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Random polynomials

Let f,(z) = 270 ¢,z be a degree n polynomial whose coefficients &; are
independent and identically distributed random variables taken uniformly
from {—1,1}. (or & ~ N(0,1) or just E§; = 0 and Var(¢;) = 1)

The polynomial f, has n roots in C (counting by multiplicity).

Guiding Question

What can we say about the roots when n is large? J
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Unpacking the picture
fo(z) = Y7o &2/ where & € {—1,1} uniformly at random.

1. Most roots (but not all!) are close to the unit circle

2. Since the coefficients are real, there is symmetry about the real
axis/x-axis. Some roots are real (there are 2) real roots here.

3. The roots appear to repel each other.
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Our plan

Here's how the rest of the talk will go:

1. (Mostly classical) theorems that rigorously describe the behavior from
this picture.

2. lIsolating a single tool: Erdés's solution to the Littlewood-Offord
problem, and outline two proofs, one using extremal combinatorics
and one using fourier analysis.

3. What did we prove and how?

4. Open problems, future directions
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The first questions answered: the number of real roots

Many classical predecessors Bloch-Polya, Littlewood-Offord, first sharp
result is: Kac 1943 proved when the coefficients are N'(0,1) the number
of real roots is (2 + o(1)) log n. “In case the [coefficients] are not normally
distributed (but all have the same distribution with standard deviation 1)
one can still prove [this result].”

In 1946 Kac extended to other continuous distributions like uniform in
[—1,1] and stated “Upon a closer examination it turns out that the proof
which | had in mind, based on the central limit theorem of the calculus of
probability, is inapplicable to the discrete case.”

Erdés-Offord (1956) proved it for {—1, 1} coefficients (and many other
variables).

This is a universality phenomenon: the behavior for the number of real
roots doesn't depend much on the actual distribution of coefficients.
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The bulk behavior: most are near the unit circle
Let Z denote the zero (multi)set of f,. Then

Z 1—¢,1
H{oe Z:]af Gn[ el+edl
Ha € Z : arg(a) € [a, b]}| . b—a
n 2m

Theorem (Erdés-Turan, 1950)

This is true deterministically for polynomials whose coefficients are on the
same exponential scale (i.e. |&j|?/|€o€n| = €°(") for all j).

Same as saying the probability measure p, = %ZQGZ b converges to the
uniform distribution on the unit circle. To prove this, it is sufficient to
prove + log |f,(z)| converges to 0 for all |z| < 1 and to log |z for all

z| > 1. This is since pu, = 5= Alog |fy].

Most roots are ©(1/n) away from the unit circle (Shepp-Vanderbei '95,
Konyagin-Schlag '99, Ibragimov-Zeitouni, '97)
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Roots indeed to repel each other

Most roots are within 1/n away from the unit circle and there are n roots.
So if t >0 and z =1+ O(1/n) then one expects

PH3aecZ:|z—a|l <t/n)=01)

which turns out to be true. Set Bi(z) = {w : |z— w| < t/n}. Then in fact

PP(at least two roots in Bi(z)) < P(at least one root in B:(z))?

for t € [n™¢, o(1)].

Credit to various works of Shiffman-Zelditch for Gaussians and universality
works of Tao-Vu.
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A single tool: the Littlewood-Offord problem

Relevant for all pieces is understanding the probability f(z) is small. Let’s
fix z with |z| & 1 and look at P(|f(z)| < 1). Note that E|f(z)?> ~ n so
typically |f(z)| = ©(n'/?).
We have

f(2) =&n2"+&p12" 7+ + b2+ &

More generally let's look at X = a,&p + an—1&n—1 + - - + a1&1 where
& € {—1,1} uniformly at random and |a,| > 1. How blg can P(|X| < 1)
be? For a; = 1 we have P(|X| < 1) =27"(,7,) < n~ 1/2

Theorem (Erdds'’s solution to the Littlewood-Offord problem, 1945)

For all |aj| > 1 we have P(|X| < 1) < %

We will see two proofs: one using extremal combinatorics (Erdés’s original
proof) and a fourier analytic proof.
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Erdos and Littlewood-Offord via extremal combinatorics

Theorem (Erdéds)

Let a; € R with |a;| > 1 and set X = 377, a;§; where §; are i.i.d. and
uniformly distributed in {—1,1}. Then P(]X| < 1) < 2_n(Ln72J) < ,,1—C/z

Assume without loss of generality that a; > 1.

Associate to an instance {¢;} € {—1,1}" the set S C [n] of indices giving
+1;50 S={i: & = +1}. We can think of X = X(S).

Note that if T C S then X(S) — X(T) > 2. In particular: if |[X(S)| <1
and T C S (or SC T) then | X(T)| > 1.

