Planar percolation and the loop O(n) model

Matan Harel

Northeastern University

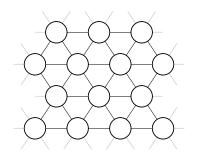
Joint Work with Alexander Glazman and Nathan Zelesko

November 18th, 2025

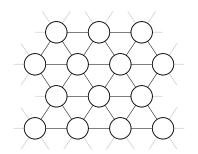
Oxford Discrete Mathematics and Probability Seminar

Setting: Let *G* be an infinite, locally finite, connected graph,

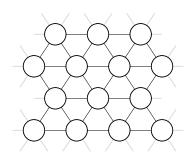
Setting: Let *G* be an infinite, locally finite, connected graph,



Setting: Let *G* be an infinite, locally finite, connected graph, and $p \in [0, 1]$.

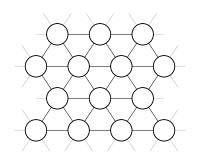


Setting: Let *G* be an infinite, locally finite, connected graph, and $p \in [0, 1]$. Consider $\sigma : V(G) \to \{0, 1\}$, an *independent* two-coloring of the vertices of *G*:



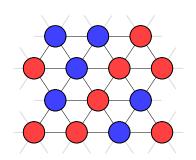
Setting: Let *G* be an infinite, locally finite, connected graph, and $p \in [0, 1]$. Consider $\sigma : V(G) \to \{0, 1\}$, an *independent* two-coloring of the vertices of *G*:

$$\mathbb{P}(\sigma) = p^{\#\mathsf{open}(\sigma)} \cdot (1 - p)^{\#\mathsf{closed}(\sigma)}$$



Setting: Let *G* be an infinite, locally finite, connected graph, and $p \in [0, 1]$. Consider $\sigma : V(G) \to \{0, 1\}$, an *independent* two-coloring of the vertices of *G*:

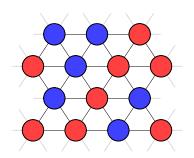
$$\mathbb{P}(\sigma) = p^{\#\mathsf{open}(\sigma)} \cdot (1 - p)^{\#\mathsf{closed}(\sigma)}$$



Setting: Let G be an infinite, locally finite, connected graph, and $p \in [0, 1]$. Consider $\sigma: V(G) \to \{0, 1\}$, an *independent* two-coloring of the vertices of G:

$$\mathbb{P}(\sigma) = p^{\#\mathsf{open}(\sigma)} \cdot (1 - p)^{\#\mathsf{closed}(\sigma)}$$

As *p* increases, more sites open.

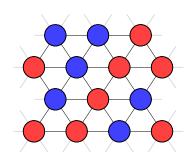


Setting: Let G be an infinite, locally finite, connected graph, and $p \in [0, 1]$. Consider $\sigma : V(G) \to \{0, 1\}$, an *independent* two-coloring of the vertices of G:

$$\mathbb{P}(\sigma) = p^{\#\mathsf{open}(\sigma)} \cdot (1 - p)^{\#\mathsf{closed}(\sigma)}$$

As *p* increases, more sites open. We define:

$$p_c(G) := \inf\{p : \mathbb{P}_p[\exists \text{ an infinite component of open sites}] > 0\}$$

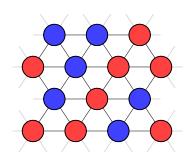


Setting: Let G be an infinite, locally finite, connected graph, and $p \in [0, 1]$. Consider $\sigma : V(G) \to \{0, 1\}$, an *independent* two-coloring of the vertices of G:

$$\mathbb{P}(\sigma) = p^{\#\mathsf{open}(\sigma)} \cdot (1 - p)^{\#\mathsf{closed}(\sigma)}$$

As *p* increases, more sites open. We define:

$$p_c(G) := \inf\{p : \mathbb{P}_p[\exists \text{ an infinite component of open sites}] = 1\}$$



Let N_{∞} be the number of infinite connected open components.

Let N_{∞} be the number of infinite connected open components.

When *G* is *transitive*, N_{∞} is almost surely constant, and must be 0, 1, or ∞ .

Let N_{∞} be the number of infinite connected open components.

