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BETTER BOUNDS FOR MAX CuT

B. BOLLOBAS and A. D. SCOTT

For a multigraph G, let f(G) be the size of a largest cut of G. We define f(m) to
be the minimum of f(G) over graphs of size m, and fw(m) to be the minimum

over multigraphs of size m. For n sufficiently large, and 0 < (g) < n, we

determine f(m) for m = (g) + (g) and give the extremal graphs. Furthermore,
by considering the weighted problem, we determine f(m) and fw(m) to within
an additive constant for every m, and find the extremal graphs for many values
of m. This extends independent work of Alon and Halperin.

In the second part of the paper, we turn to the problem of finding efficient
algorithms for obtaining large bipartite subgraphs. We give a linear time
algorithm that, for a multigraph G with m edges and n vertices, finds a bipartite
subgraph with fw(m) edges. We give an algorithm running in time O(ZCIc4 +
m + n) that finds a bipartite subgraph with at least m/2 4+ \/m/8 + k edges

if one exists and otherwise provides an optimal partition. We also provide a
linear time weak approximation algorithm for f(m) —m/2 —/m/8.

In the final part of the paper, we generalize our results to the related
problems Max k-Cut and Max Directed Cut.

1. INTRODUCTION

The well-known Max Cut problem asks for a largest cut of a graph G. A cut
of maximal size clearly corresponds to a bipartite subgraph of maximal size,
and we shall use both formulations. Max Cut is NP-hard and has been the
focus of extensive study, both from the algorithmic perspective in computer
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science and the extremal perspective in combinatorics. The extremal prob-
lem asks how small a largest bipartite subgraph of a graph with m edges
can be, and which graphs achieve this bound. The algorithmic problem asks
for efficient algorithms that determine or approximate the maximal size of
a bipartite subgraph and that provide large bipartite subgraphs. An impor-
tant survey of the Max Cut problem is given by Poljak and Tuza [32]; an
excellent bibliography from the perspective of combinatorial optimization is
given by Laurent [26].

This article is a combination of survey and research paper. We shall
indicate some recent progress on the Max Cut problem, from both combina-
torial and algorithmic perspectives, and prove a number of new results. The
article was originally written in the autumn of 1997 for the Erdés Work-
shop in Budapest in the summer of 1998. Early in 1998, we became aware
of the work of Alon and Halperin [2], who also addressed the extremal Max
Cut problem. They determined the recurrence (5) for the extremal function
fw(m); however, they did not determine the extremal graphs or consider
the algorithmic aspects of the problem. Although our approach is similar to
Alon and Halperin’s, we give the details for clarity of exposition, and also
so that we can obtain the extremal graphs for (4) and for some cases of (5).
In addition, the arguments are used in later sections on algorithms.

For a graph G, let f(G) be the maximal number of edges in a bipartite
subgraph of G. For m > 0, we define f(m) to be the minimum value of f(G)
for graphs G with m edges. As observed by Erdéds, f(m) > m/2. This can
be seen by noting that a random bipartition of a graph G gives a cut with
expected weight e(G)/2. In 1973, answering a question of Erdés, Edwards
([9], see also [10]) proved that

m m 1 1
(1) f(m>2{§+ §+———]

We remark that, in fact, we can demand significantly more from a
bipartition: it was shown in [6] that every graph G with m edges has a
bipartition V(G) = Vi U V5 such that (1) is satisfied and, in addition, for
1=1,2,

1 1
(2) e(V) S T +1\/55+ 555 — 16

32 256 16
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This is an example of a judicious partitioning result, in which we demand
that every class in a vertex partition satisfies some inequality. We remark
that the result is best possible when m = (21;1), in which case K941 is the
unique extremal graph (for [ > 2). We shall not consider judicious partitions
further in this paper; however, a discussion of related results and problems

can be found in [7].

The Edwards bound (1) is exact for complete graphs. Thus if m = (’2‘)
then f(m) = f(K,) = [n?/4]. In fact, if n # 4 then K, is the unique
extremal graph (for n = 3, two additional extremal graphs are obtained
by taking an edge-disjoint union of two copies of K3). For other values
of m, however, the situation is less simple. Indeed, Erdés [11] conjectured
that the difference between f(m) and (1) can be arbitrarily large. This was
proved by Alon [1], who showed that there exist ¢, ¢’ > 0 such that, if n is
sufficiently large and m = 2n?,

(3) f(m)2n2+g+cﬂ2%+,/%+c/mu4'

Alon also showed that, for some ¢”” > 0 and every m > 0,

m + @—I-C”mlm-

f(m)SE 3

Thus the Edwards formula is exact for m = (}) and out by O(m!/*) when

m is about halfway between (}) and (”;’1)

Our first aim in this paper is to determine f(m) exactly for a range of

values between (”) and (”‘ZH) Indeed, suppose m = (g) + (g), where n and

2
k are non-negative integers with 0 < (g) < n. The (two) graphs obtained

by taking an edge-disjoint union of K, and K} show that

while any graph obtained by deleting (”‘QH) -(5) - (’;) edges from K, 1
shows that
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In § 2 we shall prove that, provided m is sufficiently large,

@) Flm) = min{ =]+ 5] {@J } .

Furthermore, the graphs we have described include all the extremal graphs
unless k = 4, when the graphs that can be obtained from an edge-disjoint
union of K, and two copies of K3 are also extremal.

Note that | (n + 1)2/4J is smaller than |n?/4] + |k%/4] if

n—\/g—l—s(n,k)g (l;) <n
k

where ‘s(n,k)‘ is O(1). If there is some integer k& with () in this range,
then since f(m) is monotonic increasing and f((”'{l)) =|(n+ 1)2/4J , it
follows that, for (}) + (g) <m< (ngl),

2
f(m) = {@‘ |

We obtain the surprising consequence that f(m) is constant on intervals of
length up to about \/77 = (m/2)1/4.

In §3 we turn to the problem of determining f(m) for arbitrary values
of m. Our arguments are similar to those of §2, but we are faced with some
additional technical difficulties, which make it necessary to consider graphs
in which the edges are weighted. For a graph G with edge-weighting w, let
f(G) be the maximal weight of a cut of G. Let f,(m) be the minimum of
f(G) over graphs whose edges are weighted with nonnegative integers and
have total weight m (or, equivalently, over multigraphs with m edges). It is
easily seen that f,,(m) < f(m). We prove that, for sufficiently large m,

o e[S 5o (o ()

where the integer n is defined by (g) <m< (n‘;l) This provides a recursive

formula for f,,(m). (This recurrence was found independently by Alon and
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Halperin [2] and implies (4).) To prove a recursion, note that if we were
to know f,,(m) for every m < myg, where mg is sufficiently large, then (5)
determines f,,(m) for all m. In any case, (5) determines f,,(m) to within an
additive constant. Furthermore, by considering K, ; and graphs of form
K, UH with e(H) =m — (}), it is easy to see that

f(m) SminHWJ , V;J +f(m— (Z))}

Setting C' = max,,<m, ‘f(m) - fw(m)‘, it follows that for every m > 0,

‘f(m) - fw(m)‘ <C.

It seems likely that f(m) = f,(m) for every m > 0.

We use the results of §3 in §4, where we return to the problem of finding
extremal graphs for Max Cut. Writing m = ("}}) + --- + (")), where the
n; are nonnegative integers with ('y) < njq for ¢ < k, we determine f(m)
provided nj_; is sufficiently large: if [n?/4] 4+ -+ [n3/4] < | (ni + 1)2/4J
for each i, then f(m) = Zle |n?/4]; we also give the extremal graphs.

In the second part of the paper we concentrate on algorithmic results.
Max Cut is NP-hard (see [24], [16]), even for quite restricted classes of
graphs ([21], [5]), and it is therefore of interest to find polynomial time
algorithms that give large bipartite subgraphs. A number of authors have
given algorithms that yield a bipartite subgraph at least as large as that
guaranteed by the Edwards bound (1) (see remarks in Section 2, where
several algorithms are also discussed; see also [35]). In Section 5 we give
a linear time algorithm that is optimal in terms of edge-weight: for any
graph with integer edge-weights and total weight m, the algorithm yields a
bipartite graph of weight at least f,,(m).

Much recent progress on the Max Cut problem has concerned the exis-
tence of good approximation algorithms. Building on results in the theory
of probabilistically checkable proofs, Hastad [18] has shown that, for any
¢ > 0, it is NP-hard to approximate Max Cut within a factor 17/16 — «.
On the positive side, Goemans and Williamson [17] have given a 1.1383-
approximation algorithm. (For the Max k-Cut problem Kann, Khanna,
Lagergren and Panconesi [23] have shown that it is NP-hard to approxi-
mate within a factor 14 1/34k; while Frieze and Jerrum [15] have given an
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algorithm that approximates within a factor (1 —1/k +21In k/kQ)fl.) Fur-
thermore, it is known that good approximation algorithms exist for dense
graphs (see [4], [25], [13]). Note that the difficulty for these algorithms lies
in recognising and partitioning graphs G for which f(G) is large. Graphs
for which f(G) is small can be partitioned by the trivial greedy algorithm
that yields a cut of weight at least w(G)/2.

In Sections 6 and 7 we concentrate on graphs of weight m for which
f(G) is close to fy,(m). Mahajan and Raman [29] have shown that there
are algorithms running in time O(n® +m2%) and O(2°** + m +n) that find
a cut of size at least [m/2] + k in a graph with m edges and n vertices, if
such a cut exists. In Section 6, we show that, for any fixed integer k, there
is an algorithm running in time O(ZC’“4 + m + e) th at finds a cut of weight
at least m/2 ++/m/8 + k in a graph with integer edge-weights, e edges and
total weight m if such a cut exists and otherwise finds an optimal cut. In
Section 7 we concentrate on the quantity f(G) — m/2 — y/m/8: we note
that it is NP-hard to approximate this quantity within a factor (9/8 — ¢),
but provide a linear time algorithm that approximates its logarithm.

In the final part of the paper we consider two related problems. In
Section 8, we consider the Max k-Cut problem for £ > 2. We prove versions
of our results on bipartitions for the k-partite case. Finally, in Section 9,
we consider the problem of finding large bipartite subgraphs of a directed
graph, and give some extremal results.

Throughout the paper, we use w for an integer-valued edge-weighting.
For disjoint sets of vertices we write E(X,Y") for the set of edges between
Xand Y, e(X,)Y) = [E(X,Y)| and w(X,Y) = 3 c gy yywle). We will
also sometimes write e(z,Y) and w(x,Y) for e({z},Y) and w({z}.Y).

Part I: The Extremal Problem
2. MaX CUT FOR GRAPHS

Our main aim in this section is to find the exact value of f(m) for every
sufficiently large m of form () < m = () + (g) < (ngl), and determine the
extremal graphs. The value of f(m) can also be obtained from the results
of the next section and from Alon and Halperin [2]. However, our aim in
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this section is also to determine the extremal graphs, which turn out to be
surprisingly varied.

Note that, for any m, we can obtain an upper bound for f(m) by

writing m = (") + (%) + -+ ("), where each n; in turn is chosen to be

as large as possible; then by considering K, U--- U K, , it is clear that
f(m) < [n2/4] + -+ [n?2/4]. A straightforward calculation shows that,
for every m,

©) Pl < 2 [ (s O0m ),

while taking £ ~ v/2n — 1 in the theorem below shows that

f(m) > % + \/§+ (14 0(1)) (8m)"/*

for infinitely many values of m.

