proof.We may therefore assume that G has weight m � M . Our algorithmfollows parallel to the proof of Theorem 8. Note that if at any time we�nd a cut with weight at least m=2 +pm=8 + 2m1=4 then we can halt thealgorithm immediately.De�ne the integer n by(43) �n2� � m < �n+ 12 �:Then, by (42),(44) fw(m) � m2 + n4 + 3pn:



Better Bounds for Max Cut 39Since G is complete we have jGj � n:On the other hand, by Lemma 17(ii) we can �nd in time O�e + jGj� abipartite subgraph of G with weight at least �12 + 12jGj�m. Thus we can haltthe algorithm if(45) �12 + 12jGj�m > m2 +rm8 + 2m1=4;which is true for su�ciently large m unless(46) jGj > n� 8pnNote that this implies m is O(e).Now we �nd a small set of edges that meets all edges in G of weightmore than 1. We can �nd a maximal matching M in G in time O(e), bychoosing greedily edges of weight more than 1 and then �lling out withedges of weight 1. By Lemma 17(i) we can �nd in time O(e) a bipartitesubgraph of G with weight at least �m + w(M)�=2. Thus we are done ifw(M) >pm=2 + 4m1=4. Otherwise, provided m is su�ciently large, using(43) we see that M contains at most(47) rm2 + 4m1=4 � � jGj2 � < 7pnedges of weight greater than 1. We obtain either a bipartite subgraph withweight at least fw(m), in which case we halt the algorithm, or else a setof at most 7pn edges, and hence a set Y of at most 14pn vertices of G,meeting all edges with weight more than 1.Let X = V (G) n Y , so by (46) and (47),jXj = jGj � jY j � n� 22pn:Note that G[X] is a complete graph in which all edges have weight 1. Fory 2 Y , let us consider the edges between y and X. As in the proof of



40 B. Bollob�as and A. D. ScottTheorem 8, we order the edges into increasing order of weight, which takestime O(n log n), which is O(e), and partition X [ fyg into Z1 [ fyg andZ2, where fyz : z 2 Z1g are the lightest bjXj=2c edges and fyz : z 2 Z2gare the heaviest � jXj=2� edges. Extending to a partition of V (G) with thealgorithm of Lemma 17(iii), we obtain a bipartite subgraph of weight atleast w(G)=2 + � jXj � 1�=4 + �w(y; Z2)� w(y; Z1)�=2, which is at least(48) w(G)2 + n� 15pn� 14 + w(y; Z2)� w(y; Z1)2 :Either this is a bipartite subgraph of weight at least f(m) or, by (44),(49) w(y; Z2)� w(y; Z1) < 15pn:It follows that all but 15pn of the edges between y and X have the sameweight, say t(y). Note that it is easy to check that (49) is satis�ed and todetermine t(y) for each y 2 Y in total time O� jY jn log n� which is O(e).Setting t(v) = 1 for v 2 X, we may assume that t(v) has been de�nedfor all v 2 V (G). For x; y 2 V (G), de�ne u(xy) = w(xy) � t(x)t(y). Itfollows from (49) that, for y 2 Y ,Xx2X ��u(xy)�� < 15pn:Now it is straightforward to calculate U :=Px2X;y2Y ��u(x; y)�� in time O(e).If U > 30n3=4 then we can �nd a set Y 0 � Y with30n3=4 � Xx2X;y2Y ��u(xy)�� < 30n3=4 + 15pnby choosing vertices one at a time from Y until both inequalities are satis�ed.Let Z = �x 2 X : u(xy) 6= 0 for some y 2 Y 0	 . Then jZj � 30n3=4+15pn.In the proof of Theorem 10, we used a random bipartition Y 0 = Y1[Y2, andde�ned Z1 = �x 2 Z : u(x; Y1) � u(x; Y2)	 and Z2 = Z n Z1. Extending



Better Bounds for Max Cut 41such a partition here to a partition W1 [W2 of X [ Y 0 satisfying (35), weget E�w(W1;W2)� � 12w(X [ Y 0) + jXj � 14 + Xx2X;y2Y 0 ��u(x; y)��=3n1=4(50) > 12w(X [ Y 0) + jXj4 + 10pn:It follows that as in the proof of Theorem 8 after (34) we can extend thepartition as in (35) and obtain a cut of G with weight at least(51) 12w(G) + 10pn+ 14 jXj > 12m+ n4 + 3pnwhich su�ces by (44). Thus it is enough to �nd a bipartition of X [ Y 0that does at least as well as (50). It follows from Lemma 18 below thatwe can do this in time O� jY 0j2jU j + e� which by assumption is at mostc�pn �2n3=4+ e, which is O(e). (Note that we apply Lemma 18 with vertexsets V1 = Y 0, V2 = X and edge set E(Y 0) [E(Y;X).)Otherwise, U � 30n3=4, so �x 2 X : u(xy) = 0 for all y 2 Y 	 containsat least n=2 vertices, provided U is su�ciently large. Thus we may considerG as the edge sum of a graph H1 with edge weights given by u and a graphH2 with edge weights given by t. Since ��X n V (H1)�� > n=2, any partitionof H1 can be extended to a partition of V (G) in which the two halves havet-weight di�ering by at most 1. This corresponds to a bipartite subgraph ofH2 with weight at least � t(G)2=4� .It is therefore enough to �nd a bipartite subgraph of H1 with u-weightat least f�u(H1)� , which we do recursively with the algorithm above.In the proof above, we have used a lemma which we now give.Lemma 18. There is a polynomial time algorithm that, given a graphG with e edges, integer-valued edge-weighting w and total weight m, and



