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Random polynomials
Let fn(z) =

∑n
j=0 ξjz j be a degree n polynomial whose coefficients ξj are

independent and identically distributed random variables taken uniformly
from {−1, 1}. (or ξj ∼ N (0, 1) or just Eξj = 0 and Var(ξj) = 1)

The polynomial fn has n roots in C (counting by multiplicity).

Guiding Question
What can we say about the roots when n is large?
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Unpacking the picture
fn(z) =

∑n
j=0 ξjz j where ξj ∈ {−1, 1} uniformly at random.

1. Most roots (but not all!) are close to the unit circle
2. Since the coefficients are real, there is symmetry about the real

axis/x -axis. Some roots are real (there are 2) real roots here.
3. The roots appear to repel each other.
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Our plan

Here’s how the rest of the talk will go:
1. (Mostly classical) theorems that rigorously describe the behavior from

this picture.
2. Isolating a single tool: Erdős’s solution to the Littlewood-Offord

problem, and outline two proofs, one using extremal combinatorics
and one using fourier analysis.

3. What did we prove and how?
4. Open problems, future directions
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The first questions answered: the number of real roots
Many classical predecessors Bloch-Polya, Littlewood-Offord, first sharp
result is: Kac 1943 proved when the coefficients are N (0, 1) the number
of real roots is ( 2

π + o(1)) log n. “In case the [coefficients] are not normally
distributed (but all have the same distribution with standard deviation 1)
one can still prove [this result].”

In 1946 Kac extended to other continuous distributions like uniform in
[−1, 1] and stated “Upon a closer examination it turns out that the proof
which I had in mind, based on the central limit theorem of the calculus of
probability, is inapplicable to the discrete case.”

Erdős-Offord (1956) proved it for {−1, 1} coefficients (and many other
variables).

This is a universality phenomenon: the behavior for the number of real
roots doesn’t depend much on the actual distribution of coefficients.
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The bulk behavior: most are near the unit circle
Let Z denote the zero (multi)set of fn. Then

|{α ∈ Z : |α| ∈ [1− ε, 1 + ε]}|
n → 1

|{α ∈ Z : arg(α) ∈ [a, b]}|
n → b − a

2π

Theorem (Erdős-Turán, 1950)
This is true deterministically for polynomials whose coefficients are on the
same exponential scale (i.e. |ξj |2/|ξ0ξn| = eo(n) for all j).

Same as saying the probability measure µn = 1
n

∑
α∈Z δα converges to the

uniform distribution on the unit circle. To prove this, it is sufficient to
prove 1

n log |fn(z)| converges to 0 for all |z | < 1 and to log |z | for all
|z | > 1. This is since µn = 1

2π ∆ log |fn|.
Most roots are Θ(1/n) away from the unit circle (Shepp-Vanderbei ’95,
Konyagin-Schlag ’99, Ibragimov-Zeitouni, ’97)
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Roots indeed to repel each other

Most roots are within 1/n away from the unit circle and there are n roots.
So if t > 0 and z = 1 + O(1/n) then one expects

P(∃ α ∈ Z : |z − α| ≤ t/n) = Θt(1)

which turns out to be true. Set Bt(z) = {w : |z −w | ≤ t/n}. Then in fact

P(at least two roots in Bt(z))≪ P(at least one root in Bt(z))2

for t ∈ [n−c , o(1)].

Credit to various works of Shiffman-Zelditch for Gaussians and universality
works of Tao-Vu.
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A single tool: the Littlewood-Offord problem
Relevant for all pieces is understanding the probability f (z) is small. Let’s
fix z with |z | ≈ 1 and look at P(|f (z)| ≤ 1). Note that E|f (z)|2 ≈ n so
typically |f (z)| = Θ(n1/2).

We have
f (z) = ξnzn + ξn−1zn−1 + · · ·+ ξ1z + ξ0 .

More generally let’s look at X = anξn + an−1ξn−1 + · · ·+ a1ξ1 where
ξj ∈ {−1, 1} uniformly at random and |an| ≥ 1. How big can P(|X | < 1)
be? For aj ≡ 1 we have P(|X | < 1) = 2−n( n

n/2
)
≍ n−1/2.

