Separation of roots of random polynomials

Marcus Michelen

joint with Oren Yakir (MIT)

Northwestern University Department of Mathematics

Oxford Discrete Mathematics and Probability Seminar November 2025

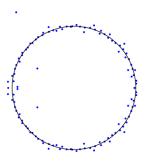
Random polynomials

Let $f_n(z) = \sum_{j=0}^n \xi_j z^j$ be a degree n polynomial whose coefficients ξ_j are independent and identically distributed random variables taken uniformly from $\{-1,1\}$. (or $\xi_j \sim \mathcal{N}(0,1)$ or just $\mathbb{E}\xi_j = 0$ and $\mathrm{Var}(\xi_j) = 1$)

The polynomial f_n has n roots in \mathbb{C} (counting by multiplicity).

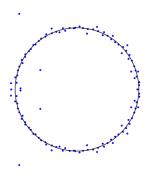
Guiding Question

What can we say about the roots when n is large?



Unpacking the picture

$$f_n(z) = \sum_{j=0}^n \xi_j z^j$$
 where $\xi_j \in \{-1,1\}$ uniformly at random.



- 1. Most roots (but not all!) are close to the unit circle
- 2. Since the coefficients are real, there is symmetry about the real axis/x-axis. Some roots are real (there are 2) real roots here.
- 3. The roots appear to repel each other.

Our plan

Here's how the rest of the talk will go:

- 1. (Mostly classical) theorems that rigorously describe the behavior from this picture.
- 2. Isolating a single tool: Erdős's solution to the Littlewood-Offord problem, and outline two proofs, one using extremal combinatorics and one using fourier analysis.
- 3. What did we prove and how?
- 4. Open problems, future directions

The first questions answered: the number of real roots

Many classical predecessors Bloch-Polya, Littlewood-Offord, first sharp result is: Kac 1943 proved when the coefficients are $\mathcal{N}(0,1)$ the number of real roots is $(\frac{2}{\pi}+o(1))\log n$. "In case the [coefficients] are not normally distributed (but all have the same distribution with standard deviation 1) one can still prove [this result]."

In 1946 Kac extended to other continuous distributions like uniform in [-1,1] and stated "Upon a closer examination it turns out that the proof which I had in mind, based on the central limit theorem of the calculus of probability, is inapplicable to the discrete case."

Erdős-Offord (1956) proved it for $\{-1,1\}$ coefficients (and many other variables).

This is a **universality** phenomenon: the behavior for the number of real roots doesn't depend much on the actual distribution of coefficients.

The bulk behavior: most are near the unit circle

Let \mathcal{Z} denote the zero (multi)set of f_n . Then

$$\frac{|\{\alpha \in \mathcal{Z} : |\alpha| \in [1-\varepsilon, 1+\varepsilon]\}|}{n} \to 1$$
$$\frac{|\{\alpha \in \mathcal{Z} : \arg(\alpha) \in [a, b]\}|}{n} \to \frac{b-a}{2\pi}$$

Theorem (Erdős-Turán, 1950)

This is true deterministically for polynomials whose coefficients are on the same exponential scale (i.e. $|\xi_j|^2/|\xi_0\xi_n|=e^{o(n)}$ for all j).

Same as saying the probability measure $\mu_n=\frac{1}{n}\sum_{\alpha\in\mathcal{Z}}\delta_\alpha$ converges to the uniform distribution on the unit circle. To prove this, it is sufficient to prove $\frac{1}{n}\log|f_n(z)|$ converges to 0 for all |z|<1 and to $\log|z|$ for all |z|>1. This is since $\mu_n=\frac{1}{2\pi}\Delta\log|f_n|$.

Most roots are $\Theta(1/n)$ away from the unit circle (Shepp-Vanderbei '95, Konyagin-Schlag '99, Ibragimov-Zeitouni, '97)

Roots indeed to repel each other

Most roots are within 1/n away from the unit circle and there are n roots. So if t>0 and z=1+O(1/n) then one expects

$$\mathbb{P}(\exists \ \alpha \in \mathcal{Z} : |z - \alpha| \le t/n) = \Theta_t(1)$$

which turns out to be true. Set $B_t(z) = \{w : |z - w| \le t/n\}$. Then in fact

 $\mathbb{P}(\text{at least two roots in } B_t(z)) \ll \mathbb{P}(\text{at least one root in } B_t(z))^2$

for
$$t \in [n^{-c}, o(1)]$$
.