42 B. Bollob�as and A. D. Scotta bipartition V (G) = V1 [ V2, where V2 is independent, �nds a bipartitesubgraph with weight at least(52) 12w(G) + Xv2V2 d1=2v =2where dv =Pu2V1 ��w(vu)�� . If all edges have nonzero weight and G containsno isolated vertices then the algorithm runs in time O� jV1j2D + e� , whereD =Pv2V2 dv.Proof. We obtain a bipartition of V (G) by �rst partitioning V1 as W1[W2and then adding each vertex v of V2 to W1 if w(v;W1) � w(v;W2) and toW2 otherwise. If we take a random partition of V1, then as in the proofof Theorem 8, we see that the expected weight of edges in the bipartitesubgraph given by the resulting partition of V (G) is at least (52).We derandomize this as follows. First delete all edges with weight 0:this takes time O(e). Now partition V1 one vertex at a time. Suppose wehave a partition V1 = W 01 [W 02 [W3, where W3 is the set of vertices wehave not yet assigned, and we wish to add the vertex v 2 W3 to W 01 orW 02. Consider a random bipartition W1[W2 of V1, chosen uniformly amongall partitions that extend the partial partition W 01 [W 02: de�ne a randomvariable X = w(W1;W2) and, for each x 2 V2, de�ne Y1(x) = w(x;W1)and Y2(x) = w(x;W2). Then the bipartite subgraph obtained by greedilyadding vertices in V2 to W1 or W2 has weightZ = X + Xx2V2 max�Y1(x); Y2(x)	 :We compare E (Z j v 2 W1) and E (Z j v 2 W2) explicitly. First of all,E (X j v 2 W1) � E (X j v 2 W2) = 12�w(v;W 02) � w(v;W 01)� , which is easilycalculated in time O� jV1j� . For x 2 V2, the distribution of w(x;W1) isthe result of a random walk with initial value w(x;W 01) and (independent,equiprobable) increments �0; w(xy)	 for each edge xy with y 2 V1 n (W 01 [W 02). Since the walk has integer values in [�dv; dv] and there are at mostjV1j steps, we can update the distribution after each step in time O(dv) andthus obtain the distribution of w(x;W1) in time O(jV1jdv). Since w(x;W1)+w(x;W2) = w(x; V1), we obtain the joint distribution of Y1(x) and Y2(x) andhence the distribution of max�Y1(x); Y2(x)	 in time O� jV1jdv� . Similar



Better Bounds for Max Cut 43comments apply to the distributions conditioned on v 2 W1 or v 2 W2, sowe can determine the conditional distribution ofPx2V2 max�Y1(x); Y2(x)	in time O� jV1jD� . We can therefore decide to assign each vertex to W1 orW2 so as to maximize the expectation of Z in time O� jV1jD� and henceobtain a partition satisfying (52) in time O� jV1j2D� .In Theorem 13 we may have an extremely large look-up table. This canbe avoided by slightly weakening the results we expect from our algorithm.For graphs with large total weight we run the algorithm as before. However,when we reach the po int where we want to bipartition a small subgraph weuse an approximation algorithm instead. Thus we lose at most some �xedadditive constant on the bound given in the theorem.6. An algorithm for graphs without large cutsA parametrized problem with parameter k is said to be �xed parametertractable (see [8]) if there is an algorithm running in time O(f(k)N t), whereN is the input size, t is a constant and f is any (not necessarily polynomial)fun ction. Mahajan and Raman [29] show that the problem of �nding acut of size at least dm=2e + k if one exists in a graph with m edges andn vertices is �xed parameter tractable and give algorithms running in timeO(m24k + n3) and O(2ck2 +m+ n), and deduce that if k 2 O(logmn) thenthere is a polynomial time algorithm. We remark that the �rst algorithmrelies on �nding a cut of weight at least m=2 + (n � 1)=4; since Ngoc andTuza [30] (see also Lemma 2 above) have found an O(m+n) algorithm, the�rst algorithm of Mahajan and Raman can be improved to O(m24k + n).Note that by the bound (1) of Edwards, every graph of weightm satis�esf(G) � m=2+pm=8+O(1), while we know that fw(m) � m=2+pm=8+O(m1=4). The algorithms of Mahajan and Raman for �nding cuts of size atleast dm=2e + k exploit the fact that f(m)� dm=2e grows as fast as cpm:for instance, if k < (n�1)=4 �pm=8+O(1) we can use the Edwards result(1), whereas if k � (n� 1)=4 we can examine all partitions explicitly. Ouraim i n this section is to show that the problem of �nding a cut of size atleast m=2 +pm=8 + k, if such a cut exists, is �xed-parameter tractable,and give an algorithm runing in time O(2ck4 + e+ n).