Theorem 1. For n > 5 x 10%, every graph G with

where

satisfies

™) F(G) > min{ V{J " {’“{J , {@‘ } |

Furthermore, the extremal graphs are the two graphs obtained by taking
an edge disjoint union of K,, and Ky, if |n?/4] + [k2/4] < |(n+1)*/4] and
k # 4; and all graphs obtained by deleting (";1) -(5) - (g) edges from
Kooy if |n2/4) + [k2/4] > [(n+ 1)?/4]. If k = 4 then the extremal graphs
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are obtained by taking an edge-disjoint union of I, and K, (two graphs)
or K,, and two copies of K3 (seven graphs).

We will make use of several lemmas in our proof of Theorem 1. Lemma 2
is due to Edwards [9]; recently a short proof was given by Erdds, Gyérfis
and Kohayakawa [12]. Poljak and Turzik [33] gave an O(n3) algorithm for
finding a bipartite subgraph of the type guaranteed in the lemma; Ngoc
and Tuza [30] improved upon this by giving an algorithm running in time
O(m). The proof that we give is similar to the proofs of Erdés, Gyérfas and
Kohayakawa and of Ngoc and Tuza, but is slightly simpler and also yields
an O(m) algorithm.

Lemma 2. For a connected graph G,

Proof. Given an ordering of the vertices of G, we can partition V(G) by
using the greedy algorithm: at each step a vertex is added to whichever class
contains fewer of its predecessors (or to either class if both classes contain
the same number). If we write e(v) for the number of predecessors of v that
are adjacent to v then }° ¢\ (¢ e(v) = e(G), and the size of the bipartite
graph between the two vertex classes is at least

> fety2] =94t

veV(G)

where k is the number of vertices with an odd number of predecessors.

It is therefore enough to find an ordering of V(G) in which at least
(n —1)/2 vertices have an odd number of predecessors. For |G| < 1 this
is trivial. If |G| = n > 1, then we first find a set of vertices S such that
G[S] is a star and G\ S is connected. Let T be a spanning tree of G.
If two endvertices of 17" are adjacent, say v and w, then let S = {v,w}.
Otherwise, let 7" be the tree obtained by removing all endvertices of T', let
v be any endvertex of 77 and let S contain v, together with all endvertices
of T" adjacent to v. In either case, S contains a vertex v, together with an
independent set of neighbours of vs and G \ S is connected. We repeat the
process with G'\ S, continuing until at most one vertex remains.
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We order the vertices of G one star at a time. Given a star S, let R be the
set of vertices we have already ordered. Let ST be those vertices of S\ {vs}
with an odd number of neighbours in R and let S~ = S\ (ST U{v,}). After
R, take ST (in any order), followed by v, followed by S~ (in any order).
Note that the vertices in ST US™ all have an odd number of predecessors in
this ordering, and |ST U S™| > |S|/2. Thus in the complete ordering, since
the stars together contain at least n — 1 vertices, at least (n — 1)/2 vertices
have an odd number of predecessors.

It is easy to see that this proof gives an algorithm that runs in time
O(m). Note that the tree T' can be updated efficiently between the removal
of successive stars. ®

In the proof above, we can avoid the need to generate a star partition
by constructing more directly an ordering of the vertices. Begin with any
ordering v; < -+ < v, of V(G) in which every vertex except v; has at
least one predecessor. For each vertex calculate the number of predecessors,
and let X be the set of vertices with an even number of predecessors. For
each x € X \ v; find the largest predecessor of x. This can clearly all be
done in time O(m). Now suppose that two vertices have the same largest
predecessor, say v. Reorder V(G) by moving x and y to immediately before
v, leaving = and y in the same order. The parity of v does not change, since
it has gained two predecessors, while x and y now have an odd number of
predecessors. No other vertex has changed its set of predecessors. However,
some vertices that previously had x or y as largest predecessor may now
have v: we can check this by examining the neighbours of z and y. By
a similar argument, if any @ € X has largest predecessor y € X, then
moving x to a position immediately before y gives an ordering in which x
and y have an odd number of predecessors and only neighbours of = (in the
original ordering) can have a new largest predecessor. Repeating this stage
of the algorithm, we note that each vertex is moved at most once (when
its parity changes), and that we examine the neighbours of a vertex only
when we move it (note also that we need only look at successors of a vertex,
and no vertex gains successors before being moved). Thus this part of the
algorithm runs in time O(m + n) = O(m). Finally, suppose that no two
vertices in X have the same largest predecessor and no vertex in X has
largest predecessor in X. Now if # € X has no predecessors then either
x = vy, or (since vertices are only ever moved downwards) = must have
been moved at some point in the algorithm, which implies ¢ X. Thus
every © € X \ v; has a largest predecessor in V(G) \ X. It follows that we
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have an injection X \ v; — V(G) \ X, so |X| < (n—1)/2+ 1, and thus at
least n —|X| > (n—1)/2 vertices have an odd number of predecessors. The
algorithm is now completed greedily as before.

Note that Lemma 2 furnishes a quick proof of the Edwards formula (1).
Indeed, given a graph GG, we may assume G is connected or else identify one

vertex from each component. Let n = |G|, so e(G) < (}): it follows from

the lemma that f(G) > e(G)/2 + (n — 1)/4, and (1) follows by a simple
calculation.

Lemma 3 was noted by several authors (see [3], [27], [28], [1]). We prove
it here for completeness.

Lemma 3. For a nonempty graph G,

7(G) > (% n %) (G).

Proof. Fix a colouring of G with ¢ = x(G) colours, and let the colour
classes be Vi,...,V;. Let SUT be a random partition of [t] into a set of
size [t/2] and a set of size [t/2]. Then, writing m = e(G), the expected
number of edges between (J;cg Vi and (J;cp Vi is

(51 G) = (20 =G

Therefore some partition satisfies this inequality. =

Lemma 3 also gives a fast proof of the Edwards formula, as observed
independently by Alon [1] and Hofmeister and Lefmann [20].

We will also need a lemma concerning partitions of graphs whose edges
are weighted with (positive or negative) integers. Note that as a consequence
of this lemma, for m = (g) we obtain the extremal graphs for the formula
of Edwards.

Lemma 4. Let H be a graph whose edges have integer weights. If n is an

integer with
n
H) >
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then there is a partition of H into two sets such that the total weight of
edges between the sets is at least |n%/4|. For n # 4, the unique extremal
graph is K, with all edges of weight 1. For n = 4 the extremal graphs are
K, with all edges of weight 1 and the graphs obtained by taking the edge
sum of two copies of K3 with all edges of weight 1.

Proof. The proof that such a partition exists is straightforward, since we
may consider H as a weighted complete graph, by adding an edge of weight
0 between every pair of nonadjacent vertices. If H contains an edge with
weight at most 0 then contracting that edge does not decrease the weight
of the graph. Therefore we may assume that H is a complete graph and all
edges have weight at least 1, so |H| < n. A random partition of V' (H) into
sets of size ||H|/2| and [|H|/2| yields a bipartite subgraph of expected
weight at least |n?/4].

To derive the extremal graphs, note first that we can assume that all
edges have nonnegative weight, since contracting an edge with negative
weight increases the total weight, and we can then do better than [n?/4] in
the argument above (this remark also applies if w(H) > (})). If H is not
K, with all edges of weight 1, then we can contract to a complete graph
with at least one edge of weight greater than 1. Thus |H| < n and all edges
have weight at least 1. Writing h = |H|, a random bipartition into sets of
size [h/2] and |h/2] yields a bipartite subgraph of expected weight at least

o B0

If h<n—-—1orh=mn-1andn is odd then (8) is strictly larger than
|n?/4]. Otherwise, h = n — 1 is odd and, since all edges have weight
at least 1, H is the edge sum of K,,_; with all weights 1 and a graph
H* with V(H*) = V(H) and weight (}) — (”;1) = n — 1. Furthermore,
all bipartitions of V(H) into two sets of size |h/2] and [h/2] yield a
bipartite subgraph of size exactly |n?/4], since otherwise some partition
would exceed the expectation (8). Since every bipartition of K, _; into two
sets of size | (n —1)/2] and [(n —1)/2] gives a bipartite subgraph of size
[(n— 1)2/4J =n?/4 —n/2, it follows that every bipartition of H* into sets
of size [(n —1)/2] and |(n —1)/2| gives a bipartite subgraph of size n/2.

If H* is not complete, let v be a vertex that is not adjacent to every
other vertex of H*. We can partition V(H*) \ v into two sets V; and V;
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with [Vi] = [Va| = (n — 2)/2, such that [I'(v) N Vi| > |I'(v) N'V,|. Then a
dding v to Vi or V, gives two partitions into sets of size |(n — 1)/2] and
[(n —1)/2] that yield bipartite subgraphs with different sizes. It follows
that H* is complete: the only possibility is n = 4, H* = K3 with all edges
of weight 1. Thus for n > 4, H must be K,,, with all edges of weight 1. For
n = 4, a simple case check shows that H can also be any graph obtained by
taking the edge sum of two copies of K3 with all edges of weight 1. m

Another bound on f(G) was given by Poljak and Turzik [31], who
showed that every connected graph G with edge-weighting w has a bipartite
subgraph of weight at least

1 1
iw(G) + 7 in w(T)

where the minimum is taken over spanning trees 17" of G. Poljak and Turzik
show that there is an algorithm running in time O(n?) that finds the required
subgraph; Poljak and Tuza [32] show that the algorithm runs in time O(mn).
We show that there is an O(m) algorithm: note that for unweighted graphs,
we obtain a cut of weight at least e(G)/2+ (|G| —1) /4, thus giving another
proof of Lemma 2.

Theorem 5. There is an algorithm running in time O(m) that finds in
every connected graph G with m edges and edge-weighting w a cut of weight
at least

1 1
iw(G) + 7 Win w(T).

Before proving this theorem we need a lemma. We say that a collection
of induced stars or single vertices S1,...,.S5; in a graph G is a tree-like star-
covering if every vertex in G belongs to some S; and the graph with vertices
S1,...,5; and edges between S; and S; iff ;N S; # 0 is a tree.

Lemma 6. There is an algorithm running in time O(m) that finds a tree-
like star-covering of any connected graph G with m edges.

Proof. Recall that a rooted spanning tree 7" of a graph G is a depth-first
search (DF'S) tree if, for every uv € E(G), either the path from the root r
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to w in T' contains v or the path from r to v contains w. In other words, if
we delete v € V(T'), then the components of 7'\ v containing each of the
children of v are not joined by any edge. A DFS tree can be found in time
O(m) (see, for instance, [30]).

Let T' be a DFS tree in G with root x. For every v € V(T') that is not
an endvertex of 7" let T, be the induced star containing v and its children.
If v is an endvertex of 7' then let 7, = {v}. Then {7, : v € V(T)} is a
tree-like star covering of G. =

Proof of Theorem 5. Keeping the notation of the proof of Lemma 6, let
To={T, : dp(x,v) =0 mod 2}

and
T = {Tv : dp(x,v) =1 mod 2}.

Each of 7y and 7; is a collection of disjoint induced stars and single vertices,
and every edge of T is contained in some member of 7y or 7;. We partition
whichever of 7y and 7; has the greater weight, say 7; one star at a time.
Suppose we have a partial partition V; UV and wish to partition a star 7.
We greedily assign v to one class and T, \ v to the other so that the weight
of the partial partition is increased by at least w(T,,Vy UV2)/2 + w(T,)/2.
Repeating for all stars, we obtain a cut of weight at least

1 1 1 1
§w(G) + iw('ﬂ) > gw(G) + Zw(T).
The algorithm clearly runs in time O(m). =

Finally, it will be useful to have the following remark.

