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Consider o : V(G) — {0, 1}, an independent two-coloring of the vertices of G:
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As p increases, more sites open. We define:

pe(G) := inf{p : Pp[d an infinite component of open sites] > 0}
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Bernoulli Site Percolation

Setting: Let G be an infinite, locally finite, connected graph, and p € [0, 1].
Consider o : V(G) — {0, 1}, an independent two-coloring of the vertices of G:

P(o) = p#open(o) (1 - p)#closed(a)

As p increases, more sites open. We define:

pc(G) ;= inf{p : Pp[d an infinite component of open sites] = 1}

M. Harel (Northeastern University) Planar Percolation and Loop O(n) Nov. 18 2025 2/17



Percolation on Transitive Graphs

Let N, be the number of infinite connected open components.

M. Harel (Northeastern University) Planar Percolation and Loop O(n) Nov. 18 2025 3/17



Percolation on Transitive Graphs

Let N, be the number of infinite connected open components.

When G is transitive, N, is almost surely constant, and must be 0, 1, or co.

M. Harel (Northeastern University) Planar Percolation and Loop O(n) Nov. 18 2025 3/17



Percolation on Transitive Graphs

Let N, be the number of infinite connected open components.
When G is transitive, N, is almost surely constant, and must be 0, 1, or co.

When G is amenable,

M. Harel (Northeastern University) Planar Percolation and Loop O(n) Nov. 18 2025 3/17



Percolation on Transitive Graphs

Let N, be the number of infinite connected open components.

When G is transitive, N, is almost surely constant, and must be 0, 1, or co.

When G is amenable,

M. Harel (Northeastern University) Planar Percolation and Loop O(n) Nov. 18 2025

3/17



Percolation on Transitive Graphs

Let N, be the number of infinite connected open components.
When G is transitive, N, is almost surely constant, and must be 0, 1, or co.

When G is amenable, N, € {0,1} (Burton — Keane, 1989).

M. Harel (Northeastern University) Planar Percolation and Loop O(n) Nov. 18 2025 3/17



Percolation on Transitive Graphs

Let N, be the number of infinite connected open components.
When G is transitive, N, is almost surely constant, and must be 0, 1, or co.

When G is amenable, N, € {0,1} (Burton — Keane, 1989).

M. Harel (Northeastern University) Planar Percolation and Loop O(n) Nov. 18 2025 3/17



Percolation on Transitive Graphs

Let N, be the number of infinite connected open components.
When G is transitive, N, is almost surely constant, and must be 0, 1, or co.

When G is amenable, N, € {0,1} (Burton — Keane, 1989).

M. Harel (Northeastern University) Planar Percolation and Loop O(n) Nov. 18 2025 3/17



Percolation on Transitive Graphs

Let N, be the number of infinite connected open components.
When G is transitive, N, is almost surely constant, and must be 0, 1, or co.

When G is amenable, N, € {0,1} (Burton — Keane, 1989).

M. Harel (Northeastern University) Planar Percolation and Loop O(n) Nov. 18 2025 3/17
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Let N be the number of infinite connected open components.
When G is transitive, N, is almost surely constant, and must be 0, 1, or co.

When G is amenable, N, € {0,1} (Burton — Keane, 1989).

Let py = inf{p : Po[Noc({c = 1}) = 1] > 0} and G be a quasi-transitive
graph.
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Percolation on Transitive Graphs

Let N be the number of infinite connected open components.
When G is transitive, N, is almost surely constant, and must be 0, 1, or co.

When G is amenable, N, € {0,1} (Burton — Keane, 1989).

Let py = inf{p : Po[Noc({c = 1}) = 1] > 0} and G be a quasi-transitive
graph. Then p; = p, if and only if G is amenable.
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General Planar Graphs

For general planar graphs, many of these orthodoxies are no longer true!
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General Planar Graphs

For general planar graphs, many of these orthodoxies are no longer true!

p>1/2

Conjecture 8 (Benjamini—Schramm, 1996)

Let G be any locally finite, connected planar graph. Then, for Bernoulli
percolation of parameter 1/2, Ny, ({c = 1}) € {0, 00}.
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Main Percolation Result

Theorem (Glazman— H. — Zelesko, 2025+)

Let G be a locally finite, connected planar graph, and o : V(G) — {0,1}
a site percolation process that satisfies:
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Main Percolation Result

Theorem (Glazman— H. — Zelesko, 2025+)

Let G be a locally finite, connected planar graph, and o : V(G) — {0,1}
a site percolation process that satisfies:

@ tail triviality,

@ positively association (i.e. the FKG inequality), and

@ stochastic domination of {o = 1} by {c = 0}.
Then N({oc =1}) =0a.s., or Noo({c =1}) = 0 a.s.