44 B. Bollob�as and A. D. ScottWe begin with an extension of Lemma 15 for graphs with arbitrarynon-zero integer edge-weightings.Lemma 19. There is an algorithm running in time O�e+ jHj� that givena connected graph H with e edges and an edge-weighting w with non-zerointegers, �nds a cut of weight at leastw(H)2 + jHj � 14 :Proof. As in the proof of Theorem 5 we can �nd a collection S of vertex-disjoint induced stars containing at least � jHj � 1�=2 edges. We partitionthe edges of S into S+ and S�, the edges of positive and negative weightrespectively. Contracting every edge in S� gives a graph of weight w(H)�w(S�), in which the edges of S+ form a collection of induced stars. We takeeach star S in turn: if jSj > 2 then we identify its endvertices to obtainan edge of weight w(S). We end up with a matching of weight w(S+), andthe algorithm of Lemma 17(i) gives a cut of weight 12�w(H) � w(S�)� +12w(S+) � w(H)=2 + � jHj � 1�=4.We will also need an extension of the Edwards bound (1) to weightedgraphs.Theorem 20. There is an algorithm running in time O�e+jHj� that givena graph H with e edges and integer-valued edge-weighting w, �nds a cut ofweight at least(53) w(H)2 +rU8 + 164 � 18 ;where U =Pe2E(H) ��w(e)�� .Proof. Let h =pU=8 + 1=64� 1=8. We begin by deleting edges of weight0. We may assume H is connected or else identify a vertex from eachcomponent. If jHj � 1 > 4h then Lemma 19 provides a cut of weightat least w(H)=2 + � jHj � 1�=4 � w(H)=2 + h as required. Otherwise,jHj � 1 � 4h. Let u be the weighting on E(H) de�ned by u(e) = ��w(e)�� ,so u(H) = U . Then the algorithm of Lemma 17(iv) gives a matching M



Better Bounds for Max Cut 45with u(M) � U=jHj. Let M+ be the edges of M with positive weightand M� the edges with negative weight. As in the proof of Lemma 19,we contract the edges of M� and apply the algorithm of Lemma 17(i) toM+ (with edge-weighting w) to obtain a cut of weight at least 12�w(H) �w(M�)� + 12w(M+) � w(H)=2 + U=2jHj � w(H)=2 + U=(8h + 2), and asimple calculation shows U=(8h + 2) = h.Our main tool will be the following decomposition result.Theorem 21. Let c > 0 be a constant. There is an algorithm running intime O�e+ jGj� that takes as input a graph G with e edges, integer-valuededge-weighting w and total weight m and gives as output either a cut ofweight at least m=2 +pm=8 + cm1=4 or a decomposition of G as an edgesum G � K�t �Hwhere K�t is obtained from a complete graph Kt of order t = n + O(1)with all edges of weight 1 by contracting at most O(m1=4) edges and H is agraph such that ��V (H) \ V (K�t )�� = O(n3=4). Here the integer n is de�nedby �n2� � m < �n+12 �.Proof. The algorithm in the proof of Theorem 13 began by contractingG to a complete graph with positive edge-weights. This worked since thetotal weight was not reduced, and we were looking for a cut of weight atleast fw(m). Here, however, we must be more careful: we may be lookingfor a cut of weight more than fw(m), and such a cut could be destroyed byany compression of G. For instance, the path P4 with four vertices and alledges with weight 1 has f(P4) = 3, while its contraction to C3, all edgeswith weight 1, has f(C3) = 2.We may clearly delete all edges of weight 0. Identifying one vertexfrom each component, we may assume G is connected. De�ne, as usual, theinteger n by �n2� � m < �n+12 �. Let M be large enough so that, if m � M ,(38) holds, and(54) m2 +rm8 � 1 � fw(m) � m2 +rm8 + 2m1=4 � m2 + n4 + 3pn:



46 B. Bollob�as and A. D. ScottSuppose �rst that m � M . Let U = Pe2E(G) ��w(e)�� . If U > 4(8c2 +1)M then Theorem 21 provides the required partition. Thus we may assumethat U � 4(8c2 + 1)M , and since G has at most U edges we can examineall partitions explicitly in constant time.Otherwise, we have w(G) = m > M . Note �rst that we may assume(55) jGj > n� 12cpn:Otherwise, applying the algorithm of Lemma 17(ii), as in (45) we obtain acut of weight at least m=2+pm=8+cm1=4, provided m is su�ciently large.For a similar reason, we may assume m is O(e): otherwise, we may applyLemma 16 to obtain a contraction of G that fails (55).On the other hand, the algorithm of Lemma 17(i) gives a bipartitesubgraph of weight at least w(G)=2 + � jGj � 1�=4 and so we can halt thealgorithm unless(56) jGj < n+ 14cpn:Now we show that we may assume that G is nearly complete. Werun the algorithm in Lemma 16 on G with edge-weighting u de�ned byu(e) = max�w(e); 0	 for e 2 E(G), and obtain a contraction to a weighted-complete graph H. If H satis�es(57) jHj � n� 12cpnthen applying the same contraction to G with edge-weighting w gives agraph with weight at least w(G) satisfying (55), which we partition withthe algorithm of Lemma 17. Otherwise let W� be the set of vertices of Gwhich are identi�ed with some other vertex in the contraction from G to H.Then Y � meets all edges of G with weight at most 0, and(58) jY �j � 2� jGj � jHj� � 52cpn:Let Y + = V (G) n Y �. Then G[Y +] is a complete graph in which alledges have positive weight, and it follows from (55) and (58) that(59) jY +j > n� 64cpn:



Better Bounds for Max Cut 47We claim that G[Y +] cannot contain too many edges with weight greaterthan 1. We choose greedily a maximal matching e1; . . . ; et in G[Y +], whereat each stage we choose an edge of weight more than 1 if possible, andotherwise any edge. Using the algorithm of Lemma 17(i) we obtain in timeO(e) a cut of weight at least 12w(Y +) + 12Pti=1 w(ei). By Lemma 17(iii),we can extend this to a cut of G of weight at least 12w(G) + 12Pti=1w(ei).It follows from (54 that either we can halt the algorithm or Pti=1 w(ei) �n=2+6pn. By (59), fe1; . . . ; etg contains fewer than 40cpn edges of weightmore than 1, and since they were chosen greedily these edges meet everyedge with weight greater than 1. Therefore there is a set Z of vertices thatmeets every edge in G[Y +] with weight greater than 1, where(60) jZj � 80cpn:Let Y = Y � [ Z and X = V (G) n Y . Then by (58) and (60),jY j � 144cpnwhile by (55),(61) jXj � n� 156cpn:The rest of the algorithm is broadly similar to the algorithm in the proofof Theorem 13. Note that G[X] is a complete graph in which all edges haveweight 1. As before, for each y 2 Y we partition X into sets Z1 and Z2according to the weight of edges from Y , and then extend to a partition ofG. As in (48), we obtain a cut of weight at leastw(G)2 + jXj � 14 + w(y; Z2)� w(y; Z1)2so by (61) we are done unlessw(y; Z2)� w(y; Z1) < 85cpn:



48 B. Bollob�as and A. D. ScottIt follows that all but at most 85cpn edges between y and X have the sameweight t(y). As before, let t(x) = 1 for x 2 X, and for x; y 2 V (G) de�neu(xy) = w(xy) � t(x)t(y):Once again, we calculate U = Px2X;y2Y ��u(xy)�� . If U=cn3=4 is su�cientlylarge then as in (50) and (51) we can �nd a bipartite subgraph of weight atleast m=2 +pm=8 + cm1=4.Otherwise, U is O(n3=4), so provided m is su�ciently large we haveU < n=4 and we may decompose G as the edge sum of a graph H with edgeweights given by u and a graph K�t with edge weights given by t. Finally,note that jK�t j = n + O�pn � = n + O(m1=4), while a simple calculationshows that if f(G) � m=2 +pm=8 + cm1=4 then t = n + O(1); note thatK�t is obtained from Kt by a sequence of at most O(m1=4) contractions.Note that in the decomposition G = K�t � H of Theorem 21 we havef(G) = f(K�t )+f(H). Furthermore, it is straightforward to �nd an optimalpartition of K�t by splitting into two classes with t-weight as equal aspossible.We can now prove the main theorem of this section.Theorem 22. There is an algorithm running in time O(2ck4 + e + n)that, given a weighted graph G with e edges, edge-weighting w and totalweight m, and an integer k, �nds a cut of G with weight f(G) if f(G) �m=2+pm=8+k and otherwise a cut with weight at least m=2+pm=8+k.Proof. If Pe2E(G) ��w(e)�� > 4(m+ 8k2) then we are done by Theorem 20.If k > m1=4 then we examine all partitions explicitly. Otherwise, weapply Theorem 21 with c = 1: either we obtain a cut of weight at leastm=2+pm=8+k, or we obtain a decomposition G = K�t �H where f(G) =f(K�t )+f(H) and K�t , H have edge-weightings w1, w2 respectively. We cancalculate f(K�t ) exactly; so if w2(H) > 0, de�ne l by m=2 +pm=8 + k =f(K�t ) + w2(H)=2 +pw2(H)=8 + l, and repeat the algorithm with H andl (note that l � k). If w2(H) � 0 then de�ne the edge-weighting u byu(e) = ��w2(e)�� for e 2 E(H). If ��u(H)�� > 8k2 then Theorem 20 gives a cutof weight at least w2(H)=2 + k, which gives a cut of G of weight at leastw1(K�t )=2 +pw1(K�t )=8 + w2(H)=2 + k � m=2 +pm=8 + k; otherwise,��u(H)�� < 8k2 and we can examine all partitions explicitly.