Lemma 7. If W C V(G) and H = G[W] then
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Proof. Partition H, then add the remaining vertices from G one at a time
to whichever class has fewer neighbours. The resulting partition clearly
satsfies the inequality. m

With these lemmas in hand, we turn to the proof of Theorem 1.

Proof of Theorem 1. Let ng = 5 x 10®. Suppose that n > ng and G is a
graph with

® = () ()< (")

edges and

w ez |2 |2] o]}

We shall prove that G is one of the extremal graphs given in the statement
of the theorem. Note that we may assume that G is connected by identifying
one vertex from each component.

We begin by showing that G consists of a very large complete graph on
n— O(\/ﬁ) vertices, together with O(\/ﬁ) ‘exceptional vertices’.

Clearly |G| > n and k < v/2n+ 1. Note also that n > 140(n®/*+k+1).
If k < 2, we are done by Lemma 4; so we may assume k > 2. Let y = x(G).
Now by (9),

k
(1) 2] + R < B 8
and so it follows from (10) that
(12 s

Therefore, by Lemma 2,

(13) |G| <n+k+1.
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Furthermore, Lemma 3 and (12) imply that

and so by (9)

2m
> —k-1.
X_n+/<;>n

Now if G contains 2k + 2 independent edges, we can cover G by |G| —
(2k +2) <n —k —1 edges and vertices, which is equivalent to colouring G
with at most n — k — 1 colours. It follows that G contains at most 2k + 1
independent edges and therefore that some set Y of at most 4k + 2 vertices
meets all edges of G. Let X = V(G) \ Y; then G[X] is complete, and

(14) 1X| = |G| — Y| > n— 4k — 2.

We have partitioned G into a large complete graph G[X] and a small
set Y which we shall regard as a set of exceptional vertices. Note that it
follows from (14) that any partition of X into two sets of equal size (or sizes
differing by 1) corresponds to a bipartite subgraph of G[X] of size

2 - e n— -
(15) m J Zfa<;<>+|X|4 L <gf>+ 44k 3

Throughout the proof, we shall consider partial partitions of V' (G) in which
we partition Y and some vertices from X, and then extend these to parti-
tions of V(@) in which X is split as evenly as possible.

We now show that every vertex in Y has either very many or very few
neighbours in X. Indeed, suppose some v € Y has ‘F(U) N X‘ > 5k/2 +2
and | X \ I'(v)| > 5k/2 4+ 2. We partition G as follows. Since n > ng
we have n > 5k + 4, so we can find a partition X = X; U Xy with
|X1| S |X2| S |X1| + 1 and

5k
(16) Hr(vmxl\—\r(v)m{zu27+2.
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Adding v to whichever of X; and X, contains fewer of its neighbours, it
follows from (14) that we obtain a bipartition of H = G[X U {v}] with at
least

e(H)+|X|—1+5k+1>e(H)+n+k‘
2 4 4 2 4

edges between the two classes. Thus, by Lemma 7,

m n+k

which contradicts (12). We may therefore assume that for every v € Y,
either |[(v) N X| <5k/2+2or | X \I'(v)| <5k/2+2. Let

Yi={veYy :|Dv)nX|>|X|-5k/2-2}
Y- ={veY : |T(v)nX| <5k/2+2}.

Then YT UY ™ is a partition of Y.

Next we show that the subgraph induced by X UY T is nearly complete.
Indeed, we claim that e(G[X UY"]) < 5k/2+ 2. If not, then let W C Y'*
be minimal such that

— ok
(18) e(GIXUW]) > 5 T2
Since | X \ T'(v)| < 5k/2 + 2 for every v € Y™, we have
5k/2+2 < e(GXUW]) <5k+4.

Since n > ny, it follows that n > 4(5k+4), so we can find a partition V3 UV,
of X UW such that [Vi| < |V5| < |[Vi|+1 and all the edges of G[X UW] are
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contained in V;. Then since (‘Xgm) > e(X UW) + (5k/2) + 2, it follows
from (18) and (14) that

F(GIXUW]) > [Vi] Vs

X UW|?
- 4

1 X|+ W] -1
2§(e(XUW)+5k/2+2) +%

n+k
4 )

1
> §€(XUW)+

and we are done, as in (17). Thus we may assume that

(19) e(GIXUYT]) < %-1—2,

so G[X UY ] is nearly a complete graph. In particular,

(20) flapxoy) > |12

|XUY+|2‘

Now we show that there are not too many edges between Y~ and
X UY™T. Note first that every vertex v € Y~ has fewer than 5k/2 + 2
neighbours in X U Y*: otherwise, since e(G[X UY]) < 5k/2 + 2 and
|T(v) N X| < 5k/2+ 2 (and since |X| > 6(5k/2 + 2) = 15k 4 12 which, as
n > nyg, follows from (14)) we can find a partition of X UY ™ into sets W
and Wy with |W;] < |Ws| < |Wi| + 1 such that all edges of G[X UY T] are
contained in Wj and ‘ |T(v) N Wi| — |T(v) N W3] ‘ > 5k/2 + 2. Arguing in
the same way as from (16) we arrive at a contradiction. Thus

Sk + 4

(21) IT()N(XUYH)| < 5

for every v € Y.
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Now suppose that
e(Y 7, X UYH) > 700%/4,

Let Yy C Y~ be minimal such that e(Yy, X UY™T) > 70n%%, and let
U=T(Yy)N(XUYT). Note that the minimality of Yy and (21) imply
that |U] < 70n3/* 4+ 5k/2 4 2. Since n > ny it follows that |U| < |X|/2. Let
Yy = Y1 U Y, be a random partition, where each vertex of Yy is in Y7 or Ys
independently with probability 1/2. Let

Ulz{uEU [ D(u)NYy| > ‘F(WHYZ‘}

and let Uy = U\ U;. For w € U, let d, = ‘F(u) ﬂYg‘ and define
A(u) = ||T(w) N Y| = |T'(u) N Yz||. Then

E(A(u) = E(|S(da)])

where we write S(d,) for the position after d, steps of a simple symmetric
random walk on Z starting from 0. It is easily checked that E| S(d)| > V)2,
and so

E(e(Y1,Us) + e(Ys,U1)) = %e(U, Yo) + % > E(A(u)
uelU

| \/

e(U,Yy) + Z A2 /2

uEU
1
> 5e(U,Yo) + e(U, Yo) /12014,

1/2

since d, < |Yp| < Y| < 4k +2 < 9y/n and so d/* > d,/3n'/%; also

E(e(Y1,Ys)) = %e(Yo).
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Since |U| < |X|/2, we can extend the partition U; U U; of U to a partition
TyUTy of X UY Tt with |T1| < |T2| < |T1| + 1. Then, by (19) and (14)7

XuUv+)? _
e(Th,T3) > {; |- e(GIXUuYT])
1 XuY*t| -1 5
Loy s KUYS1 s
2 4 2
1 — 14k — 11
> §€(X UY+> + nf

Thus, partitioning X UY ™ U Yy into T} UY5 and Ty U Y7, we see that

f(G[X uYtu Yo]) > E( €(T1 UYs, 7o U Y1>)
= E( e(Tl,Tg) + e(Yl,Yé) + B(Yl, U2) + 6()/2, Ul))

n—14k —11 (U, Y))
4 12nt/4

1
> 5e(XUY+ UYp) +

n+k
4 Y

1
> §e(XUY+ UYp) +

provided e(U,Yy) > (45k + 33)n'/*, which follows from e(U,Yy) > 70n3/%,
since n > ng. Thus it follows from Lemma 7 and (12) that we may assume

(22) e(Y 7, X UYt) < 70034,

Next we prove that | XUY ™| = n or n+1. Now since |Y | < V| < 4k+2,
we have

4k + 2
e(Y™) < ( k; >=8k2+6k+1.
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So, since n > ng, it follows that

e(XUYT)>e(G)—e(YT)—e(Y,XUYT)

> (Z) + <§> — (8K? + 6k + 1) — 70n°%/4

> (n> EECTEN ?k — 1 - Top3/t

> (Z) — 16n.

So in order to have enough vertices for the edges, we must have [ X UY*| >
n — 16, and thus by (12),

(23) Y| < k+17.

Now if [X UY™F| < n—1, then e(X UYF) < (") and so, since n > ny,

> ( > —e(XUYT)—e(Y,XUYT)

v

2

S L0
2’
which contradicts (23). So [XUY T| > n. Similarly, we have | XUY | < n+1,
since, by (19),

0z (s
(k) fn—1—Ton?
(2)

(n;2> —e(GXUYH) > (n;2> —%—2
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We have shown that [XUYT|=nor |[XUYT|=n+1. If [ XUYT|=n+1
then, by (20),

with equality iff Y~ = (), in which case G consists of K, 1 with (ngl) -m

edges deleted.

Otherwise | X UY ™| = n. Now let H be the weighted graph consisting
of all edges of E(Y )UE(Y ,X UY™) with weight +1 and all edges of
E(G[X UY™]) with weight —1, so H has total weight (g) It follows from
Lemma 4 that H has a cut of weight at least [k?/4].

Note that since n > ng it follows from (14), (19) and (22) that |H| <
V[ +e(Y,XUYY) < 4k + 2 + 7T003/* + 5k/2 + 2 < |X|/2. We can
therefore extend a partition of H to a partition of G in which X UY ™ is
evenly partitioned, so

2

1) > VTJ () > HQJ + Vﬂ

with equality iff H =2 K}, with all edges of weight 1 (or H = K4 or H = 2K3
when k = 4). It follows immediately that G[X U Y] is complete, and the
extremal graphs are as described in the statement of the theorem. m

What prevents us from extending the argument in the proof of Theo-
rem 1 to graphs with (g‘) + (g) + (é) edges? The problem is that when we
remove the copy of K, in the argument above, we are left with a graph with
weighted edges. If we have (’;) edges then Lemma 4 gives us the unique ex-
tremal graph, whereas to deal with (g) + (é) edges we would need a version
of Theorem 1 for weighted graphs. Our aim in the next section is to prove
such a theorem. In particular, it will enable us to determine f(m) exactly
for a much wider range of m, and to within an additive constant for every

value of m. It will not, however, yield all the extremal graphs.
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3. MAX CUT FOR MULTIGRAPHS

Our aim in this section is to determine f(m) to within an additive constant
for every integer m, and to determine f(m) exactly for a larger range of
values of m. In order to do this, we consider graphs with integer edge-
weightings: note that, if all weights are positive, we can think of these as
multigraphs, where the weight of an edge indicates its multiplicity. As in
the unweighted case, for a graph G with edge-weighting w, we write f(QG)
for the maximal weight of a bipartite subgraph of G. We define f,(m) to
be the minimum of f(G) over graphs G with w(G) = > cp(eywle) = m
and all weights non-negative integers.

Note that the restriction to positive integers means that f,(m) is the
minimum of f(G) over a finite set of multigraphs. Thus there is a (very
slow) algorithm to determine f(m). However, we do not lose anything by
allowing negative weights: if w(G) = m and G has an edge xy with negative
weight, then consider the graph H = G /xy obtained by contracting the edge
xy to a single vertex z and defining w(vz) = w(vz) + w(vy) for v # x,y.
Repeating the process until we obtain a graph H with no edges of negative
weight, it is clear that w(H) > w(G). Since f,,(m) is monotone increasing,
it follows that f(G) > f(H) > fu(m).