@ General G: no symmetry or accumulation points assumptions on G.
@ General o: no assumption of independence.

In particular, the result holds for Bernoulli percolation of parameter p < 1/2.
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Consequences for p.

For which graphs is No({c =1}) =0forp <1/2?
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Consequences for p.

For which graphs is No({c =1}) =0forp <1/2?

Corollary (Glazman— H. — Zelesko, 2025+)

Let G be a planar graph that is expressible as the Benjamini—Schramm
limit of finite planar graphs. Equivalently, G is a planar, unimodular,
invariantly amenable graph. Then p;(G) > 1/2.

When G has minimal degree 7 and has a well-separated embedding:
@ p; < 1/2 (Haslegrave and Panagiotis, 2021), and
@ p, > 1 — pc (Li, 2023).

Peled (2020) showed that 3p* > 0 such that, p < p* implies the circle packing
of Bernoulli percolation exhibits exponential decay in geometric distance.
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Application: Divide and Color Models

Corollary (Glazman— H. — Zelesko, 2025+)

Consider a translation-invariant partition of T into finite classes.

.Q'Q'Q'Q’Q'Q'Q'Q'Q’Q’Q'Q’Q’Q’Q’
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Application: Divide and Color Models

Corollary (Glazman— H. — Zelesko, 2025+)

Consider a translation-invariant partition of T into finite classes. Color
each class red or blue, uniformly and independently.
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Application: Divide and Color Models
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Application: Divide and Color Models

Corollary (Glazman— H. — Zelesko, 2025+)

Consider a translation-invariant partition of T into finite classes. Color
each class red or blue, uniformly and independently. Then the resulting
2-coloring is translation invariant and has finite connected components.
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Application: the loop O(n) model

Let D be a finite domain in the hexagonal lattice H.
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We say w, a subgraph of D, is a loop configuration if every vertex in D has
even degree in w.
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Application: the loop O(n) model

Let D be a finite domain in the hexagonal lattice H.

We say w, a subgraph of D, is a loop configuration if every vertex in D has
even degree in w.

Given n, x > 0, we sample a loop configuration w by

1
Ppnali] = 5 — - 1) xle)
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Application: the loop O(n) model

Let D be a finite domain in the hexagonal lattice H.

We say w, a subgraph of D, is a loop configuration if every vertex in D has
even degree in w.

Given n, x > 0, we sample a loop configuration w by
1
P = . xlel
D,n,x[w] Z n X,

D,n,x

where /(w) is the number of loops, and |w| is the number of edges.
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Some special cases

We can see other known models as special cases of the loop O(n) model:
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When n = 1, the faces have a nearest-neighbor interaction.
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Some special cases

We can see other known models as special cases of the loop O(n) model:

When n = 1, the faces have a nearest-neighbor interaction.

Therefore, loop O(1) model « Ising model with x = e=27.
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Some special cases

We can see other known models as special cases of the loop O(n) model:

O

)

For the level line loops, we must give each loop a weight of 2 — one for an
upwards gradient and one for a downwards one.
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Some special cases

We can see other known models as special cases of the loop O(n) model:

O

)

For the level line loops, we must give each loop a weight of 2 — one for an
upwards gradient and one for a downwards one.

Therefore, loop O(2) model « integer valued Lipschitz functions.
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Geometry of the loop O(n) model

What does a typical configuration of the loop O(n) model look like?
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The conjectured phase diagram

Nienhuis ('82) predicted the following phase diagram for the loop O(n) model:
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The conjectured phase diagram

Nienhuis ('82) predicted the following phase diagram for the loop O(n) model:
nA

Exponential Decay

2 .

Conformal Invariance

1
2+V/2

=y

L
V2

!
S

Kager—Nienhuis ('06) got more specific about the critical behavior:
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Kager—Nienhuis ('06) got more specific about the critical behavior:
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nh

Exponential Decay
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Conformal Invariance
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2+V/2
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!
S

Kager—Nienhuis ('06) got more specific about the critical behavior:
@ If x = x;(n), convergence to CLE(k+(n)),
@ If x > x;(n), convergence to CLE(k2(n)),

4

where k1(n) = Zr—cos-T(=n/2)°

— 4
and H2(n) = m.
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The rigorously known phase diagram

The following has been rigorously established:
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The rigorously known phase diagram

Theorem (Glazman— H. — Zelesko, 2025+)

If1 < n<2and 1/\@ < x < 1, any translation-invariant Gibbs mea-
sure has long loops.
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Proof Outline

We create a ‘defect’ representation of the loop O(n) model:

O(ZI)O
o4
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By divide and color theorem, defects do not percolate.
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Proof Outline

We create a ‘defect’ representation of the loop O(n) model:
@ A loop is a defect with probability (n—1)/n, and
@ a Y-vertex off a loop is a defect with probability 1 — x2.
By divide and color theorem, defects do not percolate.