Theorem (Erdős’s solution to the Littlewood-Offord problem, 1945)
For all |aj | ≥ 1 we have P(|X | < 1) ≤ C√

n .

We will see two proofs: one using extremal combinatorics (Erdős’s original
proof) and a fourier analytic proof.
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Erdős and Littlewood-Offord via extremal combinatorics

Theorem (Erdős)
Let aj ∈ R with |aj | ≥ 1 and set X =

∑n
j=1 ajξj where ξj are i.i.d. and

uniformly distributed in {−1, 1}. Then P(|X | < 1) ≤ 2−n( n
⌊n/2⌋

)
≤ C

n1/2 .

Assume without loss of generality that aj ≥ 1.

Associate to an instance {ξj} ∈ {−1, 1}n the set S ⊂ [n] of indices giving
+1; so S = {i : ξi = +1}. We can think of X = X (S).

Note that if T ⊊ S then X (S)− X (T ) ≥ 2. In particular: if |X (S)| < 1
and T ⊊ S (or S ⊊ T ) then |X (T )| > 1.

This means that {S ⊂ [n] : |X (S)| < 1} is an antichain in the hypercube,
so Sperner’s lemma states |{S ⊂ [n] : |X (S)| < 1}| ≤

( n
⌊n/2⌋

)
. □
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Erdős and Littlewood-Offord via fourier analysis
Theorem
Let aj ∈ R with |aj | ∈ [1, 10] and set X =

∑n
j=1 ajξj where ξj are i.i.d. and

uniformly distributed in {−1, 1} (or more generally just non-constant).
Then P(|X | < 1) ≤ C

n1/2 .

Set g(x) = 1{x ∈ (−1, 1)} so P(|X | < 1) = EX g(X ).

g F.T.←→ sin(θ)
θ

, (g ∗ g) F.T.←→
(sin(θ)

θ

)2

and note that g ∗ g has support [−2, 2]. We also can bound
g(x) ≤ 2

(
sin(x)/x

)2.

EX g(X ) ≲ EX
( sin X

X
)2 = c

∫
(g ∗ g)(θ)EX eiθX dθ ≲

∫ 2

−2

∣∣EX eiθX ∣∣ dθ

=
∫ 2

−2

∏
j

∣∣cos(ajθ)
∣∣ dθ≤

∫ 2

−2
exp(−cnθ2) dθ ≲ n−1/2 . □
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Returning to our random polynomial: separation of roots

So: fn(z) =
∑n

j=0 ξjz j where ξj ∈ {−1, 1} are independent and chosen
uniformly at random, where Z = {αj}nj=1 is the (multi)set of zeros.

Recall most roots are near the unit circle (in fact Θ(1/n)) away from the
unit circle.

The roots experience repulsion. How can we quantify that?

Set mn = mini<j |αi − αj | to be the minimal separation of roots of fn.

Theorem (M.-Yakir, 2025)
We have mn = Θ(n−5/4) with high probability. In fact
P(mn ≥ λn−5/4)→ exp(−c∗λ4) where c∗ > 0 and does not depend on the
coefficient distribution.

Two quantitative bits here: the power of 5/4 on n and the power of 4 on
λ. Both capture repulsion between the roots....let’s see why.
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A toy model: what if there were no repulsion?
fn(z) =

∑n
j=0 ξjz j , with roots αj set mn = min |αi − αj |. Then

P(mn ≥ λn−5/4)→ exp(−c∗λ4)

Why does this capture repulsion? Let’s consider a toy model where I place
n independent points X1, . . . , Xn in A = {z : 1− 1/n ≤ |z | ≤ 1 + 1/n}
independently and uniformly at random. How does the separation
Mn = min |Xi − Xj | behave?

Let ε > 0 be small, let’s compute the expected number of pairs with
|Xi − Xj | ≤ ε.

For a given z ∈ A the expected number of pairs in Bε(z) is

E[(i , j) : Xi , Xj ∈ Bε(z)] ≈ n2P(X1, X2 ∈ Bε(z)) = n2P(X1 ∈ Bε(z))2 ≈ n4ε4.