What can we say about f,(m)? Clearly it is subadditive: since f(G U
H) = f(G) + f(H) for any graphs G and H, it follows that f,(m +r) <
fw(m) + fu(r) and, similarly, f(m +r) < f(m)+ f(r). Furthermore, it
follows from Lemma 4 that, for m = (}), we have f,,(m) = f(m) = [n?/4].
All the work in this section will go into proving a lower bound for f,(m)

for other values of m.

We begin with Theorem 8, which provides a recursive lower bound
on f,(m) and hence f(m) (as noted in the introduction, this was proved
independently by Alon and Halperin [2]). The approach we use in proving
the theorem is similar to that used in the proof of Theorem 1. However
since we are dealing with weighted graphs the details are rather different.

Theorem 8. Let G be a graph with integer-valued edge-weighting w.
Suppose w(G) = m. Then, provided m > my,

o soe{E]en (- ()
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where we define f,,(r) =0 for r < 0.

Proof. Let G be a graph with w(G) = m and f(G) = f,(m) that does not
satisfy (24). We can consider G as a weighted complete graph by defining
w(xy) = 0 if x and y are nonadjacent. If G contains an edge xy with
nonpositive weight then replace G with G/xy. Clearly w(G/xy) > w(G)
and f(G/zy) < f(G). Repeating this process, we may assume that G is a
weighted complete graph with all edges of positive weight. Let m = w(G)
and define the integer n by

()em<(3)

Since G is complete and every edge has weight at least 1, we have |G| < n.
We will use the fact that, as in (6), for some ¢, ¢y > 0 and every integer m,

m m m n
(26) fm) < =44/ = +emMt < =+ =+ cov/n.

2 8 2 4
We will use c¢q,co,... to refer to constants in the proof below; suitable

constants can easily be determined. In several places, we shall assume that
n is larger than some fixed constant.

Note that the proof of Lemma 3 carries over straightforwardly to the
weighted case (see also Section 5). In particular, since G is complete, it
follows from the weighted version of Lemma 3 that

1) = (§+ﬁ> m

and so by (26),

m n
<z .
oG] S 1 + cov/n

Since m > (3), we have

-1

(27) G > M=

~ n+4co/n
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n—1

" 1+ 4o/ Vn

>n —c1v/n.

We now find a small set of vertices that meets all edges with weight
greater than 1. Let M be a matching of maximal weight in G. Consider
the random partition V(G) = V3 U V;, where for each edge xy € M we
independently assign x € V] and y € Vo or x € V5 and y € V] with equal
probability; if there is a vertex not covered by M, we assign it to Vi or Vs
with equal probability. The expected weight of edges between V; and V5 is

W(M) + S (w(@) — w(M)) = %w(G) + %w(M).

It follows from (26) that any matching in G has weight at most
n
(28) >+ 2coV/n.

Now let eq, ..., e be a maximal set of independent edges of G with w(e;) > 1
for « = 1,...,k. Extend this arbitrarily to a maximal matching M. Then
|M| > (|G| —1) /2, so by (27),

|G| 1
>

n—cyn—1
2 2

w(M) + k> +k

and so by (28) we have k < %(cl\/ﬁ-l- 1) + 2co/n < co/n. Let Y be the
set of vertices spanned by ej,...,e,. Then

(29) Y| =2k < 2e0v/n

and any edge of weight greater than 1 is incident with Y. Let X = V(G)\Y:
then by (27) and (29)

(30) | X]| > |G = Y] > 1~ (c1 + 2c2)V/n.

Note that X induces a complete graph with all edges of weight 1.
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Now for y € Y, counsider the edges between y and X, and order them
in increasing order of weight (order edges of the same weight arbitrarily).
Let Z; be the vertices in X incident with the first [|X|/2| edges and let
Zy = X \ Z1. Counsider the partition of X U {y} into Z; U{y} and Z3: since
this partitions X into sets of size ||X|/2| and [|X|/2], we see that

2
FXU)) 2 {%J (. %)
> L)+ B L %)+ L (i, 22) — wly, 20)

4 2 2

+ |X| —1 + w(y7ZQ> B w(y7 ZZ)

=gl 2

Hence, by Lemma 7 and (30),

— 2 -1 1
w(G) n n (Cl + 4CQ>\/ﬁ " 5

(w(yv ZQ) - w(yv Zl))
and so, by (26),

(31) w(y, Zs) —w(y, Z1) < (2co + c2 + c1/2)vV/n + 1 < e3v/n.

It follows, in particular, that for each y € Y there is an integer ¢(y) such
that all but at most c3y/n of the edges between y and X have the same
weight #(y).

We have defined t(v) for v € Y set t(v) = 1 for v € X. Then t(v)
denotes the “typical” weight of edges incident with a vertex v. We could
obtain a graph H with the same vertex weights as G from a complete
graph on 3~y () t(v) vertices by partitioning its vertices info sets {T, :
v € V(G)}, where |T,| = t(v): contracting each set T, to a single vertex
v* gives a graph in which all but O(ﬁ) edges from each vertex v* have
weight t(v) (since all but O(\/ﬁ) vertices v* in H correspond to vertices
v in X for which ¢(v) = 1). We shall show that in fact G is not too far
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from H. Note that the edge in H between vertices v* and w* has weight
t(v)t(w). With this in mind, for an edge zy in G we define

u(xy) = t(x)t(y) — w(xy).

Thus « denotes the weight we have to add to each edge of G in order to
obtain the graph H.

We know that u(e) = 0 for every edge e in G[X]. Suppose that for some
y € Y we have

> Julay)| > cav/n

zeX

where we define ¢4 = 2¢o+ca+c¢1/2+1. Then since w(zy) = t(y) for all but at
most c3y/n edges between y and X, and w(y, X) =Y oy (t(y)+u(ay)), we
can partition X into Z; U Z5 as before (except that we order edges between
y and X with increasing u-weight). The total weight (with weighting w) of
edges between Z; U {y} and Z3 is then at least

X wy,X) 1 w(XU{y}) [X]-1 en'/?
(32) \‘ 1 + 5 +2:U€z;(‘u(ya:)‘> 5 + 1 + 5

and hence by Lemma 7 and (30)

w(@) + i(n —(c1+2e2)v/n 1) + %qﬁ

1
f6) 25

>%+%+Co\/ﬁ,

which contradicts (26).

Thus we may assume that, for every y € Y,

(33) Z |u(zy)| < cav/n.

rzeX
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Suppose that

Z Z ‘u(xy)‘ > c5nS/4

zeX yey

where ¢; = 402/4. It follows from (33) that we can pick a subset Y’ of Y
such that

(34) esn’/t < Z Z |u(zy)| < esn’/t 4 cqv/n.

zeX yey’

Then the number of vertices # € X such that u(xy) # 0 for some y € Y’ is
at most csn®/* + cay/n < n/4, provided n is sufficiently large. We construct
a partition of Y U X as follows. Let Y/ = Y; UY, be a random partition
of Y/, where each y € Y’ is in Y] or Y2 independently with probability 1/2.
Let X' be the set of vertices x € X such that w(zy) # 0 for some y € Y.
Let

Zi=Y1U{zeX :uaY) <uY)}
and
Zy =Y U {a: e X' :u(x,Y3) < u(x,Yl)}.

Finally, extend the partial partition Z; U Zy to a partition of X UY' by
adding the remaining members of X arbitrarily so that the final partition
W1 U Wy satisfies

(35) Doty < D )< Y tw) F1.

veW; veEWs veW,

(Note that this is possible since Z; U Zs contains at most n/2 elements of X,
provided n is sufficiently large.) Now by Lemma 9 below, for x € X’ we have
E|u(z, Y1) — u(z,Y2)| > E( SV :I:l) > VU, where U = Y u(zy)|.

yey'’
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So by (33), (34) and (35), the expected weight of edges joining W7 and Wy
is at least

IEZ( [tH(X U Y’)2/4J +u(Y")/2 + Z max (u(z, Y1), u(z, Y2))>

zeX

x, Y1) —u(x,Yg)‘
2

1 l |X|_1 ‘u(
Zgw(XUY)—i-T—i-E;(

_ 1/2
> %w(XUY')—i— |X|4 ! +£Z (Z \u(azy)\>

zeX “yeyY!

| X] -1 csn3/
4 4./cant/4

1
> §w(X uyY’) +

1 X| -1
> 5w(XUY’)+%+C4\/ﬁ.

As in (32), this yields a contradiction, so we may assume that

(36) Z Z |u(zy)| < csn’/t,

zeX yeYy

It follows that there are at most 65n3/ 4 vertices of X which are incident to
an edge e with u(e) # 0.

Let G’ be the graph with edges {e € E(G) : u(e) # 0} with edge-
weighting u and vertices {v € V(G) : u(vw) # 0 for some w € V(G)}.
Then, by (29) and (36),

G'] < esn®/* + Y| < egn®/t
which by (27) is smaller than n/4 for sufficiently large n.

Finally, let Wi U W5 be a partition of G’ such that the total weight of
edges between W7 and W is at least f(G’). Since |G| < n/4 provided n



better bounds tor Max Cut

is sufficiently large, it follows from (30) that we can extend W; U Wj to a
partition V3 U V5 of V(G) such that

[t(V1) —t(V2)| < 1.
Let t = ZUEV(G) t(’l}) Then

w@ = Y totw + > ulvw)

vweE(G) vweE(G)

< (;) + u(G"),

while the weight of edges between Vi and V3 is at least

t2
t(V)t (V) + u(Vy, Vo) > {ZJ + f(G').

Therefore

t2
4

> |2 (wer- (). m

We have used an estimate in the proof above that is an immediate
consequence of the following trivial lemma. We are interested in random
sums Y e;a;, where the a; are independent Bernoulli random variables
taking values +1 and —1 with probability 1/2. We shall write £ instead of
Eq.

1(@) > { J (G

Lemma 9. Let s;+---+s be a partition of n and t1 +- - -+1t; a refinement
of s1+ -+ sg. Then

E >E

k [
Z :‘:Si Z ﬂ:tl‘
=1 =1
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Proof. It is enough to consider the simple refinement when | = k + 1,
si = t; for i < k and sg = t + tg+1. We may couple the sums ) +s; and
> £t; so that £s; and +¢t; have the same sign for i < k, while £s, £t and
+tg41 are independent. Let S = Zf:ll +s; = Zi:ll +t;. We must show

E|S £ sg| > E|S £t £ tr41]-
Now for real numbers o > >0 and L > 0,
IL+a|+|L—-—af>L+a+|L—qaf
>L+a+|L-pBl+8-a
=L+ Bl +[L -4l
so in general for || > || and any L,
|IL+al+|L—al>|L+p|+|L -4

Conditioning on the value of S, we see that since |ty — txr1| < [t + trps1l,
we have

|S+ (tk — try1)| + |5 — (b — trga)| SIS+t + trga| + 1S =t — tes|

and so
1 1
E|S £t £ty < §|S+tk +trg1] + §|S —tg — trg1] = E|S £ s

The result follows immediately. m

For what value of n is the quantity in Theorem 8 minimized? Suppose
(") <m < (n°2+1), say m = (") +r. Clearly we must have n < ng + 1,
and it follows from (30) that we may assume n > ng — ¢\/ng. We claim
that (24) is minimized with n = ng or n = ng + 1. Now since the argument
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of Lemma 3 applies to multigraphs as well as graphs, we can deduce the
Edwards formula for multigraphs:

Fulm) > % + \/%Jr O(1).