This means that {S C [n] : |[X(S)| < 1} is an antichain in the hypercube,
so Sperner’s lemma states [{S C [n] : |X(S)| < 1}] < (Ln’/72J)' O
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Erdos and Littlewood-Offord via fourier analysis
Theorem

Let a; € R with |a;| € [1,10] and set X = >"7_; a;§; where §; are i.i.d. and

uniformly distributed in {—1,1} (or more generally just non-constant).
Then P(|X| <1) < -5

Set g(x) = 1{x € (—1,1)} so P(|X| < 1) = Exg(X).

g <i> sin(9)

) e ES (9(9))

and note that g % g has support [—2,2]. We also can bound
g(x) < 2(sin(x)/x)".

. . 2 .
Exe(X) SEX(R)’ = ¢ [(g+)O)Exe™ db 5 [ [Exe™|db
2

2 2
:/ H!COS(BJH)\dHS/ exp(—cn?)do < n V2. O
-2 : )
J
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Returning to our random polynomial: separation of roots
So: fp(z) = >0 &2 where & € {—1,1} are independent and chosen
uniformly at random, where Z = {a;}7_; is the (multi)set of zeros.

Recall most roots are near the unit circle (in fact ©(1/n)) away from the
unit circle.

The roots experience repulsion. How can we quantify that?

Set m, = min;<; | — ¢j| to be the minimal separation of roots of f,.

Theorem (M.-Yakir, 2025)

We have m, = ©(n~>/*) with high probability. In fact
P(m, > An~%/%) — exp(—ciA*) where ¢, > 0 and does not depend on the
coefficient distribution.

Two quantitative bits here: the power of 5/4 on n and the power of 4 on
A. Both capture repulsion between the roots....let's see why.

Marcus Michelen (Northwestern) Random polynomials 11/21



A toy model: what if there were no repulsion?

fa(z) = 7o &2/, with roots o set m, = min|o; — . Then

P(m, > An~5/%) = exp(—c.\*)

Why does this capture repulsion? Let's consider a toy model where | place
n independent points Xi,..., X, in A={z:1-1/n<|z| <1+4+1/n}
independently and uniformly at random. How does the separation

M, = min|X; — X;| behave?

Let € > 0 be small, let's compute the expected number of pairs with
[Xi — Xj| <e.

For a given z € A the expected number of pairs in B.(z) is
E[(i,j) : Xi, X; € B:(2)] = n®P(X1, Xa € B.(2)) = n®P(X1 € B-(2))? ~ n*e*.

It takes ~ n~1e72 balls to cover A so the expected number of pairs with

distance < ¢ is n3e2.

If n3c2 = ©(1) then expect the number of pairs at distance ¢ to be
Poisson of mean ©(n3c?). P(M, > An~3/2) — exp(—c'\?).
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How is the actual calculation different?

fa(z) = X1 &7/, with roots o set m, = min |o; — a;j|. Then

P(m, > An~5/%) = exp(—c,\*)

For independent points, we saw E[(i, /) : Xi, X; € B=(z)] ~ n*e*.

Theorem (M.-Yakir, 2025)

For z =1+ ©(1/n) we have E[(i,)) : i, oj € B=(2)] =~ n°e®. J

....but for what € > 07 As we saw, this turns out to be true for

e =[n""1 o(n71)]...but we need better than that. A quick calculation is
that P(f,(1) = f)(1) = 0) = ©(n~2) so we can't just take all ¢ > 0...at
least not for all z.

It turns out that the problem with z = 1 is that arg(z) = 0 is close to a
rational number of small denominator. We could take ¢ smaller for z = i
and smaller for z = e™/#, If we want the above to hold for ¢ ~ n=* it
turns out we can just omit z that is close to a Oa(1) root of unity.
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An approximate outline of the whole argument

fa(z) = >0 &2/, with roots a; set m, = min |a; — | Then
P(m, > An~5/%) = exp(—c,\*).
A sketch to prove that if Yy = {i <j: |a; — aj| < An7%/4} then Yy
converges to a Poisson random variable of mean u = ¢, \*.
® We will use the method of moments, so we want to show that for
each k we have E[Yy(Yy — 1) (Ya — (k — 1))] = pX.
e Omit pairs with ||z] — 1] > Q(1/n). [more on this, time permitting]
® Omit pairs where z is close to an O(1)-root of unity.
e For points zj,...,zx = 1+ O(1/n) separated by > 1/n we have that
the probability there are pairs with distance An—>/* near each of the k
points approximately factors. This is done by comparing to a

Gaussian, like a beefed up version of the Fourier proof of
Littlewood-Offord. [more on this, next slide]
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Detecting roots and detecting pairs

Given a point z =1+ O(1/n), how can | tell if there is a root near z?
Taylor expand near z:

f(w) = f(z) + (w — z)f'(z) + Error.

If f(z)/f'(z) is atypically small and " is typical, then we expect a zero of
fatw=z—f(z)/f'(z). To see when there are two roots near z, need
some event depending on (f(z), f'(z), f"(z)).