Better Bounds for Max Cut 49Theorem 22 gives a polynomial time algorithm for k � c(log n)1=4).However, we cannot expect to go as high as n" for any " > 0, sincethen considering graphs of form KN [ G, where N > jGj2=", would givea polynomial time algorithm for Max Cut. In particular, we cannot expectto �nd optimal cuts for all graphs with f(G) � m=2 +pm=8 + cm1=4. Onthe other hand, we have given an algorithm that �nds a cut of weight atleast fw(m), which can be as large as m=2 +pm=8 + cm1=4. We are lednaturally to the following problem.Problem 1. Let k > 0 be a �xed integer. Is there a polynomial timealgorithm that given a graph G of weight m �nds either a cut of weight atleast fw(m) + k or else an optimal cut?Note that k = 0 is Theorem 13. However, if m satis�es m = �n+12 ��n"and fw(m) = f(Kn+1) = �(n+ 1)2=4� , for instance, then we may haveG = Kn+1 � H, where H has weight �n". Theorem 21 will �nd thisdecomposition, and H has a trivial cut of weight 0, but determining whetherf(H) � k is probably NP-hard.7. A weak approximation algorithm for graphs that areclose to extremalIn this section we concentrate on the existence of polynomial time algo-rithms for estimating the value of f(G)�m=2�pm=8 for a graph of weightm > 0. Let us note �rst that we cannot expect an arbitrarily good approxi-mation algorithm since this would immediately yield a good approximationalgorithm for the Max Cut problem. For since f(G) � m=2, an algorithmapproximating f(G) � m=2 �pm=8 within a factor 1 + " gives f(G) towithin a factor 1 + "=2. Since H�astad [18] has shown that it is NP-hardto approximate f(G) within any factor less than 17=16, it follows that itis NP-hard to approximate f(G) �m=2 �pm=8 to within any factor lessthan 9=8. However, we have the following weak approximation.Theorem 23. There is an algorithm running in time O(e+ n) that, givena graph G with e edges, edge-weighting w and total weight m, either �nds



50 B. Bollob�as and A. D. Scottan optimal partition or gives a real number � such thatm2 +rm8 +m� � f(G) � m2 +rm8 +m4�:Proof. Let U = Pe2E(G) ��w(e)�� . We may assume U > U0, for somelarge constant U0, or else examine all partitions explicitly. If U > 4mthen Theorem 20 gives a cut of weight at least m=2 +pU=8 � 1 > m=2 +pm=8 + U1=4, so we can choose � = (logm U)=4. Otherwise, applying thealgorithm of Theorem 22 with c = 4 gives either a cut of weight at leastm=2+pm=8+4m1=4, so we can choose � such that m� = 4m1=4 (note thatf(G) � U), or else a decomposition of G as K�t �H, where H has weightingw0. If w0(H) � 0 then let U 0 =Pe2E(H) ��w0(e)�� . If U 0 < U0 we determinef(H), and hence also f(G) = f(K�t ) + f(H), explicitly. Otherwise, sincewe have f(G) � f(K�t ) + U 0 and f(G) = f(K�t ) + f(H) � m=2 +pm=8 +pU 0=8�2, we may pick � such thatm=2+pm=8+m� = f(K�t )+pU 0=8�2.Otherwise w0(H) � 0, so repeating the algorithm we can �nd � suchthatw0(H)2 +rw0(H)8 + w0(H)� � f(H) � w0(H)2 +rw0(H)8 + w0(H)4�:Then we may pick � such thatm2 +rm8 +m� = f(K�t ) + w0(H)2 +rw0(H)8 + w0(H)� :
Compare the problem of approximating f(G)�m=2�pm=8 with theproblem of approximating f(G). Since f(G) � m=2 for every graph G withweight m, there is a \cushion" of weight m=2 in measuring the e�ectivenessof approximation algorithms for f(G). For instance, the trivial decision al-gorithm that always returns the value m=2 and the greedy algorithm thatachieves this bound manage to approximate within a factor 2 (improvingbeyond this is a di�erent matter, however, and the 1:1383-approximation