It takes ≈ n−1ε−2 balls to cover A so the expected number of pairs with
distance ≤ ε is n3ε2.

If n3ε2 = Θ(1) then expect the number of pairs at distance ε to be
Poisson of mean Θ(n3ε2). P(Mn ≥ λn−3/2)→ exp(−c ′λ2).
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How is the actual calculation different?
fn(z) =

∑n
j=0 ξjz j , with roots αj set mn = min |αi − αj |. Then

P(mn ≥ λn−5/4)→ exp(−c∗λ4)

For independent points, we saw E[(i , j) : Xi , Xj ∈ Bε(z)] ≈ n4ε4.

Theorem (M.-Yakir, 2025)
For z = 1 + Θ(1/n) we have E[(i , j) : αi , αj ∈ Bε(z)] ≈ n5ε6.

....but for what ε > 0? As we saw, this turns out to be true for
ε = [n−c−1, o(n−1)]...but we need better than that. A quick calculation is
that P(fn(1) = f ′

n(1) = 0) = Θ(n−2) so we can’t just take all ε > 0...at
least not for all z .

It turns out that the problem with z = 1 is that arg(z) = 0 is close to a
rational number of small denominator. We could take ε smaller for z = i
and smaller for z = eiπ/4. If we want the above to hold for ε ≈ n−A it
turns out we can just omit z that is close to a OA(1) root of unity.
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An approximate outline of the whole argument

fn(z) =
∑n

j=0 ξjz j , with roots αj set mn = min |αi − αj |. Then
P(mn ≥ λn−5/4)→ exp(−c∗λ4).

A sketch to prove that if Yλ = {i < j : |αi − αj | ≤ λn−5/4} then Yλ

converges to a Poisson random variable of mean µ = c∗λ4.
• We will use the method of moments, so we want to show that for

each k we have E[Yλ(Yλ − 1) · · · (Yλ − (k − 1))]→ µk .
• Omit pairs with ||z | − 1| ≥ Ω̃(1/n). [more on this, time permitting]
• Omit pairs where z is close to an O(1)-root of unity.
• For points z1, . . . , zk = 1 + O(1/n) separated by ≫ 1/n we have that

the probability there are pairs with distance λn−5/4 near each of the k
points approximately factors. This is done by comparing to a
Gaussian, like a beefed up version of the Fourier proof of
Littlewood-Offord. [more on this, next slide]
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Detecting roots and detecting pairs

Given a point z = 1 + O(1/n), how can I tell if there is a root near z?
Taylor expand near z :

f (w) ≈ f (z) + (w − z)f ′(z) + Error .

If f (z)/f ′(z) is atypically small and f ′′ is typical, then we expect a zero of
f at w ≈ z − f (z)/f ′(z). To see when there are two roots near z , need
some event depending on (f (z), f ′(z), f ′′(z)).

To calculate probabilities related to (f (z), f ′(z), f ′′(z)) we prove a local
central limit theorem / Gaussian comparison principle that gets stronger
when z is far from roots of unity.

But we actually see something extra here: if f ′(z) is large, there is more
likely to be a root near z ....this tells us where repulsion comes from!
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Why do roots repel each other

We saw there is a root near z if f (z)/f ′(z) is small. So if f ′ is large, there
is more likely to be a root. So if I take a typical root α of f , it is unlikely
for f ′(α) to be small.

A thought experiment: you are watching 10 runners on a circular track
and 5 are very fast and 5 are slow; you see the fast runners more often.

Why does this imply roots repel? If two roots α, β are close, then Rolle’s
theorem / Mean value theorem says that f ′ is zero somewhere in
between...but if |α− β| is small, then this means f ′(α) is small. There is a
tension:

[Two close roots =⇒ f ′ is small on a root] vs. [f ′ is typically not small
on roots]

So roots typically repel.Same story holds for many random functions, e.g.
eigenvalues of random matrices.
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One last wrinkle: eliminating roots far from the unit circle

The behavior of f is not universal for |z | far from 1. Let’s focus on |z | < 1
and consider the n =∞ limit: f∞(z) =

∑
j≥0 ξjz j which is analytic for

|z | < 1. The random variable f∞(z) is not like a gaussian...for instance
f∞( 2

1+
√

5) is not even a continuous random variable! (Erdős, 1939)

We need a separate approach.