Credit to various works of Shiffman-Zelditch for Gaussians and universality works of Tao-Vu.

A single tool: the Littlewood-Offord problem

Relevant for all pieces is understanding the probability f(z) is small. Let's fix z with $|z|\approx 1$ and look at $\mathbb{P}(|f(z)|\leq 1)$. Note that $\mathbb{E}|f(z)|^2\approx n$ so typically $|f(z)|=\Theta(n^{1/2})$.

We have

$$f(z) = \xi_n z^n + \xi_{n-1} z^{n-1} + \cdots + \xi_1 z + \xi_0$$
.

More generally let's look at $X=a_n\xi_n+a_{n-1}\xi_{n-1}+\cdots+a_1\xi_1$ where $\xi_j\in\{-1,1\}$ uniformly at random and $|a_n|\geq 1$. How big can $\mathbb{P}(|X|<1)$ be? For $a_j\equiv 1$ we have $\mathbb{P}(|X|<1)=2^{-n}\binom{n}{n/2}\asymp n^{-1/2}$.

Theorem (Erdős's solution to the Littlewood-Offord problem, 1945)

For all
$$|a_j| \ge 1$$
 we have $\mathbb{P}(|X| < 1) \le \frac{c}{\sqrt{n}}$.

We will see two proofs: one using extremal combinatorics (Erdős's original proof) and a fourier analytic proof.

Erdős and Littlewood-Offord via extremal combinatorics

Theorem (Erdős)

Let $a_j \in \mathbb{R}$ with $|a_j| \ge 1$ and set $X = \sum_{j=1}^n a_j \xi_j$ where ξ_j are i.i.d. and uniformly distributed in $\{-1,1\}$. Then $\mathbb{P}(|X| < 1) \le 2^{-n} \binom{n}{\lfloor n/2 \rfloor} \le \frac{C}{n^{1/2}}$.

Assume without loss of generality that $a_j \geq 1$.

Associate to an instance $\{\xi_j\} \in \{-1,1\}^n$ the set $S \subset [n]$ of indices giving +1; so $S = \{i : \xi_i = +1\}$. We can think of X = X(S).

Note that if $T \subsetneq S$ then $X(S) - X(T) \ge 2$. In particular: if |X(S)| < 1 and $T \subsetneq S$ (or $S \subsetneq T$) then |X(T)| > 1.

This means that $\{S \subset [n]: |X(S)| < 1\}$ is an *antichain* in the hypercube, so Sperner's lemma states $|\{S \subset [n]: |X(S)| < 1\}| \leq \binom{n}{\lfloor n/2 \rfloor}$.

Erdős and Littlewood-Offord via fourier analysis

Theorem

Let $a_j \in \mathbb{R}$ with $|a_j| \in [1,10]$ and set $X = \sum_{j=1}^n a_j \xi_j$ where ξ_j are i.i.d. and uniformly distributed in $\{-1,1\}$ (or more generally just non-constant). Then $\mathbb{P}(|X| < 1) \leq \frac{C}{n^{1/2}}$.

Set
$$g(x) = \mathbf{1}\{x \in (-1,1)\}$$
 so $\mathbb{P}(|X| < 1) = \mathbb{E}_X g(X)$.

$$g \stackrel{\mathsf{F.T.}}{\longleftrightarrow} \frac{\sin(\theta)}{\theta}, \qquad (g * g) \stackrel{\mathsf{F.T.}}{\longleftrightarrow} \left(\frac{\sin(\theta)}{\theta}\right)^2$$

and note that g * g has support [-2,2]. We also can bound $g(x) \le 2(\sin(x)/x)^2$.