Better Bounds for Max Cut 51algorithm of Goemans and Williamson [17] is a tour de force). This con-trasts with other approximation problems, such as Chromatic Number orIndependent Set, where no such trivial approximation algorithm exists.The problem of approximating f(G) � m=2 �pm=8 therefore seemsmore di�cult than that of approximating f(G).Problem 2. Is there a polynomial time algorithm that approximatesf(G) � m=2 � pm=8 within a constant factor for graphs of weight m?What about f(G)� fw(m)?Slightly easier, perhaps, is the following.Problem 3. Is there a polynomial time algorithm that approximatesf(G)�m=2 within a constant factor for graphs of weight m?Note that the graphs that concern us here are graphs with f(G) �0:63w(G). For graphs with f(G) > 0:63w(G), the algorithm of Goemansand Williamson gives an approximation algorithm for f(G)�m=2�pm=8.Part III: Related problems8. The Max k-Cut problemIn the �rst two parts of this paper we have concentrated entirely on the MaxCut problem. In this section, we give a brief account of related results forMax k-Cut. For an edge-weighted graph G we write fk(G) for the maximalweight of a k-cut; we consider an unweighted graph as having weight 1 onevery edge, so fk(G) is the maximal size of a k-partite subgraph. We de�nefk(m) to be the minimum of fk(G) over graphs with integer edge-weightingsand total weight m.We begin with an analogue of the Edwards bound (1) for k-partitegraphs. Note �rst that if n = rk + s, where 0 � s < k, then writing



52 B. Bollob�as and A. D. Scottm = �n2�, fk(Kn) = �n2�� s�r + 12 �� (k � s)�r2�(62) = �1� 1k��n2�+ r(k � 1)2 + s(s� 1)2k= �1� 1k��n2�+ k � 12k n� s(k � s)2k� �1� 1k�m+ k � 12k n� k8= �1� 1k�m+ k � 12k r2m+ 14 + k2 � 2k + 28 ;with equality if and only if k is even and s = k=2.Theorem 24. Let G be a weighted graph with total weight m. Then(63) fk(G) � �1� 1k�m+ k � 12k r2m+ 14 + k2 � 2k + 28If m � �n2� then fk(G) � fk(Kn)where for m > m0 we have equality if and only if G is a copy of Kn, whereall edges have weight 1.Proof. Note �rst that, writing g(m) for the right hand side of (63),it is easily checked that g(m) is monotonic increasing, while g(m)=m ismonotonic decreasing for m > 0. We consider G as a weighted completegraph. Contracting any edge of weight at most 0 we obtain a weightedcomplete graph H in which all edges have positive weight; furthermore, any



Better Bounds for Max Cut 53partition of H corresponds to a partition of G with the same cut-weight. Itis therefore enough to prove the theorem for weighted complete graphs inwhich all edges have positive weight.Now let r = jHj and R = �r2�, so w(H) � R. A random partition of Hinto k pieces, of size as equal as possible, gives a subgraph with expectedweight fk(Kr)R w(H) � g(R)R w(H) � g�w(H)�since g(R)=R � g�w(H)�=w(H). Thus there must be some k-partite sub-graph with weight at least g�w(H)� � g(m).If m � �n2�, fk(G) = fk(Kn) and G either has an edge of negativeweight or is not isomorphic to Kn with all edge-weights 1, then compressingall edges of negative weight (and possibly some further edges), we may as-sume that jGj is a complete weighted graph on fewer than n vertices, withall edges of positive weight and w(G) � �n2�. Now since f(Kn)=�n2� is mono-tonic decreasing and f(Kn�k)=�n�k2 � > f(Kn)=�n2�, considering random par-titions into k sets of size � jGj=k� and � jGj=k� . We see that jGj > n � kand so G can be decomposed as the edge sum of KjGj and a weightedgraph with at most (k � 1)n edges. Provided m is su�ciently large, it isnow straightforward to construct two k-cuts (into sets of size � jGj=k� and� jGj=k� ) with di�erent weights, and so some k-cut must have weight morethan w(G)f�KjGj�=�jGj2 � � f(Kn).Ngoc and Tuza [30] prove that, for k � 3, every connected graph Gwith order n, size m and �(G) > k satis�es(64) fk(G) � �1� 1k�m+ 1k (n� 1) + k � 32 :Furthermore, they give an O(m) algorithm that achieves this quickly. Theynote that every graph obtained by attaching trees to the vertices of a copyof Kk is extremal.Let us note that if G has a vertex of degree at most k � 1 thenfk(G) = fk(G n v) + dG(v)