Since f,(m) < f(m), it follows from (6) that

(37) fulm) = 5+ + 0.

If n =ng —t, with 0 < ¢ < ¢y/n, then

m— (Z) =t(ng—t)+(;>+r

so by (37),

BRACEH)

m n t(no—t)—i-(;)—i-r V2 1/4
:5'1‘1'1‘ .

3 -I—O(n()t'i'?"'i‘l)

Provided n is sufficiently large, and 0 < ¢ < ¢y/ng, this is minimal when
t = 0. We conclude the following.

Theorem 10. For every sufficiently large positive integer m,

(38 fulm) = min{ {@J |5+ n (- (3)) } ,

where n is defined by
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As remarked in the introduction, probably f,,(m) = f(m) for every m.
Even if this is not true, it seems likely that (38) holds with f(m) in place
of fu(m) when m is sufficiently large.

4. EXTREMAL GRAPHS FOR MaX CuUT

We can apply Theorem 10 to obtain extremal graphs and multigraphs in
more cases than Theorem 1 and Lemma 4. Let us note first that any integer
m can be written in the form

= (3)(3) = (3)

for some k > 0, where n; > --- > ng > 2 and each n; in turn is chosen to
be as large as possible. For 1 <1 < k, let

and define

then it follows by repeated application of Theorem 10 that, provided ng_;
is sufficiently large,

fw(m) =min{Mj,..., My_1,M}.

For 1 <i < k, we can obtain a graph G with m edges and f(G) = M; by
deleting (m;l) — (%) =+ = (")) edges from the graph

(39> Arm U---u I(mz'fl U I(nz'+17
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while the graph
(40) K, U---UK,,

has m edges and no bipartite subgraph with more than M edges. Note that
in both (39) and (40), we could instead take any edge-disjoint union of the
complete graphs. Thus there may be many possible extremal graphs.

Recall that in the case k = 2, Theorem 1 asserts that for sufficiently
large m, the extremal graphs are precisely the graphs (39) and (40) and
their variants obtained by taking different edge-disjoint unions (note that
the case n, = 4 is special, since we can take two copies of K3 instead of
1&74).

Keeping the notation of the last few paragraphs, we can extend Theo-
rem 10 for graphs as follows.

Theorem 11. Let m be a positive integer and define k, ny,...,ng, and
My,...,Mg_1,M as above. Suppose that

(41) M<min{M1,...,Mk_1}.
Then, provided ny_1 is sufficiently large,
f(m) =M

and the extremal graphs are obtained by taking an edge-disjoint union
of Ky,,...,IK,,, unless ny = 4, in which case there is an additional set
of extremal graphs obtained by taking an edge-disjoint union of K,,,...,
Ky, K3, K3.

Proof. We argue by induction on k. For k = 1, the result follows
immediately from Lemma 4. For k£ > 2, we know from Theorem 10 and
example (40) that f(m) = fu(m) = M. Let G be a graph with m edges
and f(G) = f(m). As in the proof of Theorem 1, we can decompose G as
the edge-sum of K,, and H, where H is a weighted graph in which all edges
are weighted £1. Furthermore, any partition of H can be extended to an
optimal partition of I, so f(G) = f(K,) + f(H) and we must therefore
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have n = ny and so w(H) = (") +---+ (). If H has an edge zy with
negative weight, then contracting zy gives a weighted graph H' with

w(H") > (7;2> TR (T;’“>

It follows from Theorem 10 and the inductive hypothesis that

fH') > VZ%J + et V%J +1

and so, since f(H) > f(H'), we obtain f(G) > f(K,,)+ f(H) > M, which
is a contradiction.

Thus all edges of H must have weight +1, so we can consider H as an
unweighted graph, with (") +--- + (") edges. For 2 <i < k, let

[ |t ]

and let

it follows from (41) that
M'" < min{M;, ..., Mj_;}.

Thus we may apply the inductive hypothesis to H: the result follows
immediately. m

A similar argument gives the following result for weighted graphs.

Theorem 12. Under the conditions of Theorem 11,

fw(m) =M
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and the extremal weighted graphs are the edge sums of K, ,..., Ky, , unless
ny = 4, in which case the edge sums of K, ,...,K,, ,,Ks3, K3 are also
extremal.

Proof. We argue as in the proof of Theorem 11, except that we use the
decomposition of Theorem 21 below. Note that in the decomposition I} & H
if f(K}) = [t?/4] then K; must not have been contracted m

What happens when M > min{Mi,..., M;}? We conjecture that the
natural extension of Theorem 1 should hold: the extremal grahs are obtained
by deleting edges in (39). The weighted case seems more complicated.

Part II: Algorithms for Max Cut

5. AN EXTREMAL ALGORITHM FOR MaXx CuT

In this second part of the paper, we turn from extremal questions to the
problem of finding polynomial time algorithms that give large bipartite
subgraphs of a graph or edge-weighted graph. In this section we describe a
linear time algorithm that, given a graph with total edge weight m, gives
a bipartite subgraph of weight at least f(m). In subsequent sections, we
give a linear time algorithm that, for graphs G of weight m, finds a cut of
weight at least m /24 +/m/8+Fk if such a cut exists a nd otherwise finds an
optimal cut, and an algorithm that approximates the order of magnitude of
f(G)—m/2 —\/m/8.

We remark that it often appears to be easier to find efficient algorithms
for partitioning unweighted graphs than it is for partitioning weighted
graphs. We shall assume below that we are dealing with graphs that have
integer edge-weightings, where we al low both positive and negative weights.
We may also assume that our graphs are connected: given a graph G with
n vertices and e edges, we can identify a vertex from each component in
time O(e 4+ n) to obtain a graph H with f(G) = f(H); any biparti tion of
H yields an equivalent bipartition of G in time O(n). (We should also note
that we have assumed that all arithmetical operations can be performed in
unit time, regardless of the magnitude of edge-weights.)
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The main result of this section is the following linear time algorithm.

Theorem 13. There is an algorithm that, given a graph G with e edges,
integer-valued edge-weighting w and total weight m finds a cut of weight at
least fi,(m) in time O(e + |G|).

By taking w = 1, we obtain the following immediate corollary for
unweighted graphs.

Corollary 14. There is an algorithm that, given a multigraph G with m
edges and n vertices, finds in time O(m+n) a bipartite subgraph of G with
at least f,,(m) edges.

Many of the results from Sections 2 and 3 have efficient corresponding
algorithms. Let us note first that Theorem 5 has the following immediate
corollary.

Lemma 15. There is an algorithm that, given a connected graph G with
n vertices and e edges, and an edge-weighting w with positive integers and
total weight m, finds in time O(e+n) a bipartite subgraph of G with weight
at least

w(@) | |G -1
2 * 4

We shall find it useful to have the following lemma.

Lemma 16. There is an algorithm that, given a graph G with e edges and
edge-weighting w, finds in time O(e 4+ n) a contraction of G to a complete
graph in which all edges have positive weight.

Proof. Begin by deleting all edges with weight 0. We then take a greedy
colouring of G (which takes time O(n+e)) and contract each colour class to
a single vertex to obtain a weighted complete graph H with |H| = O(\/E) .
We now repeated ly contract edges of nonpositive weight until we obtain
a graph with all edge weights positive. Since each contraction takes time
O(\/E) and there are at most O(\/E) contractions, the algorithm termi-
nates in time O(e) (note that we can deal with all edges with nonpositive
weight in time O(e) by processing one vertex at a time). ®
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We shall also need algorithmic versions of Lemmas 3, 4 and 7, and a
result concerning weighted matchings. Most of the following lemma can be
found in Hofmeister and Lefmann [19].

Lemma 17. We consider graphs G with n vertices, e edges and edge-
weighting w.

(i) There is an algorithm running in time O(e+n) that, given a matching
M in G, finds a cut with weight at least

%w(G) + %w(M).

(ii) There is an algorithm running in time O(e +n) that, given a proper
k-colouring of G, finds a cut with weight at least

1+ Luer

In particular, there is an O(e+n) algorithm that finds a cut with weight at

least
1 1
-+ — G).
(3 + 357) v©

(iii) Given a weighted graph G and a partial partition V3 UV, of V(G),
we can find in time O(e + n) a cut of weight at least

w(Vl, sz) + %(U}(G) — w(V1 U VQ)) .

(iv) There is an algorithm running in time O(e+n) that finds a matching
of weight at least w(G)/n.

Proof. Parts (i), (ii) and (iv) are obtained by applying algorithms from
[19]. Note that if |G| is odd, we may add in an isolated vertex.

Part (iii) follows by using the greedy algorithm: add each vertex of
V(G)\ (V1 UV2) in turn to whichever side of the partition gives the heavier
cut. W
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We now prove the main result of this section.

Proof of Theorem 13. Let mg be large enough for (38) to apply: that is,
for m > my, and () < m < (ngl), fuw(m) = min{ [ (n+ 1)2/4J ,|n?/4] +
fuw (m— (’;)) } . By (1) (for weighted graphs) and (6), there is m4 such that,
provided m > my,

m m m m
42 - 1< fu(m) < = — yoml/e,
(42) 2"‘ g _f(m)_2+ 8+m

The main part of our algorithm will apply to edge-weighted graphs with
weight at least M = max{mg, m1, K}, where K is a large fixed constant;
we deal separately with graphs of smaller weight.

We begin by contracting G to a complete weighted graph with the
algorithm from Lemma 16. We may thus assume that G is a complete
weighted graph with e edges, all of positive weight, and that w(G) = m.
We shall show that we can find a cut of weight at least f,,(m) in time O(e).

If w(H) < M, then since there are only finitely many graphs with
positive edge weights and total weight at most M (that is, multigraphs with
at most M edges), we can examine all partitions of H in fixed time, or else
store all optimal partitions as a look-up table. Note that this may introduce
a large constant into the time or space complexity of the algorithm: we
return to this point after the proof.

We may therefore assume that G has weight m > M. Our algorithm
follows parallel to the proof of Theorem 8. Note that if at any time we
find a cut with weight at least m/2 + y/m/8 + 2m!/* then we can halt the
algorithm immediately.

Define the integer n by

(eme ()
Then, by (42),

(44) fw(m) <
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Since G is complete we have
|G| < n.

On the other hand, by Lemma 17(ii) we can find in time O(e + |G|) a

bipartite subgraph of G with weight at least (% + L) m. Thus we can halt

2/G
the algorithm if

1 1 m m
45 S — 44/ = +2m*
(45) <2+2|G|>m>2+ g tm

which is true for sufficiently large m unless
(46) |G| >n—8yn

Note that this implies m is O(e).

Now we find a small set of edges that meets all edges in G' of weight
more than 1. We can find a maximal matching M in G in time O(e), by
choosing greedily edges of weight more than 1 and then filling out with
edges of weight 1. By Lemma 17(i) we can find in time O(e) a bipartite
subgraph of G with weight at least (m 4+ w(M)) /2. Thus we are done if
w(M) > v/m/2 + 4m!/*. Otherwise, provided m is sufficiently large, using
(43) we see that M contains at most

(47) \/? +4m!'/* — {@J <TVn

edges of weight greater than 1. We obtain either a bipartite subgraph with
weight at least f,,(m), in which case we halt the algorithm, or else a set
of at most 7y/n edges, and hence a set Y of at most 14/n vertices of G,
meeting all edges with weight more than 1.