Theorem (M.-Yakir, 2025)
Let ξj be independent and identically distributed random variables with
E log(1 + |ξj |) <∞, then with probability 1 the power series f∞ is analytic
in |z | < 1 and has no double roots except perhaps at the origin.

Proof is perturbative: given the first M coefficients, it is unlikely that the
rest will combine to give you a double root. Explicitly uses the solution to
the Littlewood-Offord problem.
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Outline revisited
fn(z) =

∑n
j=0 ξjz j , with roots αj set mn = min |αi − αj |. Then

P(mn ≥ λn−5/4)→ exp(−c∗λ4).

A sketch to prove that if Yλ = {i < j : |αi − αj | ≤ λn−5/4} then Yλ

converges to a Poisson random variable of mean µ = c∗λ4.
• We will use the method of moments, so we want to show that for

each k we have E[Yλ(Yλ − 1) · · · (Yλ − (k − 1))]→ µk .
• Omit pairs with ||z | − 1| ≥ Ω̃(1/n) by a perturbative argument on the

infinite power series corresponding to n =∞.
• Omit pairs where z is close to an O(1)-root of unity via

Littlewood-Offord approach.
• For points z1, . . . , zk = 1 + O(1/n) separated by ≫ 1/n we have that

the probability there are pairs with distance λn−5/4 near each of the k
points approximately factors. This is done by taylor expanding to
second order and comparing ((f (zj), f ′(zj), f ′′(zj))k

j=1 to a Gaussian
vector (using that none is close to a O(1)-root of unity).
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Open problems and future directions: repeated roots
Our theorem holds provided the variables are sub-gaussian meaning
P(|ξj | ≥ t) ≤ e−ct2 for some c > 0. We also have the following corollary
of our theorem:

Corollary
Let ξj be independent and subgaussian and set fn(z) =

∑n
j=0 ξjz j then

P(fn has a double root other than at 0) = o(1).

This was known for ξ ∈ {−1, 1} and some other integer-valued
distributions by Peled-Sen-Zeitouni, Feldheim-Sen but is new in this
generality.

Conjecture
Let ξ be a non-constant random variable and set fn(z) =

∑n
j=0 ξjz j then

P(fn has a double root other than at 0) = o(1).

Much harder to do something as analytic in this generality, perhaps a
perturbative approach and a small bit of algebra might be useful.
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Open problems and future directions: discriminant
Part of our motivation was for studying the discriminant: if
fn(z) =

∑n
j=0 ξjz j then |disc(fn)| = |ξn|2n−2 ∏

i<j |αi − αj |2.

Theorem (M.-Yakir, 2025)
Let ξj be independent, mean 0, variance 1 and subgaussian. Then

log |disc(fn)| − 2n log n
n

n→∞−−−→
P

D∗

for some universal D∗ ̸= 0. So |disc(fn)| = n2ne(D∗+o(1))n.

Conjecture (Bary-Soroker + Kozma)
Let ξj ∈ {0, 1} uniformly at random (or {−1, 1} uniformly at random
etc.). Then with high probability |disc(fn)| is not a perfect square.

[|disc(fn)| is a perfect square if and only if Gal(fn) ≤ An]
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Summary

We consider fn(z) =
∑n

j=0 ξjz j with ξj ∈ {−1, 1} uniformly at random (for
instance).

Classical work of Erdős-Turán (and others) show most roots are near the
unit circle.

The roots experience repulsion.

Theorem (M.-Yakir, 2025)
Set mn = mini<j |αi − αj | where {αj}nj=1 are the roots of fn. Then
mn = Θ(n−5/4) and in particular P(mn ≥ λn−5/4)→ exp(−c∗λ4).

Thank you!
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