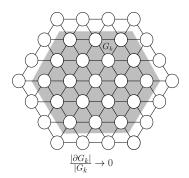
When *G* is *transitive*, N_{∞} is almost surely constant, and must be 0, 1, or ∞ .

When G is amenable,

Let N_{∞} be the number of infinite connected open components.

When *G* is *transitive*, N_{∞} is almost surely constant, and must be 0, 1, or ∞ .

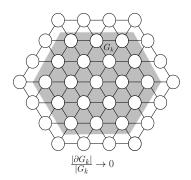
When G is amenable,



Let N_{∞} be the number of infinite connected open components.

When *G* is *transitive*, N_{∞} is almost surely constant, and must be 0, 1, or ∞ .

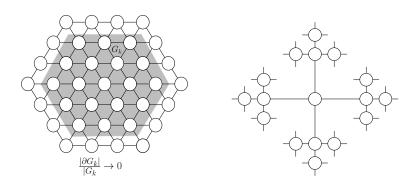
When G is amenable, $N_{\infty} \in \{0,1\}$ (Burton – Keane, 1989).



Let N_{∞} be the number of infinite connected open components.

When *G* is *transitive*, N_{∞} is almost surely constant, and must be 0, 1, or ∞ .

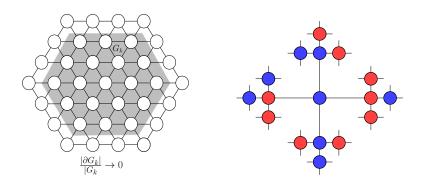
When *G* is *amenable*, $N_{\infty} \in \{0, 1\}$ (Burton – Keane, 1989).



Let N_{∞} be the number of infinite connected open components.

When *G* is *transitive*, N_{∞} is almost surely constant, and must be 0, 1, or ∞ .

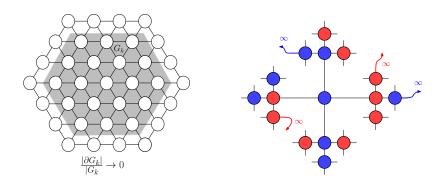
When *G* is *amenable*, $N_{\infty} \in \{0,1\}$ (Burton – Keane, 1989).



Let N_{∞} be the number of infinite connected open components.

When *G* is *transitive*, N_{∞} is almost surely constant, and must be 0, 1, or ∞ .

When *G* is *amenable*, $N_{\infty} \in \{0, 1\}$ (Burton – Keane, 1989).



Let N_{∞} be the number of infinite connected open components.

When *G* is *transitive*, N_{∞} is almost surely constant, and must be 0, 1, or ∞ .

When *G* is amenable, $N_{\infty} \in \{0,1\}$ (Burton – Keane, 1989).

Conjecture

Let $p_u = \inf\{p : \mathbb{P}_p[N_\infty(\{\sigma = 1\}) = 1] > 0\}$ and G be a quasi-transitive graph.

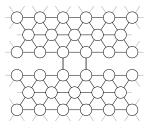
Let N_{∞} be the number of infinite connected open components.

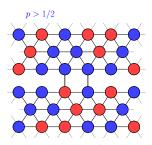
When *G* is *transitive*, N_{∞} is almost surely constant, and must be 0, 1, or ∞ .

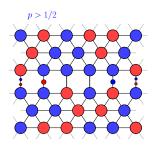
When *G* is *amenable*, $N_{\infty} \in \{0,1\}$ (Burton – Keane, 1989).

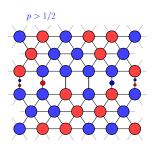
Conjecture

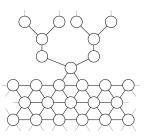
Let $p_u = \inf\{p : \mathbb{P}_p[N_\infty(\{\sigma=1\})=1] > 0\}$ and G be a quasi-transitive graph. Then $p_c = p_u$ if and only if G is amenable.

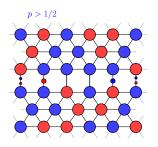


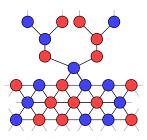




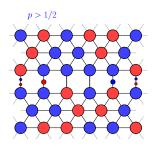


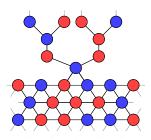






For general planar graphs, many of these orthodoxies are no longer true!