$$\mathbb{E}_{X}g(X) \lesssim \mathbb{E}_{X}\left(\frac{\sin X}{X}\right)^{2} = c \int (g * g)(\theta) \,\mathbb{E}_{X}e^{i\theta X} \,d\theta \lesssim \int_{-2}^{2} \left|\mathbb{E}_{X}e^{i\theta X}\right| \,d\theta$$
$$= \int_{-2}^{2} \prod_{i} \left|\cos(a_{i}\theta)\right| \,d\theta \leq \int_{-2}^{2} \exp(-cn\theta^{2}) \,d\theta \lesssim n^{-1/2} \,. \qquad \Box$$

Returning to our random polynomial: separation of roots

So: $f_n(z) = \sum_{j=0}^n \xi_j z^j$ where $\xi_j \in \{-1,1\}$ are independent and chosen uniformly at random, where $\mathcal{Z} = \{\alpha_j\}_{j=1}^n$ is the (multi)set of zeros.

Recall *most* roots are near the unit circle (in fact $\Theta(1/n)$) away from the unit circle.

The roots experience repulsion. How can we quantify that?

Set $m_n = \min_{i < j} |\alpha_i - \alpha_j|$ to be the minimal separation of roots of f_n .

Theorem (M.-Yakir, 2025)

We have $m_n = \Theta(n^{-5/4})$ with high probability. In fact $\mathbb{P}(m_n \ge \lambda n^{-5/4}) \to \exp(-c_*\lambda^4)$ where $c_* > 0$ and does not depend on the coefficient distribution.

Two quantitative bits here: the power of 5/4 on n and the power of 4 on λ . Both capture repulsion between the roots....let's see why.

A toy model: what if there were no repulsion?

$$f_n(z) = \sum_{j=0}^n \xi_j z^j$$
, with roots α_j set $m_n = \min |\alpha_i - \alpha_j|$. Then $\mathbb{P}(m_n \ge \lambda n^{-5/4}) \to \exp(-c_*\lambda^4)$

Why does this capture repulsion? Let's consider a toy model where I place n independent points X_1,\ldots,X_n in $\mathcal{A}=\{z:1-1/n\leq |z|\leq 1+1/n\}$ independently and uniformly at random. How does the separation $M_n=\min |X_i-X_j|$ behave?

Let $\varepsilon>0$ be small, let's compute the expected number of pairs with $|X_i-X_j|\leq \varepsilon.$

For a given $z \in \mathcal{A}$ the expected number of pairs in $B_{\varepsilon}(z)$ is

$$\mathbb{E}[(i,j):X_i,X_j\in B_{\varepsilon}(z)]\approx n^2\mathbb{P}(X_1,X_2\in B_{\varepsilon}(z))=n^2\mathbb{P}(X_1\in B_{\varepsilon}(z))^2\approx n^4\varepsilon^4.$$

It takes $\approx n^{-1}\varepsilon^{-2}$ balls to cover $\mathcal A$ so the expected number of pairs with distance $\leq \varepsilon$ is $n^3\varepsilon^2$.

If $n^3 \varepsilon^2 = \Theta(1)$ then expect the number of pairs at distance ε to be Poisson of mean $\Theta(n^3 \varepsilon^2)$. $\mathbb{P}(M_n \ge \lambda n^{-3/2}) \to \exp(-c'\lambda^2)$.

How is the actual calculation different?

$$f_n(z) = \sum_{j=0}^n \xi_j z^j$$
, with roots α_j set $m_n = \min |\alpha_i - \alpha_j|$. Then $\mathbb{P}(m_n \ge \lambda n^{-5/4}) \to \exp(-c_*\lambda^4)$

For independent points, we saw $\mathbb{E}[(i,j):X_i,X_j\in B_{\varepsilon}(z)]\approx n^4\varepsilon^4$.

Theorem (M.-Yakir, 2025)

For
$$z = 1 + \Theta(1/n)$$
 we have $\mathbb{E}[(i,j) : \alpha_i, \alpha_j \in B_{\varepsilon}(z)] \approx n^5 \varepsilon^6$.

....but for what $\varepsilon>0$? As we saw, this turns out to be true for $\varepsilon=[n^{-c-1},o(n^{-1})]$...but we need better than that. A quick calculation is that $\mathbb{P}(f_n(1)=f_n'(1)=0)=\Theta(n^{-2})$ so we can't just take all $\varepsilon>0$...at least not for all z.