54 B. Bollob�as and A. D. Scottsince deleting v from G and partitioning the rest of the graph optimally,we can then add v to a class in which it has no neighbours. Thus we canrestrict our attention to graphs G with �(G) � k. If we allow the minimaldegree to grow, then we can improve on (64).Theorem 25. Let G be a graph with �(G) � !(n), where !(n) ! 1 asn!1. Then fk(G) � �1� 1k�m+ k � 12k n+ o(n):Proof. (Sketch) Take a random ordering and run the greedy algorithm. Ifx has rk+s predecessors, where 0 � s � k�1, then the most even partitionof earlier vertices has s big classes and k � s small classes. Thus we canpick a class in which x has at most rk neighbours, increasing the cutweightby at least r(k � 1) + s = �1� 1k�(rk + s) + s=k. Since s is asymptoticallyuniformly distributed on f0; . . . ; k � 1g, the expectation of s=k tends to(k � 1)=2. Summing over all vertices gives the bound above.The proof of Theorem 25 works in the same way as the proof ofLemma 2: we order the vertices and then partition greedily. One methodfor obtaining a good ordering was given immediately after Lemma 2, and itis natural to ask whether the same approach (taking an ordering in whichevery vertex except one has at least one predecessor and then successivelymodifying the order to obtain better orders) would work for larger k. Infact, the method does work for k = 3, but for k > 3 appears to give a poorbound. It would be interesting to know under what conditions the o(n)term can be removed in Theorem 25. For instance, a connectivity conditionmay be enough.Problem 4. Does every (k � 1)-connected graph G satisfyfk(G) � k � 1k m+ k � 12k n+O(1):A best possible bound of this form would be fk(G) � k�1k m+ k�12k n�r(k�r)2k . A similar question arises if we assume �(G) � k. It would also beinteresting to �nd e�cient algorithms giving bounds of this form.The results of earlier sections mostly carry over to the k-partite case.



Better Bounds for Max Cut 55Theorem 26. Let G be a graph with edge-weighting w and total weightw(G) = m. Then provided m is su�ciently largefk(G) � minn�0 �fk(Kn) + fk �m��n2��� :As in the proof of Theorem 1, we need several lemmas. An analogue toLemma 2 is given by Theorem 25, while using a greedy algorithm as in theproof of Lemma 7 we see that, for any graph G with edge-weighting w andany set W � V (G), writing H = G[W ],(65) fk(G) � fk(H) + k � 1k �w(G) � w(H)�A version of Lemma 4 is given by Theorem 24; this leaves Lemma 3. Wehave the following straightforward result.Lemma 27. For a nonempty edge-weighted graph G with total weight m,fk(G) � k � 1k �1 + 1�(G)�m:Proof. Fix a colouring of G with c = �(G) colours and, as in Lemma 3,take a random partition of the colour classes into k sets of as equal size aspossible. The expected size of the cut obtained is at leastf(Kc)�c2� m � k � 1k �1 + 1c�m:Finally, we remark that as in the bipartite case there is ck > 0 suchthat, for all m,(66) fk(m) � k � 1k m+ k � 12k p2m+ ckm1=4:We can now proceed to the proof of the theorem.



56 B. Bollob�as and A. D. ScottProof of Theorem 26 (Sketch). LetG be a counterexample with smallestweight. As in the proof of Theorem 8, we may contract edges of weight atmost 0, and assume that G is a weighted complete graph with all edgesof positive weight. De�ne n as in (25), so jGj � n. Now it follows fromLemma 27 that fk(G) � k � 1k �1 + 1jGj�m:Therefore, by (66), k � 1k mjGj � k � 12k p2m+ ckm1=4and so(67) jGj � n� c1pn:Now let C1; . . . ; Cr be any collection of pairwise vertex-disjoint completesubgraphs of G, each with k vertices. We consider a random partitionV (G) = V1 [ . . . [ Vk as follows. Each Ci is randomly partitioned with onevertex in each vertex class Vj , and the remaining vertices are independentlyassigned to each vertex class with equal probability. Then the expectedweight of the resulting k-partite subgraph isrXi=1 w(Ci) + k � 1k �w(G) � rXi=1 w(Ci)� = k � 1k w(G) + 1k rXi=1 w(Ci):Thus it follows from (66) that(68) rXi=1 w(Ci) � 12(k � 1)n+ c2pn:Now if we greedily choose C1; C2; . . . to be vertex disjoint complete sub-graphs with k vertices and maximal weight, it follows from (68) and (67)that at most c3pn of these subgraphs have weight more than �k2�. Thus



Better Bounds for Max Cut 57there is a set Y of c3kpn vertices meeting all edges with weight more than1. Setting X = V (G) n Y , we may assume thatjY j � c4pnand jXj � n� c4pn:Note that G[X] is a complete graph in which all edges have weight 1.Now for y 2 Y , we can order the edges between y and X in increasingorder of weight. Partitioning X into k pieces and using (65) we see that, asin (31), all but at most c5pn of the edges between y and X have the sameweight, say t(y).As before, we set t(y) = 1 for y 2 X, and de�neu(xy) = t(x)t(y) �w(xy):the remainder of the proof of Theorem 8 goes through essentially unchanged,except with k vertex classes instead of 2.We note that it should be straightforward to generalize the algorithmsof Sections 5, 6 and 7 to the k-partite case.9. Maximum Cuts in directed graphsIn this �nal section, we make a few remarks concerning the analogue of MaxCut for directed graphs. For a directed graph H with edge-weighting w anda subset S � V (H), we de�new(S; V n S) =Xx2S Xy2V nSw(xy)