Conjecture 8 (Benjamini-Schramm, 1996)

Let *G* be *any* locally finite, connected planar graph. Then, for Bernoulli percolation of parameter 1/2, $N_{\infty}(\{\sigma=1\}) \in \{0,\infty\}$.

Theorem (Glazman– H. – Zelesko, 2025+)

Let *G* be a locally finite, connected planar graph, and $\sigma: V(G) \to \{0, 1\}$ a site percolation process that satisfies:

Theorem (Glazman– H. – Zelesko, 2025+)

Let *G* be a locally finite, connected planar graph, and $\sigma: V(G) \to \{0, 1\}$ a site percolation process that satisfies:

tail triviality,

.

Theorem (Glazman- H. - Zelesko, 2025+)

Let G be a locally finite, connected planar graph, and $\sigma: V(G) \to \{0,1\}$ a site percolation process that satisfies:

- tail triviality,
- positively association (i.e. the FKG inequality), and

Planar Percolation and Loop O(n)

5/17

Theorem (Glazman– H. – Zelesko, 2025+)

Let *G* be a locally finite, connected planar graph, and $\sigma: V(G) \to \{0, 1\}$ a site percolation process that satisfies:

- tail triviality,
- positively association (i.e. the FKG inequality), and
- stochastic domination of $\{\sigma = 1\}$ by $\{\sigma = 0\}$.

Theorem (Glazman- H. - Zelesko, 2025+)

Let *G* be a locally finite, connected planar graph, and $\sigma: V(G) \to \{0, 1\}$ a site percolation process that satisfies:

- tail triviality,
- positively association (i.e. the FKG inequality), and
- stochastic domination of $\{\sigma = 1\}$ by $\{\sigma = 0\}$.

Then $N_{\infty}(\{\sigma=1\})=0$ a.s., or $N_{\infty}(\{\sigma=1\})=\infty$ a.s.

Theorem (Glazman- H. - Zelesko, 2025+)

Let *G* be a locally finite, connected planar graph, and $\sigma: V(G) \to \{0, 1\}$ a site percolation process that satisfies:

- tail triviality,
- positively association (i.e. the FKG inequality), and
- stochastic domination of $\{\sigma = 1\}$ by $\{\sigma = 0\}$.

Then
$$N_{\infty}(\{\sigma=1\})=0$$
 a.s., or $N_{\infty}(\{\sigma=1\})=\infty$ a.s.

• General G: no symmetry or accumulation points assumptions on G.

Theorem (Glazman- H. - Zelesko, 2025+)

Let *G* be a locally finite, connected planar graph, and $\sigma: V(G) \to \{0, 1\}$ a site percolation process that satisfies:

- tail triviality,
- positively association (i.e. the FKG inequality), and
- stochastic domination of $\{\sigma = 1\}$ by $\{\sigma = 0\}$.

Then
$$N_{\infty}(\{\sigma=1\})=0$$
 a.s., or $N_{\infty}(\{\sigma=1\})=\infty$ a.s.

- General G: no symmetry or accumulation points assumptions on G.
- General σ : no assumption of independence.

Theorem (Glazman- H. - Zelesko, 2025+)

Let *G* be a locally finite, connected planar graph, and $\sigma: V(G) \to \{0, 1\}$ a site percolation process that satisfies:

- tail triviality,
- positively association (i.e. the FKG inequality), and
- stochastic domination of $\{\sigma = 1\}$ by $\{\sigma = 0\}$.

Then
$$N_{\infty}(\{\sigma=1\})=0$$
 a.s., or $N_{\infty}(\{\sigma=1\})=\infty$ a.s.

- General G: no symmetry or accumulation points assumptions on G.
- General σ : no assumption of independence.

In particular, the result holds for Bernoulli percolation of parameter $p \le 1/2$.

Consequences for p_c

For which graphs is $N_{\infty}(\{\sigma=1\})=0$ for $p\leq 1/2$?

For which graphs is $N_{\infty}(\{\sigma=1\})=0$ for $p\leq 1/2$?

Corollary (Glazman- H. - Zelesko, 2025+)

Let *G* be a planar graph that is expressible as the Benjamini–Schramm limit of finite planar graphs.