The A-bond percolation of the defects does not percolate either!
We now divide and color again — via components of A.

O CO

O

O <5
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Warm up: Zhang’s argument for Tatp =1/2

Assume that N ({c = 1}) > 1. Take K large.
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Assume that N, ({oc = 1}) > 1. Take K large. By FKG and symmetry,

LS el g

00 o0

_p <O°g> P<f7>'lp<mg> . P(fﬁl

Now, by a union bound and color switching (p = 1/2),
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Warm up: Zhang’s argument for Tatp =1/2
Assume that N, ({c = 1}) > 1. Take K large. By FKG and symmetry,
W /71T ) o
SO (/)
A/ vl

o0

Now, by a union bound and color switching (p = 1/2),

1—4e¥4 < ]P’(Zj) <P <exists > 2 open or > 2 closed infinite clusters>
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Warm up: Zhang’s argument for Tatp =1/2
Assume that N, ({c = 1}) > 1. Take K large. By FKG and symmetry,
W /71T ) o
SO (/)
A/ vl

o0

Now, by a union bound and color switching (p = 1/2),

1—4e¥4 < ]P’(Zj) <P <exists > 2 open or > 2 closed infinite clusters>

By ergodicity, No({oc = 1}) = oo, almost surely.
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Proof Outline

Theorem (Glazman— H. — Zelesko, 2025+)

Let G be a locally finite, connected planar graph, and o : V(G) — {0,1}
a site percolation process that satisfies:

@ tail triviality,

@ positively association (i.e. the FKG inequality), and

@ stochastic domination of {o = 1} by {c = 0}.
Then Noo({oc =1}) =0a.s.,or Noo({oc = 1}) = o0 as.
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Proof Outline
Assume that N ({oc =1}) > 1.
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Proof Outline

Assume that N ({c = 1}) > 1. Pick a Jordan domain large enough so that
the probability it does not intersect an infinite component is at most e.
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Proof Outline

Assume that N ({c = 1}) > 1. Pick a Jordan domain large enough so that
the probability it does not intersect an infinite component is at most e.

J+1
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Proof Outline

Assume that N ({c = 1}) > 1. Pick a Jordan domain large enough so that
the probability it does not intersect an infinite component is at most e.

Pick j to be the largest index so that

P([1,]] 4 00) > V/e/2.
j+1
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Assume that N ({c = 1}) > 1. Pick a Jordan domain large enough so that
the probability it does not intersect an infinite component is at most e.

Pick j to be the largest index so that

P([1,]] > 00) > /e/2.
By FKG, P([j + 1, N] 4> ) < V2,
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the probability it does not intersect an infinite component is at most e.
Pick j to be the largest index so that

P([1,]] 4 o0) > Ve/2.
By FKG, P ([j + 1, N] #= o) < v2¢, and
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Proof Outline

Assume that N ({c = 1}) > 1. Pick a Jordan domain large enough so that
the probability it does not intersect an infinite component is at most e.
Pick j to be the largest index so that

P([1,]] 42 00) > Ve/2.
By FKG, P ([j + 1, N] & ) < v2¢, and

TP([1.4] #= 00) < Ve/2.

O

j+1
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Proof Outline

Assume that N ({c = 1}) > 1. Pick a Jordan domain large enough so that

the probability it does not intersect an infinite component is at most e.
Pick j to be the largest index so that

P([1,]] #= o0) > Ve/2.
By FKG, P([j + 1, N] =+ o) < v2¢, and
P([1,/] #> o0) < Ve
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Proof Outline

Assume that N ({c = 1}) > 1. Pick a Jordan domain large enough so that
the probability it does not intersect an infinite component is at most e.
Pick j to be the largest index so that

P([1,]] 4= o0) > Ve/2.
By FKG, P([j + 1, N] ¢ o0) < V2¢, and

B([1,]] 4 o) < V2e.
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Proof Outline

If there are k open and k closed arcs, we claim that, for any coloring,
Noo({o0 =1}) + Noo({oc =0}) > k + 1.
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This implies that
1-6
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Future Work

On the percolation side:
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Future Work

On the percolation side:

@ necessary and sufficient condition for N., =0 atp = 1/2?

Conjecture (Benjamini)

Let G be a planar graph such that both G and G* have uniformly
bounded degrees. Then p. > 1/2 if and only if G is recurrent.

@ Is p, > 1 — p. true for all planar graphs?

Further applications:
@ Which planar, unimodular, invariantly amenable graphs are recurrent?

@ BKT phase transitions on more general planar geometries?
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Thank you!
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