It turns out that the problem with z=1 is that $\arg(z)=0$ is close to a rational number of small denominator. We could take ε smaller for z=i and smaller for $z=e^{i\pi/4}$. If we want the above to hold for $\varepsilon\approx n^{-A}$ it turns out we can just omit z that is close to a $O_A(1)$ root of unity.

An approximate outline of the whole argument

$$f_n(z) = \sum_{j=0}^n \xi_j z^j$$
, with roots α_j set $m_n = \min |\alpha_i - \alpha_j|$. Then $\mathbb{P}(m_n \ge \lambda n^{-5/4}) \to \exp(-c_*\lambda^4)$.

A sketch to prove that if $Y_{\lambda} = \{i < j : |\alpha_i - \alpha_j| \le \lambda n^{-5/4}\}$ then Y_{λ} converges to a Poisson random variable of mean $\mu = c_* \lambda^4$.

- We will use the method of moments, so we want to show that for each k we have $\mathbb{E}[Y_{\lambda}(Y_{\lambda}-1)\cdots(Y_{\lambda}-(k-1))]\to \mu^{k}$.
- Omit pairs with $||z|-1| \geq \widetilde{\Omega}(1/n)$. [more on this, time permitting]
- Omit pairs where z is close to an O(1)-root of unity.
- For points $z_1, \ldots, z_k = 1 + O(1/n)$ separated by $\gg 1/n$ we have that the probability there are pairs with distance $\lambda n^{-5/4}$ near each of the k points approximately factors. This is done by comparing to a Gaussian, like a beefed up version of the Fourier proof of Littlewood-Offord. [more on this, next slide]

Detecting roots and detecting pairs

Given a point z = 1 + O(1/n), how can I tell if there is a root near z? Taylor expand near z:

$$f(w) \approx f(z) + (w - z)f'(z) + \text{Error}$$
.

If f(z)/f'(z) is atypically small and f'' is typical, then we expect a zero of f at $w \approx z - f(z)/f'(z)$. To see when there are two roots near z, need some event depending on (f(z), f'(z), f''(z)).

To calculate probabilities related to (f(z), f'(z), f''(z)) we prove a local central limit theorem / Gaussian comparison principle that gets stronger when z is far from roots of unity.

But we actually see something extra here: if f'(z) is large, there is *more likely* to be a root near z....this tells us where repulsion comes from!

Why do roots repel each other

We saw there is a root near z if f(z)/f'(z) is small. So if f' is large, there is *more likely* to be a root. So if I take a typical root α of f, it is *unlikely* for $f'(\alpha)$ to be small.

A thought experiment: you are watching 10 runners on a circular track and 5 are very fast and 5 are slow; you see the fast runners more often.

Why does this imply roots repel? If two roots α, β are close, then Rolle's theorem / Mean value theorem says that f' is zero somewhere in between...but if $|\alpha - \beta|$ is small, then this means $f'(\alpha)$ is small. There is a tension:

[Two close roots $\implies f'$ is small on a root] vs. [f'] is typically not small on roots]

So roots typically repel.Same story holds for many random functions, e.g. eigenvalues of random matrices.

One last wrinkle: eliminating roots far from the unit circle

The behavior of f is not universal for |z| far from 1. Let's focus on |z|<1 and consider the $n=\infty$ limit: $f_\infty(z)=\sum_{j\geq 0}\xi_jz^j$ which is analytic for |z|<1. The random variable $f_\infty(z)$ is not like a gaussian...for instance $f_\infty(\frac{2}{1+\sqrt{5}})$ is not even a continuous random variable! (Erdős, 1939)

We need a separate approach.

Theorem (M.-Yakir, 2025)

Let ξ_j be independent and identically distributed random variables with $\mathbb{E}\log(1+|\xi_j|)<\infty$, then with probability 1 the power series f_∞ is analytic in |z|<1 and has no double roots except perhaps at the origin.

Proof is perturbative: given the first M coefficients, it is unlikely that the rest will combine to give you a double root. Explicitly uses the solution to the Littlewood-Offord problem.