For which graphs is $N_{\infty}(\{\sigma=1\})=0$ for $p\leq 1/2$?

Corollary (Glazman- H. - Zelesko, 2025+)

Let G be a planar graph that is expressible as the Benjamini–Schramm limit of finite planar graphs. Equivalently, G is a planar, unimodular, invariantly amenable graph.

For which graphs is $N_{\infty}(\{\sigma=1\})=0$ for $p\leq 1/2$?

Corollary (Glazman- H. - Zelesko, 2025+)

Let G be a planar graph that is expressible as the Benjamini–Schramm limit of finite planar graphs. Equivalently, G is a planar, unimodular, invariantly amenable graph. Then $p_c(G) \ge 1/2$.

For which graphs is $N_{\infty}(\{\sigma=1\})=0$ for $p\leq 1/2$?

Corollary (Glazman- H. - Zelesko, 2025+)

Let G be a planar graph that is expressible as the Benjamini–Schramm limit of finite planar graphs. Equivalently, G is a planar, unimodular, invariantly amenable graph. Then $p_c(G) \ge 1/2$.

When G has minimal degree 7 and has a well-separated embedding:

For which graphs is $N_{\infty}(\{\sigma=1\})=0$ for $p\leq 1/2$?

Corollary (Glazman- H. - Zelesko, 2025+)

Let G be a planar graph that is expressible as the Benjamini–Schramm limit of finite planar graphs. Equivalently, G is a planar, unimodular, invariantly amenable graph. Then $p_c(G) \ge 1/2$.

When G has minimal degree 7 and has a well-separated embedding:

• $p_c < 1/2$ (Haslegrave and Panagiotis, 2021), and

For which graphs is $N_{\infty}(\{\sigma=1\})=0$ for $p\leq 1/2$?

Corollary (Glazman- H. - Zelesko, 2025+)

Let G be a planar graph that is expressible as the Benjamini–Schramm limit of finite planar graphs. Equivalently, G is a planar, unimodular, invariantly amenable graph. Then $p_c(G) \ge 1/2$.

When G has minimal degree 7 and has a well-separated embedding:

- $p_c < 1/2$ (Haslegrave and Panagiotis, 2021), and
- $p_u \ge 1 p_c$ (Li, 2023).

For which graphs is $N_{\infty}(\{\sigma=1\})=0$ for $p\leq 1/2$?

Corollary (Glazman- H. - Zelesko, 2025+)

Let G be a planar graph that is expressible as the Benjamini–Schramm limit of finite planar graphs. Equivalently, G is a planar, unimodular, invariantly amenable graph. Then $p_c(G) \ge 1/2$.

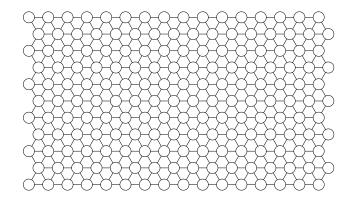
When G has minimal degree 7 and has a well-separated embedding:

- $p_c < 1/2$ (Haslegrave and Panagiotis, 2021), and
- $p_u \ge 1 p_c$ (Li, 2023).

Peled (2020) showed that $\exists p^* > 0$ such that, $p < p^*$ implies the circle packing of Bernoulli percolation exhibits exponential decay in *geometric* distance.

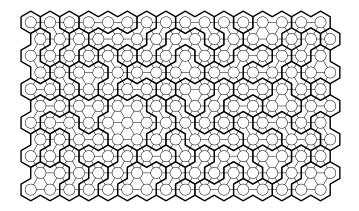
Corollary (Glazman- H. - Zelesko, 2025+)

Consider a translation-invariant partition of ${\mathbb T}$ into *finite* classes.

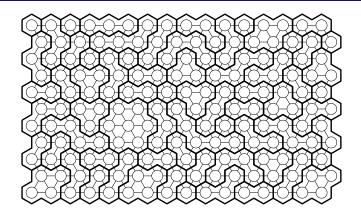


Corollary (Glazman- H. - Zelesko, 2025+)

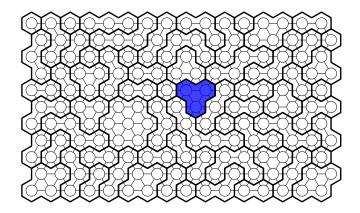
Consider a translation-invariant partition of \mathbb{T} into *finite* classes.