Let X = V(G)\Y, so by (46) and (47),
X| =G| - [¥] > n — 22V,

Note that G[X] is a complete graph in which all edges have weight 1. For
y € Y, let us consider the edges between y and X. As in the proof of
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Theorem 8, we order the edges into increasing order of weight, which takes
time O(nlogn), which is O(e), and partition X U {y} into Z; U {y} and
Zy, where {yz : z € Z;} are the lightest ||X|/2] edges and {yz : z € Z»}
are the heaviest [|X|/2] edges. Extending to a partition of V(@) with the
algorithm of Lemma 17(iii), we obtain a bipartite subgraph of weight at
least w(@)/2+ (|X| —1)/4+ (w(y, Z2) — w(y, Z1)) /2, which is at least

Either this is a bipartite subgraph of weight at least f(m) or, by (44),

(49> w(y7 ZZ) - UJ(y7 Zl) < 15\/ﬁ

It follows that all but 15\/n of the edges between y and X have the same
weight, say t(y). Note that it is easy to check that (49) is satisfied and to
determine ¢(y) for each y € Y in total time O(|Y|nlogn) which is O(e).

Setting t(v) = 1 for v € X, we may assume that ¢(v) has been defined

for all v € V(G). For x,y € V(G), define u(xy) = w(xy) — t(x)t(y). It
follows from (49) that, for y € Y,

Z |u(zy)| < 15v/n.

rzeX

Now it is straightforward to calculate U := - v oy ‘u(ac, y)‘ in time O(e).
If U > 30n%/* then we can find a set Y/ C Y with

30n%/t < Y |u(xy)| < 300" 4+ 15¢/n
zeX,yeY

by choosing vertices one at a time from Y until both inequalities are satisfied.
Let Z = {x € X : u(xy) # 0 for some y € Y'}. Then |Z| < 30n3/*+15,/n.
In the proof of Theorem 10, we used a random bipartition Y’ = Y; UY>, and
defined Z; = {z € Z : u(2,Y1) > w(z,Ys)} and Zy = Z\ Z;. Extending
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such a partition here to a partition Wi U Wy of X UY” satisfying (35), we
get

X -1
o)+ B S Juga |

zeX,yeY'’

(50) E(w(Wy,Ws)) 2%

1 X
> iw(X uY'’) + |4—| + 10v/n.

It follows that as in the proof of Theorem 8 after (34) we can extend the
partition as in (35) and obtain a cut of G with weight at least

1 1 1
(51) Sw(G) + 10V + 1 X] > Jm+ 5+ 3V

which suffices by (44). Thus it is enough to find a bipartition of X U Y’
that does at least as well as (50). It follows from Lemma 18 below that
we can do this in time O(|Y’|2|U| + e) which by assumption is at most

c(\/ﬁ) 234 4 e, which is O(e). (Note that we apply Lemma 18 with vertex
sets V1 =Y, Vo = X and edge set E(Y') U E(Y, X).)

Otherwise, U < 30n*4,s0 {x € X : u(zy) =0 for all y € Y} contains
at least n/2 vertices, provided U is sufficiently large. Thus we may consider
G as the edge sum of a graph H; with edge weights given by u and a graph
H, with edge weights given by ¢. Since |X \ V/(Hy)| > n/2, any partition
of Hy can be extended to a partition of V(G) in which the two halves have
t-weight differing by at most 1. This corresponds to a bipartite subgraph of
Hy with weight at least | t(G)?/4] .

It is therefore enough to find a bipartite subgraph of H; with u-weight
at least f(u(Hl)) , which we do recursively with the algorithm above. m

In the proof above, we have used a lemma which we now give.

Lemma 18. There is a polynomial time algorithm that, given a graph
G with e edges, integer-valued edge-weighting w and total weight m, and
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a bipartition V(G) = Vi U Vy, where V; is independent, finds a bipartite
subgraph with weight at least

1
(52) Suw(G) + > dy?2
vEV,
whered, =), cy, ‘w(vu)‘ . If all edges have nonzero weight and G contains

no isolated vertices then the algorithm runs in time O( V1D + e), where
D= ZUEVZ dv'

Proof. We obtain a bipartition of V(G) by first partitioning V; as W3 UW,
and then adding each vertex v of V, to Wy if w(v, Wy) < w(v, Wy) and to
W, otherwise. If we take a random partition of Vi, then as in the proof
of Theorem 8, we see that the expected weight of edges in the bipartite
subgraph given by the resulting partition of V(@) is at least (52).

We derandomize this as follows. First delete all edges with weight 0:
this takes time O(e). Now partition V) one vertex at a time. Suppose we
have a partition Vi = W{ U W, U W3, where W3 is the set of vertices we
have not yet assigned, and we wish to add the vertex v € W3 to W] or
Wj. Consider a random bipartition Wi UW; of V1, chosen uniformly among
all partitions that extend the partial partition W| U Wj: define a random
variable X = w(Wy,Ws) and, for each x € V5, define Yi(x) = w(x, W1)
and Yy(x) = w(x,W3). Then the bipartite subgraph obtained by greedily
adding vertices in V5 to Wi or W5 has weight

Z=X+ Y max{Yi(z),Ya(x)}.
xzeVa

We compare E(Z |v € Wp) and E(Z |v € Wy) explicitly. First of all,
E(X |v e Wp) —EX |ve W) = 3(wlv, W) —w(v, W])), which is easily
calculated in time O(|V1|). For = € V;, the distribution of w(x, W7) is
the result of a random walk with initial value w(xz, W{) and (independent,
equiprobable) increments {0, w(zy)} for each edge zy with y € V4 \ (W] U
W3). Since the walk has integer values in [—d,,d,] and there are at most
|V1] steps, we can update the distribution after each step in time O(d,) and
thus obtain the distribution of w(x, W1) in time O(|V1|d, ). Since w(x, W1 )+
w(x, Wy) = w(z, V1), we obtain the joint distribution of Y; (x) and Y5 () and
hence the distribution of max {Y;(x),Y2(z)} in time O(|Vi|d,). Similar
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comments apply to the distributions conditioned on v € Wy or v € Wy, so
we can determine the conditional distribution of ) ., max {Yi(2),Ya(x)}
in time O(|V1|D). We can therefore decide to assign each vertex to Wi or
Wy so as to maximize the expectation of Z in time O(|V1]|D) and hence
obtain a partition satisfying (52) in time O(|V1]?D). =

In Theorem 13 we may have an extremely large look-up table. This can
be avoided by slightly weakening the results we expect from our algorithm.
For graphs with large total weight we run the algorithm as before. However,
when we reach the po int where we want to bipartition a small subgraph we
use an approximation algorithm instead. Thus we lose at most some fixed
additive constant on the bound given in the theorem.

6. AN ALGORITHM FOR GRAPHS WITHOUT LARGE CUTS

A parametrized problem with parameter k£ is said to be fized parameter
tractable (see [8]) if there is an algorithm running in time O(f(k)N?), where
N is the input size, ¢ is a constant and f is any (not necessarily polynomial)
fun ction. Mahajan and Raman [29] show that the problem of finding a
cut of size at least [m/2] + k if one exists in a graph with m edges and
n vertices is fixed parameter tractable and give algorithms running in time
O(m2* + n3) and O(2°** + m + n), and deduce that if k € O(log mn) then
there is a polynomial time algorithm. We remark that the first algorithm
relies on finding a cut of weight at least m/2 + (n — 1)/4; since Ngoc and
Tuza [30] (see also Lemma 2 above) have found an O(m +n) algorithm, the
first algorithm of Mahajan and Raman can be improved to O(m2* + n).

Note that by the bound (1) of Edwards, every graph of weight m satisfies
f(G) > m/2+/m/8+ O(1), while we know that f,,(m) < m/2++/m/8+
O(m'/*). The algorithms of Mahajan and Raman for finding cuts of size at
least [m/2] + k exploit the fact that f(m) — [m/2] grows as fast as ¢\/m:
for instance, if k < (n—1)/4 < /m/8+0O(1) we can use the Edwards result
(1), whereas if k > (n — 1)/4 we can examine all partitions explicitly. Our
alm i n this section is to show that the problem of finding a cut of size at
least m/2 + y/m/8 + k, if such a cut exists, is fixed-parameter tractable,
and give an algorithm runing in time 0(2‘;’“11 +e+mn).
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We begin with an extension of Lemma 15 for graphs with arbitrary
non-zero integer edge-weightings.

Lemma 19. There is an algorithm running in time O(e+|H|) that given
a connected graph H with e edges and an edge-weighting w with non-zero
integers, finds a cut of weight at least

w(H) | |H|-1
2 4

Proof. As in the proof of Theorem 5 we can find a collection S of vertex-
disjoint induced stars containing at least (|H| — 1) /2 edges. We partition
the edges of S into ST and S, the edges of positive and negative weight
respectively. Contracting every edge in S~ gives a graph of weight w(H) —
w(87), in which the edges of ST form a collection of induced stars. We take
each star S in turn: if |[S| > 2 then we identify its endvertices to obtain
an edge of weight w(S). We end up with a matching of weight w(S™), and
the algorithm of Lemma 17(i) gives a cut of weight § (w(H) — w(S™)) +
Tw( ST >w(H)/2+ (|H -1)/4. =

We will also need an extension of the Edwards bound (1) to weighted
graphs.

Theorem 20. There is an algorithm running in time O (e+|H|) that given
a graph H with e edges and integer-valued edge-weighting w, finds a cut of
weight at least

w(H) uv 1 1
(53) — tWsta s

where U =} cpom ‘w(e)‘ .

Proof. Let h = /U/8 +1/64 —1/8. We begin by deleting edges of weight
0. We may assume H is connected or else identify a vertex from each
component. If |[H| —1 > 4h then Lemma 19 provides a cut of weight
at least w(H)/2 + (|[H| —1)/4 > w(H)/2 + h as required. Otherwise,
|H| — 1 < 4h. Let u be the weighting on E(H) defined by u(e) = ‘w(e)‘,
so u(H) = U. Then the algorithm of Lemma 17(iv) gives a matching M
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with w(M) > U/|H|. Let M* be the edges of M with positive weight
and M~ the edges with negative weight. As in the proof of Lemma 19,
we contract the edges of M~ and apply the algorithm of Lemma 17(i) to
M+ (with edge-weighting w) to obtain a cut of weight at least §(w(H) —
w(M™)) + 3w(MT) > w(H)/2+ U/2|H| > w(H)/2 + U/(8h + 2), and a
simple calculation shows U/(8h +2) =h. m

Our main tool will be the following decomposition result.

Theorem 21. Let ¢ > 0 be a constant. There is an algorithm running in
time O(e + |G|) that takes as input a graph G with e edges, integer-valued
edge-weighting w and total weight m and gives as output either a cut of
weight at least m/2 4+ /m/8 + em/* or a decomposition of G as an edge
sum

G=K'aH

where K[ is obtained from a complete graph K; of order t = n + O(1)
with all edges of weight 1 by Contra,cting at most O(m'/*) edges and H is a
graph such that ‘V )N V(K] ‘ = 3/4 . Here the integer n is defined
by (3) <m < ("3").