58 B. Bollob�as and A. D. Scottwhere w(xy) = 0 if xy 62 E(H). Theng(H) = maxS�V (H)w(S; V n S):For m � 1 we de�ne g(m) to be the maximum of g(H) over all directedgraphs whose edges are weighted with non-negative integers and have totalweight m. It is easy to see thatg(m) � �f(m)=2� :Indeed, given a directed graph H, let G be the underlying (undirected)graph, where we de�ne wG(xy) = w(xy) + w(yx):Then G has total weight m, and therefore a cut of weight at least f(m).Let V (G) = V1 [ V2 be such a cut: thenwH(V1; V2) + wH(V2; V1) = wG(V1; V2) � f(m)so one of wH(V1; V2) and wH(V2; V1) is at least �f(m)=2� .Lemma 28. If m = �2n+12 � then g(m) = �n+12 � = f(m)=2.Proof. It is enough to construct a directed graph H with w(H) = mand g(H) � f(m)=2. We de�ne H by taking the vertices of Z2n+1, andadding edges from i to i+ j, for any i and 1 � j � n. Thus H is a regularoriented tournament, every vertex has indegree and outdegree n. Consideran arbitrary subset S � V (H) with jSj = h. Clearlyg�S; V (H) n S� =Xv2S d+(v)� e(S)(69) = nk ��k2�



Better Bounds for Max Cut 59This is maximal when k = n or k = n+ 1, wheng(S; V (H) n S) = n2 ��n2� = �n+ 12 �:Let us determine the extremal graphs for this result. Suppose H is adirected graph with w(H) = m = �2n+12 � and g(H) = �n+12 �. Let G be theunderlying graph: then f(G) � n(n + 1) = f(m). So by Lemma 4, G is acopy of K2n+1 in which all edges have weight 1. Therefore H is a directedtournament of order 2n + 1. If H is not regular, then pick n vertices withas large an outdegree as possible. Since their average outdegree must begreater than n it follows that we do better than (69). Since we must haveequality in n, H must be a regular tournament. However, it follows from(69) that any regular tournament is extremal. Similar results follow whenm is of form �2n+12 � + �2k+12 �, for n > k su�ciently large, and so on, usingTheorem 1 and Theorem 12.What about if m = �2n2 �? The closest we have to a regular tournamentin this case is a tournament with 2n vertices in which n vertices haveoutdegree n � 1 and n vertices have outdegree n. If we take a subset Sof k � n vertices, thenw(S; V n S) =Xx2S d+(x)��k2� � kn��k2�:This can be attained by taking the vertices with outdegree n and is thenmaximal when k = n, andw(S; V n S) = n2 ��n2� = �n+ 12 �:For k � n + 1, picking k vertices with outdegrees as large as possible, wehave w(S; V n S) = n2 + (k � n)(n� 1)��k2�:



60 B. Bollob�as and A. D. ScottThis is maximal when k = n+ 1, andw(S; V n S) = n2 + n� 1��n+ 12 � = �n+ 12 �� 1:Thus if H is a tournament of this form thenf(H) = �n+ 12 �:Clearly this is optimal among tournaments. However, if m = �2n2 � thenf(m) = n2, so g(H) = f(m)=2 + n=2.It would be interesting to determine the behaviour of g(m)�f(m)=2 forarbitrary m. It seems likely that, with more work, results similar to thoseproved above for Max Cut could be proved for the directed problem.References[1] N. Alon, Bipartite Subgraphs, Combinatorica, 16 (1996), 301{311.[2] N. Alon and E. Halperin, Bipartite subgraphs of integer-weighted graphs, DiscreteMath., 181 (1998), 19{29.[3] L. D. Anderson, D. D. Grant and N. Linial, Extremal k-colourable subgraphs, ArsCombinatoria, 16 (1983), 259{270.[4] S. Arora, D. Karger and M. Karpinski, Polynomial time approximation schemes fordense instances of NP-hard problems, in: Proc. 27th ACM STOC (1995), 284{293.[5] H. L. Bodlaender and K. Jansen, On the complexity of the Maximum Cut problem,in: G. Goos and J. Hartmanis, eds, 11th Annual Symposium on Theoretical Aspectsof Computer Science, LNCS 775, 769{780.[6] B. Bollob�as and A. D. Scott, Exact bounds for judicious partitions, Combinatorica,to appear.[7] B. Bollob�as and A. D. Scott, Problems on judicious partitions, to appear.[8] R. G. Downey and M. R. Fellows, Fixed parameter tractability and completeness I:Basic theory, SIAM J. Comput., 24 (1995), 873{921.
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