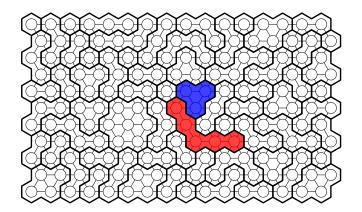
Corollary (Glazman- H. - Zelesko, 2025+)



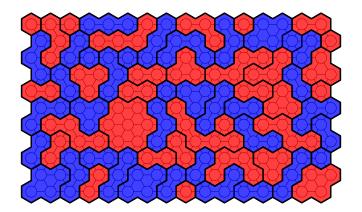
Corollary (Glazman- H. – Zelesko, 2025+)



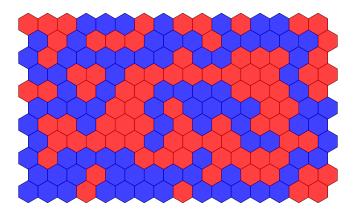
Corollary (Glazman- H. - Zelesko, 2025+)



Corollary (Glazman– H. – Zelesko, 2025+)

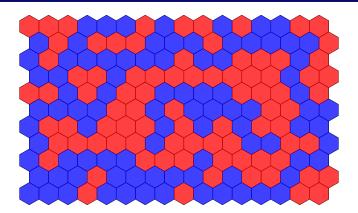


Corollary (Glazman- H. – Zelesko, 2025+)



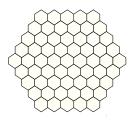
Corollary (Glazman- H. – Zelesko, 2025+)

Consider a translation-invariant partition of \mathbb{T} into *finite* classes. Color each class red or blue, uniformly and independently. Then the resulting 2-coloring is translation invariant and has finite connected components.



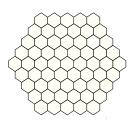
Let $\mathcal D$ be a finite domain in the hexagonal lattice $\mathbb H$.

Let $\mathcal D$ be a finite domain in the hexagonal lattice $\mathbb H$.



Let \mathcal{D} be a finite domain in the hexagonal lattice \mathbb{H} .

We say ω , a subgraph of \mathcal{D} , is a *loop configuration* if every vertex in \mathcal{D} has even degree in ω .



Let \mathcal{D} be a finite domain in the hexagonal lattice \mathbb{H} .

We say ω , a subgraph of \mathcal{D} , is a *loop configuration* if every vertex in \mathcal{D} has even degree in ω .

Let \mathcal{D} be a finite domain in the hexagonal lattice \mathbb{H} .

We say ω , a subgraph of \mathcal{D} , is a *loop configuration* if every vertex in \mathcal{D} has even degree in ω .

Given n, x > 0, we sample a loop configuration ω by

$$\mathbb{P}_{\mathcal{D},n,x}[\omega] = \frac{1}{Z_{\mathcal{D},n,x}} \cdot n^{\ell(\omega)} \cdot x^{|\omega|},$$

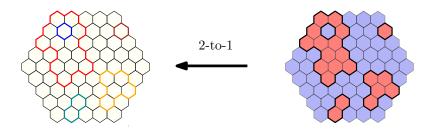
Let $\mathcal D$ be a finite domain in the hexagonal lattice $\mathbb H.$

We say ω , a subgraph of \mathcal{D} , is a *loop configuration* if every vertex in \mathcal{D} has even degree in ω .

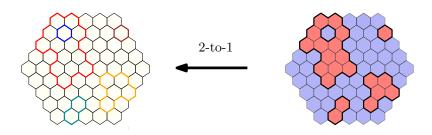
Given n, x > 0, we sample a loop configuration ω by

$$\mathbb{P}_{\mathcal{D},n,x}[\omega] = \frac{1}{Z_{\mathcal{D},n,x}} \cdot n^{\ell(\omega)} \cdot x^{|\omega|},$$

where $\ell(\omega)$ is the number of loops, and $|\omega|$ is the number of edges.