Proof. The algorithm in the proof of Theorem 13 began by contracting
G to a complete graph with positive edge-weights. This worked since the
total weight was not reduced, and we were looking for a cut of weight at
least f,,(m). Here, however, we must be more careful: we may be looking
for a cut of weight more than f,(m), and such a cut could be destroyed by
any compression of GG. For instance, the path P, with four vertices and all
edges with weight 1 has f(P;) = 3, while its contraction to C3, all edges
with weight 1, has f(C3) = 2.

We may clearly delete all edges of weight 0. Identifying one vertex
from each component, we may assume G is connected. Define, as usual, the
integer n by () <m < ("H) Let M be large enough so that, if m > M,
(38) holds, and

m m m m n
) —+y/=-1<fu Voo omt < = o .
(54) SRR < fuw(m) < 2+ g T 2m _2+4+m%
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Suppose first that m < M. Let U =} cpq) ‘w(e)‘. If U > 4(8¢2 +
1)M then Theorem 21 provides the required partition. Thus we may assume
that U < 4(8¢? 4+ 1)M, and since G has at most U edges we can examine
all partitions explicitly in constant time.

Otherwise, we have w(G) = m > M. Note first that we may assume
(55) |G| > n —12¢y/n.

Otherwise, applying the algorithm of Lemma 17(ii), as in (45) we obtain a
cut of weight at least m/2+ \/m/8+cm1/4, provided m is sufficiently large.
For a similar reason, we may assume m is O(e): otherwise, we may apply
Lemma 16 to obtain a contraction of G that fails (55).

On the other hand, the algorithm of Lemma 17(i) gives a bipartite
subgraph of weight at least w(G)/2 + (|G| — 1) /4 and so we can halt the
algorithm unless

(56) G| < 1+ ldey/n.

Now we show that we may assume that G is nearly complete. We
run the algorithm in Lemma 16 on G with edge-weighting u defined by
u(e) = max {w(e),0} for e € E(G), and obtain a contraction to a weighted-
complete graph H. If H satisfies

(57) |H| <n—12¢cy/n

then applying the same contraction to G with edge-weighting w gives a
graph with weight at least w(G) satisfying (55), which we partition with
the algorithm of Lemma 17. Otherwise let W~ be the set of vertices of G

which are identified with some other vertex in the contraction from G to H.
Then Y~ meets all edges of G with weight at most 0, and

(58) V7| < 2(|G| - |H]) < 52ev/n.

Let Yt = V(G) \ Y~. Then G[Y '] is a complete graph in which all
edges have positive weight, and it follows from (55) and (58) that

(59) Y| > n — 64ev/n.
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We claim that G[Y *] cannot contain too many edges with weight greater
than 1. We choose greedily a maximal matching ey, ..., e; in G[Y 7|, where
at each stage we choose an edge of weight more than 1 if possible, and
otherwise any edge. Using the algorithm of Lemma 17(i) we obtain in time
O(e) a cut of weight at least Jw(Y) + %22:1 w(e;). By Lemma 17(iii),
we can extend this to a cut of G of weight at least 2w(G) + £ 31 w(e;).
It follows from (54 that either we can halt the algorithm or 3'_, w(e;) <
n/2+6y/n. By (59), {e1,...,e:} contains fewer than 40c\/n edges of weight
more than 1, and since they were chosen greedily these edges meet every
edge with weight greater than 1. Therefore there is a set Z of vertices that
meets every edge in G[Y ] with weight greater than 1, where

(60) 1Z] < 80cv/n.

Let Y=Y UZ and X = V(G) \ Y. Then by (58) and (60),
V| < 144cy/n
while by (55),

(61) | X| > n—156¢v/n.

The rest of the algorithm is broadly similar to the algorithm in the proof
of Theorem 13. Note that G[X] is a complete graph in which all edges have
weight 1. As before, for each y € Y we partition X into sets Z; and Zs
according to the weight of edges from Y, and then extend to a partition of
G. As in (48), we obtain a cut of weight at least

UJ(G) + |X| -1 + w(y7 ZZ) B UJ(y7Z]_>
2 4 2

so by (61) we are done unless

w(y7 ZZ) - w(y7 Zl) < 850\/5
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It follows that all but at most 85¢/n edges between y and X have the same
weight ¢(y). As before, let ¢(x) =1 for v € X, and for x,y € V(G) define

u(ry) = w(zy) — t(x)t(y).

Once again, we calculate U = > v oy ‘u(azy)‘ If U/en®/* is sufficiently
large then as in (50) and (51) we can find a bipartite subgraph of weight at
least m/2 + /m/8 + cm!/4.

Otherwise, U is O(n3/4), so provided m is sufficiently large we have
U < n/4 and we may decompose G as the edge sum of a graph H with edge
weights given by v and a graph K with edge weights given by ¢. Finally,
note that |K}| = n + O(\/ﬁ) = n 4+ O(m"*), while a simple calculation
shows that if f(G) < m/2 + \/m/8 + em!/* then t = n + O(1); note that
K is obtained from K; by a sequence of at most O(m!/*) contractions. m

Note that in the decomposition G = K} @& H of Theorem 21 we have
f(G) = f(K})+ f(H). Furthermore, it is straightforward to find an optimal
partition of K by splitting into two classes with t-weight as equal as
possible.

We can now prove the main theorem of this section.

Theorem 22. There is an algorithm running in time O(2°*" + ¢ + n)
that, given a weighted graph G with e edges, edge-weighting w and total
weight m, and an integer k, finds a cut of G with weight f(G) if f(G) <
m/24+/m/8+k and otherwise a cut with weight at least m/2+/m/8+k.

Proof. If 3~ . p(q) |w(e)| > 4(m 4 8k?) then we are done by Theorem 20.

If & > m'/* then we examine all partitions explicitly. Otherwise, we
apply Theorem 21 with ¢ = 1: either we obtain a cut of weight at least
m/2+4+/m/8+k, or we obtain a decomposition G = K} & H where f(G) =
f(K})+ f(H) and K/, H have edge-weightings w;, ws respectively. We can
calculate f(K7}) exactly; so if wa(H) > 0, define [ by m/2 + /m/8 + k =
FIK]) +wa(H)/2 4+ \/wa(H)/8 + 1, and repeat the algorithm with H and
[ (note that [ < k). If wy(H) < 0 then define the edge-weighting u by
u(e) = |wy(e)| for e € E(H). If |u(H)| > 8k? then Theorem 20 gives a cut
of weight at least wa(H)/2 + k, which gives a cut of G' of weight at least
wi(K7)/2 + \Jwi (K])/8 +wa(H)/2 +k > m/2 + /m/8 + k; otherwise,

‘u(H)‘ < 8k? and we can examine all partitions explicitly. m
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Theorem 22 gives a polynomial time algorithm for £ < c¢(log n)1/4).
However, we cannot expect to go as high as n® for any ¢ > 0, since
then considering graphs of form Ky UG, where N > |G|2/E7 would give
a polynomial time algorithm for Max Cut. In particular, we cannot expect
to find optimal cuts for all graphs with f(G) < m/2 + \/m/8 + em'/*. On
the other hand, we have given an algorithm that finds a cut of weight at
least f,(m), which can be as large as m/2 + y/m/8 + em!/*. We are led
naturally to the following problem.

Problem 1. Let & > 0 be a fixed integer. Is there a polynomial time
algorithm that given a graph G of weight m finds either a cut of weight at
least f,(m)+ k or else an optimal cut?

Note that £ = 0 is Theorem 13. However, if m satisfies m = (ngl) —nf
and f,(m) = f(Kp,41) = L(n+1)2/4J, for instance, then we may have
G = K,+1 & H, where H has weight —n®. Theorem 21 will find this
decomposition, and H has a trivial cut of weight 0, but determining whether
f(H) > k is probably NP-hard.

n

7. A WEAK APPROXIMATION ALGORITHM FOR GRAPHS THAT ARE
CLOSE TO EXTREMAL

In this section we concentrate on the existence of polynomial time algo-
rithms for estimating the value of f(G)—m/2—+/m/8 for a graph of weight
m > 0. Let us note first that we cannot expect an arbitrarily good approxi-
mation algorithm since this would immediately yield a good approximation
algorithm for the Max Cut problem. For since f(G) > m/2, an algorithm
approximating f(G) — m/2 — y/m/8 within a factor 1 + ¢ gives f(G) to
within a factor 1 4+ /2. Since Hastad [18] has shown that it is NP-hard
to approximate f(G) within any factor less than 17/16, it follows that it
is NP-hard to approximate f(G) —m/2 — y/m/8 to within any factor less
than 9/8. However, we have the following weak approximation.

Theorem 23. There is an algorithm running in time O(e + n) that, given
a graph G with e edges, edge-weighting w and total weight m, either finds
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an optimal partition or gives a real number « such that

Proof. Let U = >, cp) ‘w(e)‘. We may assume U > Uy, for some
large constant Uy, or else examine all partitions explicitly. If U > 4m
then Theorem 20 gives a cut of weight at least m/2 + \/U/8 =1 > m/2 +
Vm/8 + U4, so we can choose o = (log,, U)/4. Otherwise, applying the
algorithm of Theorem 22 with ¢ = 4 gives either a cut of weight at least
m/2+/m/844m'/*, so we can choose a such that m® = 4m'/* (note that
f(G) < U), or else a decomposition of G as K @ H, where H has weighting

w'.

If w'(H) <0 then let U' =" cpp) |w'(e)|. If U’ < Uy we determine
f(H), and hence also f(G) = f(K]) + f(H), explicitly. Otherwise, since
we have f(G) < f(K;)+ U’ and f(G) = f(K;)+ f(H) > m/2 4+ /m/8 +
\/U'/8—2, we may pick « such that m/2+/m/8+m* = f(K})+/U’'/8-2.

Otherwise w'(H) > 0, so repeating the algorithm we can find 3 such
that

"(H "(H "(H "(H
2 8 2 8
Then we may pick a such that
IH /
@_i_ T—Fma:f(l(l;k)-i- ( >+ w( >+U]I(H>/B

Compare the problem of approximating f(G) —m/2 — y/m/8 with the
problem of approximating f(G). Since f(G) > m/2 for every graph G with
weight m, there is a “cushion” of weight m /2 in measuring the effectiveness
of approximation algorithms for f(G). For instance, the trivial decision al-
gorithm that always returns the value m/2 and the greedy algorithm that
achieves this bound manage to approximate within a factor 2 (improving
beyond this is a different matter, however, and the 1.1383-approximation
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algorithm of Goemans and Williamson [17] is a tour de force). This con-
trasts with other approximation problems, such as Chromatic Number or
Independent Set, where no such trivial approximation algorithm exists.

The problem of approximating f(G) — m/2 — \/m/8 therefore seems
more difficult than that of approximating f(G).

Problem 2. Is there a polynomial time algorithm that approximates
f(G) — m/2 — \/m/8 within a constant factor for graphs of weight m?
What about f(G) — f,(m)?

Slightly easier, perhaps, is the following.

Problem 3. Is there a polynomial time algorithm that approximates
f(G) —m/2 within a constant factor for graphs of weight m?

Note that the graphs that concern us here are graphs with f(G) <
0.63w(G). For graphs with f(G) > 0.63w(G), the algorithm of Goemans
and Williamson gives an approximation algorithm for f(G)—m/2—+/m/8.