To calculate probabilities related to (f(z), f'(z), f”(z)) we prove a local
central limit theorem / Gaussian comparison principle that gets stronger
when z is far from roots of unity.

But we actually see something extra here: if f/(z) is large, there is more
likely to be a root near z....this tells us where repulsion comes from!
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Why do roots repel each other

We saw there is a root near z if f(z)/f'(z) is small. So if ' is large, there
is more likely to be a root. So if | take a typical root « of f, it is unlikely
for f'(«) to be small.

A thought experiment: you are watching 10 runners on a circular track
and 5 are very fast and 5 are slow; you see the fast runners more often.

Why does this imply roots repel? If two roots «, 5 are close, then Rolle's
theorem / Mean value theorem says that f’ is zero somewhere in
between...but if | — /3| is small, then this means f'(«a) is small. There is a
tension:

[Two close roots = £’ is small on a root] vs. [f’ is typically not small
on roots|

So roots typically repel.Same story holds for many random functions, e.g.
eigenvalues of random matrices.
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One last wrinkle: eliminating roots far from the unit circle

The behavior of f is not universal for |z| far from 1. Let's focus on |z| < 1
and consider the n = oo limit: f(z) = >2;>9 ¢,z which is analytic for

|z| < 1. The random variable f,(z) is not like a gaussian...for instance
fw(ﬁ) is not even a continuous random variable! (Erdés, 1939)

We need a separate approach.

Theorem (M.-Yakir, 2025)

Let &; be independent and identically distributed random variables with
Elog(1 + [£j]) < oo, then with probability 1 the power series fy, is analytic
in |z| <1 and has no double roots except perhaps at the origin.

Proof is perturbative: given the first M coefficients, it is unlikely that the
rest will combine to give you a double root. Explicitly uses the solution to
the Littlewood-Offord problem.
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Outline revisited

fo(z) = X1 &2/, with roots o set m, = min | — ;j|. Then
P(m, > An~5/%) = exp(—c,\*).

A sketch to prove that if Yy = {i <j: |o; — aj| < An~%/*} then Yy
converges to a Poisson random variable of mean p = ¢, \*.
® We will use the method of moments, so we want to show that for
each k we have E[Yy(Yy — 1) (Ya — (k — 1))] — pX.
e Omit pairs with ||z| — 1| > Q(1/n) by a perturbative argument on the
infinite power series corresponding to n = oo.

® Omit pairs where z is close to an O(1)-root of unity via
Littlewood-Offord approach.

e For points z1,...,zx = 1 4+ O(1/n) separated by > 1/n we have that
the probability there are pairs with distance An~%/4 near each of the k
points approximately factors. This is done by taylor expanding to
second order and comparing ((f(z), f'(z), f”(zj))J’-‘Zl to a Gaussian
vector (using that none is close to a O(1)-root of unity).
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Open problems and future directions: repeated roots

Our theorem holds provided the variables are sub-gaussian meaning

2 .
P(|&] > t) < e~ " for some ¢ > 0. We also have the following corollary
of our theorem:

Corollary

Let &; be independent and subgaussian and set f,(z) = > 7 g &z then
IP(f, has a double root other than at 0) = o(1).

This was known for £ € {—1,1} and some other integer-valued
distributions by Peled-Sen-Zeitouni, Feldheim-Sen but is new in this
generality.

Conjecture

Let § be a non-constant random variable and set fo(z) = > 7§ ;Z/ then
P(f, has a double root other than at 0) = o(1).

Much harder to do something as analytic in this generality, perhaps a
perturbative approach and a small bit of algebra might be useful.
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Open problems and future directions: discriminant

Part of our motivation was for studying the discriminant: if
fa(2) = Yj0 &2 then [disc(fn)] = [€n*"2 TTj<; o — oy,

Theorem (M.-Yakir, 2025)

Let ; be independent, mean 0, variance 1 and subgaussian. Then

log |disc(fn)| —2nlogn noo
n P

D,

for some universal D, # 0. So |disc(f,)| = n?Me(P=+o(L)n,

Conjecture (Bary-Soroker + Kozma)

Let & € {0,1} uniformly at random (or {—1,1} uniformly at random
etc.). Then with high probability |disc(f,)| is not a perfect square.

[|disc(f,)] is a perfect square if and only if Gal(f,) < A,]
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Summary

We consider f,(z) = Y7o &2/ with & € {—1,1} uniformly at random (for
instance).

Classical work of Erdés-Turan (and others) show most roots are near the
unit circle.

The roots experience repulsion.

Theorem (M.-Yakir, 2025)

Set m, = min;<; [a; — o where {a;}7_; are the roots of f,. Then
mp, = ©(n=%/%) and in particular P(m, > An=%/%) — exp(—c\?).

Thank you!

Marcus Michelen (Northwestern) Random polynomials 21/21