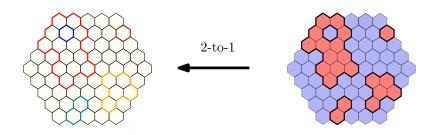


We can see other known models as special cases of the loop O(n) model:



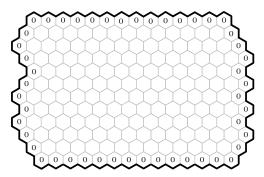
When n = 1, the faces have a nearest-neighbor interaction.

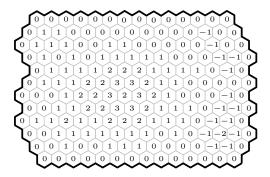
We can see other known models as special cases of the loop O(n) model:

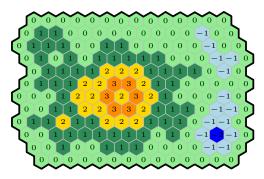


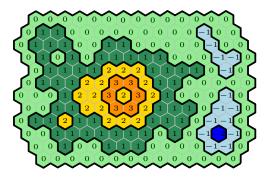
When n = 1, the faces have a nearest-neighbor interaction.

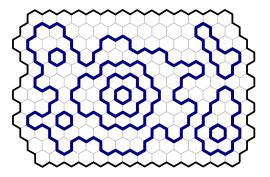
Therefore, loop O(1) model \leftrightarrow Ising model with $x = e^{-2\beta}$.



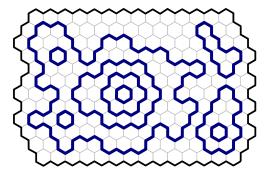






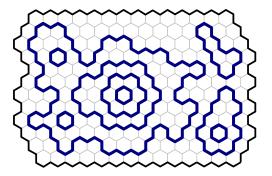


We can see other known models as special cases of the loop O(n) model:



For the level line loops, we must give each loop a weight of 2 — one for an upwards gradient and one for a downwards one.

We can see other known models as special cases of the loop O(n) model:



For the level line loops, we must give each loop a weight of 2 — one for an upwards gradient and one for a downwards one.

Therefore, loop O(2) model \leftrightarrow integer valued Lipschitz functions.

Geometry of the loop O(n) model

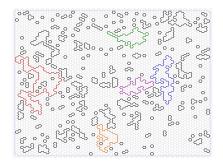
Question

What does a typical configuration of the loop O(n) model look like?

Geometry of the loop O(n) model

Question

What does a typical configuration of the loop O(n) model look like?

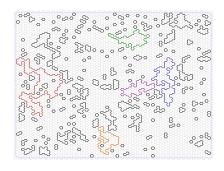


$$n = 1.4, x = 0.6$$

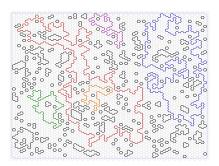
Geometry of the loop O(n) model

Question

What does a typical configuration of the loop O(n) model look like?



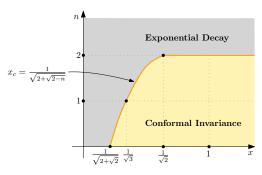
$$n = 1.4, x = 0.6$$



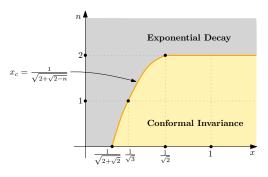
$$n = 1.4, x = 0.63$$

Nienhuis ('82) predicted the following phase diagram for the loop O(n) model:

Nienhuis ('82) predicted the following phase diagram for the loop O(n) model:

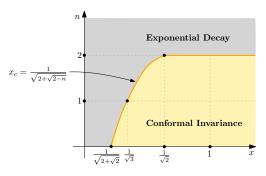


Nienhuis ('82) predicted the following phase diagram for the loop O(n) model:



Kager-Nienhuis ('06) got more specific about the critical behavior:

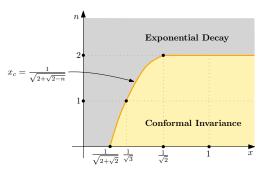
Nienhuis ('82) predicted the following phase diagram for the loop O(n) model:



Kager-Nienhuis ('06) got more specific about the critical behavior:

- If $x = x_c(n)$, convergence to $CLE(\kappa_1(n))$,
- If $x > x_c(n)$, convergence to $CLE(\kappa_2(n))$,

Nienhuis ('82) predicted the following phase diagram for the loop O(n) model:



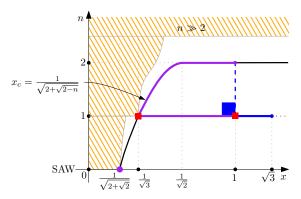
Kager-Nienhuis ('06) got more specific about the critical behavior:

- If $x = x_c(n)$, convergence to $CLE(\kappa_1(n))$,
- If $x > x_c(n)$, convergence to $CLE(\kappa_2(n))$,

where
$$\kappa_1(n) = \frac{4\pi}{2\pi - \cos^{-1}(-n/2)}$$
, and $\kappa_2(n) = \frac{4\pi}{\cos^{-1}(-n/2)}$.

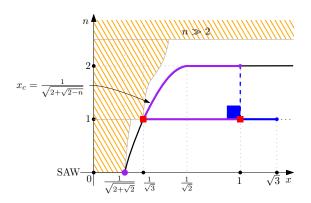
The following has been rigorously established:

The following has been rigorously established:



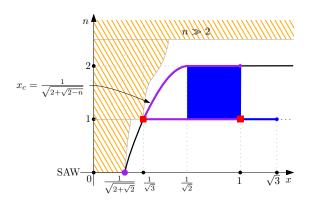
Theorem (Glazman– H. – Zelesko, 2025+)

If $1 \le n \le 2$ and $1/\sqrt{2} \le x \le 1$, any translation-invariant Gibbs measure has long loops.



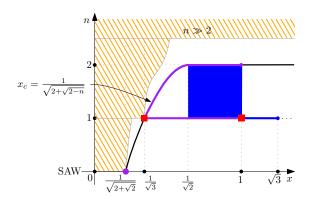
Theorem (Glazman– H. – Zelesko, 2025+)

If $1 \le n \le 2$ and $1/\sqrt{2} \le x \le 1$, any translation-invariant Gibbs measure has long loops.



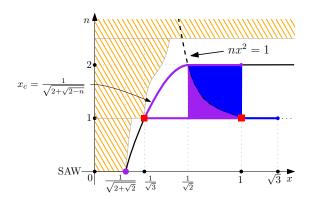
Theorem (Glazman– H. – Zelesko, 2025+)

If $1 \le n \le 2$ and $1/\sqrt{2} \le x \le 1$, any translation-invariant Gibbs measure has long loops. If $nx^2 \le 1$, macroscopic loops.

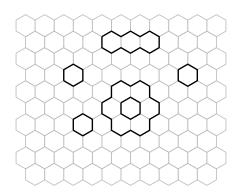


Theorem (Glazman- H. - Zelesko, 2025+)

If $1 \le n \le 2$ and $1/\sqrt{2} \le x \le 1$, any translation-invariant Gibbs measure has long loops. If $nx^2 \le 1$, macroscopic loops.

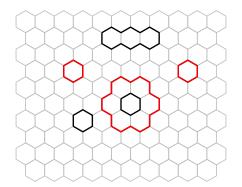


We create a 'defect' representation of the loop O(n) model:



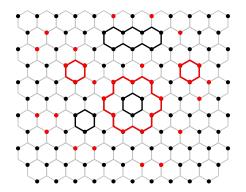
We create a 'defect' representation of the loop O(n) model:

• A loop is a defect with probability (n-1)/n, and



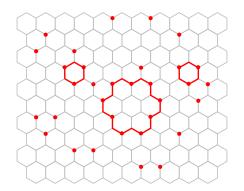
We create a 'defect' representation of the loop O(n) model:

- A loop is a defect with probability (n-1)/n, and
- a Y-vertex off a loop is a defect with probability $1 x^2$.



We create a 'defect' representation of the loop O(n) model:

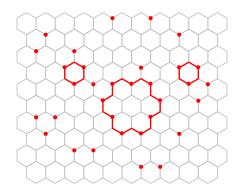
- A loop is a defect with probability (n-1)/n, and
- a Y-vertex off a loop is a defect with probability $1 x^2$.