Part III: Related problems

8. THE MAX k-CUT PROBLEM

In the first two parts of this paper we have concentrated entirely on the Max
Cut problem. In this section, we give a brief account of related results for
Max k-Cut. For an edge-weighted graph G we write fi(G) for the maximal
weight of a k-cut; we consider an unweighted graph as having weight 1 on
every edge, so fr(G) is the maximal size of a k-partite subgraph. We define
fr(m) to be the minimum of f;(G) over graphs with integer edge-weightings
and total weight m.

We begin with an analogue of the Edwards bound (1) for k-partite
graphs. Note first that if n = rk + s, where 0 < s < k, then writing
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N k 2k 4 8 ’

with equality if and only if & is even and s = k/2.

Theorem 24. Let G be a weighted graph with total weight m. Then

E—1 1 k2—2k+2

(63) fk(G)Z<1—%>m+W o by 22

If m> (Z) then
fi(G) > fr(Kn)

where for m > mg we have equality if and only if G is a copy of K,,, where
all edges have weight 1.

Proof. Note first that, writing g(m) for the right hand side of (63),
it is easily checked that g(m) is monotonic increasing, while g(m)/m is
monotonic decreasing for m > 0. We consider G as a weighted complete
graph. Contracting any edge of weight at most 0 we obtain a weighted
complete graph H in which all edges have positive weight; furthermore, any
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partition of H corresponds to a partition of G with the same cut-weight. It
is therefore enough to prove the theorem for weighted complete graphs in
which all edges have positive weight.

Now let 7 = |H| and R = (}), so w(H) > R. A random partition of H
into k pieces, of size as equal as possible, gives a subgraph with expected
weight

fk:(-[(r)
R

w() > 801 > g ()

since g(R)/R > g(w(H)) /w(H). Thus there must be some k-partite sub-
graph with weight at least g(w(H)) > g(m).

If m > (5), fu(G) = fr(IK,) and G either has an edge of negative
weight or is not isomorphic to K,, with all edge-weights 1, then compressing
all edges of negative weight (and possibly some further edges), we may as-
sume that |G| is a complete weighted graph on fewer than n vertices, with
all edges of positive weight and w(G) > (}). Now since f(Ky)/(}
tonic decreasing and f(Kn,k)/(n;k) > f(K,)/(5), considering random par-
titions into k sets of size ||G|/k| and [|G|/k]. We see that |G| > n — k
and so G can be decomposed as the edge sum of K|g and a weighted
graph with at most (k — 1)n edges. Provided m is sufficiently large, it is
now straightforward to construct two k-cuts (into sets of size | |G|/k| and
[|G|/k]) with different weights, and so some k-cut must have weight more

than w(G)f (Kq)) /(1§ > f(K,). =

) 1S mono-

Ngoc and Tuza [30] prove that, for & > 3, every connected graph G
with order n, size m and \(G) > k satisfies

(64) £(G) > (1—%>m+%(n—1>+$.

Furthermore, they give an O(m) algorithm that achieves this quickly. They
note that every graph obtained by attaching trees to the vertices of a copy
of K}, is extremal.

Let us note that if G has a vertex of degree at most k£ — 1 then

fe(G) = fi(G\ v) + da(v)
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since deleting v from G and partitioning the rest of the graph optimally,
we can then add v to a class in which it has no neighbours. Thus we can
restrict our attention to graphs G with 6(G) > k. If we allow the minimal
degree to grow, then we can improve on (64).

Theorem 25. Let G be a graph with 6(G) > w(n), where w(n) — oo as
n — 00. Then

fi(G) = (1— %) m + kz_kanro(n).

Proof. (Sketch) Take a random ordering and run the greedy algorithm. If
a has rk+ s predecessors, where 0 < s < k—1, then the most even partition
of earlier vertices has s big classes and k& — s small classes. Thus we can
pick a class in which x has at most 7k neighbours, increasing the cutweight
by at least r(k — 1) + s = (1 - %) (rk +s) + s/k. Since s is asymptotically
uniformly distributed on {0,...,k — 1}, the expectation of s/k tends to
(k —1)/2. Summing over all vertices gives the bound above. m

The proof of Theorem 25 works in the same way as the proof of
Lemma 2: we order the vertices and then partition greedily. One method
for obtaining a good ordering was given immediately after Lemma 2, and it
is natural to ask whether the same approach (taking an ordering in which
every vertex except one has at least one predecessor and then successively
modifying the order to obtain better orders) would work for larger k. In
fact, the method does work for £ = 3, but for £ > 3 appears to give a poor
bound. It would be interesting to know under what conditions the o(n)
term can be removed in Theorem 25. For instance, a connectivity condition
may be enough.

Problem 4. Does every (k — 1)-connected graph G satisfy

kE—1 k-1
fu(@) = Mt n+ O(1).

A best possible bound of this form would be fi(G) > %m + %n -

r(l;;r)' A similar question arises if we assume §(G) > k. It would also be

interesting to find efficient algorithms giving bounds of this form.

The results of earlier sections mostly carry over to the k-partite case.
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Theorem 26. Let G' be a graph with edge-weighting w and total weight
w(G) = m. Then provided m is sufficiently large

6 > min { i) + 1 (m - (5) ) }-

As in the proof of Theorem 1, we need several lemmas. An analogue to
Lemma 2 is given by Theorem 25, while using a greedy algorithm as in the
proof of Lemma 7 we see that, for any graph G with edge-weighting w and
any set W C V(G), writing H = G[W],

(65) Fu(G) > felH) + 2 (w(G) ~ w(H))

A version of Lemma 4 is given by Theorem 24; this leaves Lemma 3. We
have the following straightforward result.

Lemma 27. For a nonempty edge-weighted graph G with total weight m,

G- (1 T ﬁ) m.

Proof. Fix a colouring of G with ¢ = x(G) colours and, as in Lemma 3,
take a random partition of the colour classes into k sets of as equal size as
possible. The expected size of the cut obtained is at least

k52 1)

Finally, we remark that as in the bipartite case there is ¢z > 0 such
that, for all m,

k-1 k-1

1/4
B m + 7 V2m 4+ cpm™/ .

(66) fr(m)

IN

We can now proceed to the proof of the theorem.
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Proof of Theorem 26 (Sketch). Let G be a counterexample with smallest
weight. As in the proof of Theorem 8, we may contract edges of weight at
most 0, and assume that G is a weighted complete graph with all edges
of positive weight. Define n as in (25), so |G| < n. Now it follows from
Lemma 27 that

k-1 1

Therefore, by (66),

kE—1 kE—1
L —\/2m—|—ckm1/4

k|G| — 2k
and so
(67) |G| > n — c1v/n.
Now let C'q, ..., C, be any collection of pairwise vertex-disjoint complete

subgraphs of G, each with k vertices. We consider a random partition
V(G)=V1U...UVj as follows. Each C; is randomly partitioned with one
vertex in each vertex class V;, and the remaining vertices are independently
assigned to each vertex class with equal probability. Then the expected
weight of the resulting k-partite subgraph is

T T

S w(Cy) % <w(G> - Zw(Cﬁ) - %w(G) 4 % > w(C)

=1 =1 =1
Thus it follows from (66) that
- 1
(68) Z; w(Ci) < S(k=1)n+ cv/n.
1=
Now if we greedily choose C1,C5,... to be vertex disjoint complete sub-

graphs with & vertices and maximal weight, it follows from (68) and (67)
that at most c3\/n of these subgraphs have weight more than (g) Thus
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there is a set Y of c3ky/n vertices meeting all edges with weight more than
1. Setting X = V(G) \ Y, we may assume that

Y[ < cav/n
and
| X| > n—cyv/n.

Note that G[X] is a complete graph in which all edges have weight 1.

Now for y € Y, we can order the edges between y and X in increasing
order of weight. Partitioning X into k pieces and using (65) we see that, as
in (31), all but at most c¢zy/n of the edges between y and X have the same
weight, say t(y).

As before, we set t(y) =1 for y € X, and define

u(ry) = t(w)t(y) — wley).

the remainder of the proof of Theorem 8 goes through essentially unchanged,
except with £ vertex classes instead of 2. m

We note that it should be straightforward to generalize the algorithms
of Sections 5, 6 and 7 to the k-partite case.

9. MaxiMuM CUTS IN DIRECTED GRAPHS

In this final section, we make a few remarks concerning the analogue of Max
Cut for directed graphs. For a directed graph H with edge-weighting w and
a subset S C V(H), we define

w(S,VA\S) =3 > wlxy)

zeS yeV\Ss
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where w(zy) =0 if vy ¢ E(H). Then

g(H) = s w(S,V'\ S).

For m > 1 we define g(m) to be the maximum of g(H) over all directed
graphs whose edges are weighted with non-negative integers and have total
weight m. It is easy to see that

g(m) > [ f(m)/2].

Indeed, given a directed graph H, let G be the underlying (undirected)
graph, where we define

we(ry) = w(zy) + w(yx).

Then G has total weight m, and therefore a cut of weight at least f(m).
Let V(G) = V3 UV, be such a cut: then

wy(V1,V2) + wy(V2, V1) = wa(Va, Va) = f(m)
so one of wy(Vi,Va) and wy (Va, V1) is at least | f(m)/2].

Lemma 28. If m = (2”;'1) then g(m) = (”'21'1) = f(m)/2.

Proof. It is enough to construct a directed graph H with w(H) = m
and g(H) < f(m)/2. We define H by taking the vertices of Zg, 1, and
adding edges from ¢ to ¢ + 7, for any ¢ and 1 < j < n. Thus H is a regular
oriented tournament, every vertex has indegree and outdegree n. Consider
an arbitrary subset S C V(H) with |S| = h. Clearly

(69) g(S.V(H)\S) => d"(v) —e(S)

vES

()
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This is maximal when k =n or k = n+ 1, when

g(S,V(H)\ S) = n® - (Z) _ (n;—l)

Let us determine the extremal graphs for this result. Suppose H is a
directed graph with w(H) =m = (2”;'1) and g(H) = (”;’1) Let G be the
underlying graph: then f(G) < n(n+1) = f(m). So by Lemma 4, G is a
copy of Ks,11 in which all edges have weight 1. Therefore H is a directed
tournament of order 2n + 1. If H is not regular, then pick n vertices with
as large an outdegree as possible. Since their average outdegree must be
greater than n it follows that we do better than (69). Since we must have
equality in n, H must be a regular tournament. However, it follows from
(69) that any regular tournament is extremal. Similar results follow when
m is of form (2”"'1) + (2’”’1) for n > k sufficiently large, and so on, using

2
Theorem 1 and Theorem 12.

What about if m = (2271)? The closest we have to a regular tournament
in this case is a tournament with 2n vertices in which n vertices have
outdegree n — 1 and n vertices have outdegree n. If we take a subset S
of k < n vertices, then

w(S,V\S)=> d*(x) <>§kn—(§>

zeSs

This can be attained by taking the vertices with outdegree n and is then
maximal when k£ = n, and

w(S,V\ S) =n? — <Z> - (";1>

For k > n + 1, picking k vertices with outdegrees as large as possible, we
have

w(S,V\S) =n’+ (k—n)(n—1) - (’;)
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This is maximal when £ =n + 1, and

w(S,V\S) =n?+n—1- (";1> _ (";1> Y

Thus if H is a tournament of this form then

F(H) = ("‘2”)

Clearly this is optimal among tournaments. However, if m = (22") then
f(m) =n? so g(H) = f(m)/2+n/2.

It would be interesting to determine the behaviour of g(m)— f(m)/2 for
arbitrary m. It seems likely that, with more work, results similar to those
proved above for Max Cut could be proved for the directed problem.
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