Outline revisited

$$f_n(z) = \sum_{j=0}^n \xi_j z^j$$
, with roots α_j set $m_n = \min |\alpha_i - \alpha_j|$. Then $\mathbb{P}(m_n \ge \lambda n^{-5/4}) \to \exp(-c_*\lambda^4)$.

A sketch to prove that if $Y_{\lambda} = \{i < j : |\alpha_i - \alpha_j| \le \lambda n^{-5/4}\}$ then Y_{λ} converges to a Poisson random variable of mean $\mu = c_* \lambda^4$.

- We will use the method of moments, so we want to show that for each k we have $\mathbb{E}[Y_{\lambda}(Y_{\lambda}-1)\cdots(Y_{\lambda}-(k-1))]\to \mu^{k}$.
- Omit pairs with $||z|-1| \geq \widetilde{\Omega}(1/n)$ by a perturbative argument on the infinite power series corresponding to $n=\infty$.
- Omit pairs where z is close to an O(1)-root of unity via Littlewood-Offord approach.
- For points $z_1,\ldots,z_k=1+O(1/n)$ separated by $\gg 1/n$ we have that the probability there are pairs with distance $\lambda n^{-5/4}$ near each of the k points approximately factors. This is done by taylor expanding to second order and comparing $((f(z_j),f'(z_j),f''(z_j))_{j=1}^k$ to a Gaussian vector (using that none is close to a O(1)-root of unity).

Open problems and future directions: repeated roots

Our theorem holds provided the variables are *sub-gaussian* meaning $\mathbb{P}(|\xi_j| \geq t) \leq e^{-ct^2}$ for some c > 0. We also have the following corollary of our theorem:

Corollary

Let ξ_j be independent and subgaussian and set $f_n(z) = \sum_{j=0}^n \xi_j z^j$ then $\mathbb{P}(f_n \text{ has a double root other than at } 0) = o(1)$.

This was known for $\xi \in \{-1,1\}$ and some other integer-valued distributions by Peled-Sen-Zeitouni, Feldheim-Sen but is new in this generality.

Conjecture

Let ξ be a non-constant random variable and set $f_n(z) = \sum_{j=0}^n \xi_j z^j$ then $\mathbb{P}(f_n \text{ has a double root other than at } 0) = o(1).$

Much harder to do something as analytic in this generality, perhaps a perturbative approach and a small bit of algebra might be useful.

Open problems and future directions: discriminant

Part of our motivation was for studying the discriminant: if $f_n(z) = \sum_{j=0}^n \xi_j z^j$ then $|\operatorname{disc}(f_n)| = |\xi_n|^{2n-2} \prod_{i < j} |\alpha_i - \alpha_j|^2$.

Theorem (M.-Yakir, 2025)

Let ξ_j be independent, mean 0, variance 1 and subgaussian. Then

$$\frac{\log|\mathrm{disc}(f_n)|-2n\log n}{n}\xrightarrow[\mathbb{P}]{n\to\infty}D_*$$

for some universal $D_* \neq 0$. So $|\operatorname{disc}(f_n)| = n^{2n} e^{(D_* + o(1))n}$.

Conjecture (Bary-Soroker + Kozma)

Let $\xi_j \in \{0,1\}$ uniformly at random (or $\{-1,1\}$ uniformly at random etc.). Then with high probability $|\operatorname{disc}(f_n)|$ is not a perfect square.

 $[|\mathrm{disc}(f_n)|$ is a perfect square if and only if $\mathrm{Gal}(f_n) \leq A_n]$

Summary

We consider $f_n(z) = \sum_{j=0}^n \xi_j z^j$ with $\xi_j \in \{-1,1\}$ uniformly at random (for instance).

Classical work of Erdős-Turán (and others) show most roots are near the unit circle.

The roots experience repulsion.

Theorem (M.-Yakir, 2025)

Set $m_n = \min_{i < j} |\alpha_i - \alpha_j|$ where $\{\alpha_j\}_{j=1}^n$ are the roots of f_n . Then $m_n = \Theta(n^{-5/4})$ and in particular $\mathbb{P}(m_n \ge \lambda n^{-5/4}) \to \exp(-c_*\lambda^4)$.

Thank you!