We create a 'defect' representation of the loop O(n) model:

- A loop is a defect with probability (n-1)/n, and
- a Y-vertex off a loop is a defect with probability $1 x^2$.

By divide and color theorem, defects do not percolate.

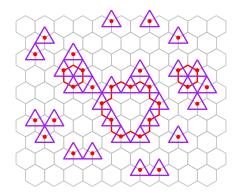


We create a 'defect' representation of the loop O(n) model:

- A loop is a defect with probability (n-1)/n, and
- a Y-vertex off a loop is a defect with probability $1 x^2$.

By divide and color theorem, defects do not percolate.

The Δ -bond percolation of the defects does not percolate either!

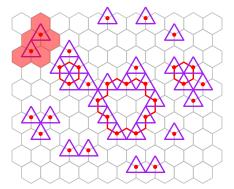


We create a 'defect' representation of the loop O(n) model:

- A loop is a defect with probability (n-1)/n, and
- a Y-vertex off a loop is a defect with probability $1 x^2$.

By divide and color theorem, defects do not percolate.

The Δ -bond percolation of the defects does not percolate either!

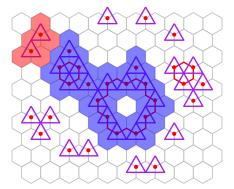


We create a 'defect' representation of the loop O(n) model:

- A loop is a defect with probability (n-1)/n, and
- a Y-vertex off a loop is a defect with probability $1 x^2$.

By divide and color theorem, defects do not percolate.

The Δ -bond percolation of the defects does not percolate either!

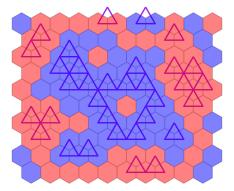


We create a 'defect' representation of the loop O(n) model:

- A loop is a defect with probability (n-1)/n, and
- a Y-vertex off a loop is a defect with probability $1 x^2$.

By divide and color theorem, defects do not percolate.

The Δ -bond percolation of the defects does not percolate either!

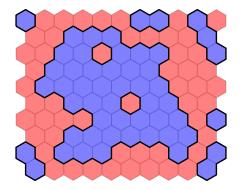


We create a 'defect' representation of the loop O(n) model:

- A loop is a defect with probability (n-1)/n, and
- a Y-vertex off a loop is a defect with probability $1 x^2$.

By divide and color theorem, defects do not percolate.

The Δ -bond percolation of the defects does not percolate either!

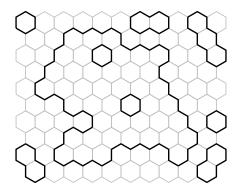


We create a 'defect' representation of the loop O(n) model:

- A loop is a defect with probability (n-1)/n, and
- a Y-vertex off a loop is a defect with probability $1 x^2$.

By divide and color theorem, defects do not percolate.

The Δ -bond percolation of the defects does not percolate either!



Assume that $N_{\infty}(\{\sigma=1\}) \geq 1$. Take K large.

Assume that $N_{\infty}(\{\sigma=1\}) \geq 1$. Take K large.

$$\varepsilon > \mathbb{P}\left(\underbrace{\sum_{K}}\right)$$

Assume that $N_{\infty}(\{\sigma=1\}) \geq 1$. Take K large. By FKG and symmetry,

$$\varepsilon > \mathbb{P}\left(\underbrace{\sum_{K}}\right)$$

Assume that $N_{\infty}(\{\sigma=1\}) \geq 1$. Take K large. By FKG and symmetry,

$$\varepsilon > \mathbb{P}\left(\underbrace{\begin{array}{c} \\ \\ \\ \\ \end{array}} \right) \geq \underbrace{\begin{array}{c} \\ \\ \\ \end{array}} \left(\underbrace{\begin{array}{c} \\ \\ \\ \end{array}} \right) \cdot \mathbb{P}\left(\underbrace{\begin{array}{c} \\ \\ \\ \\ \end{array}} \right) = \mathbb{P}\left(\underbrace{\begin{array}{c} \\ \\ \\ \end{array}} \right)^{4}$$

Assume that $N_{\infty}(\{\sigma=1\}) \geq 1$. Take K large. By FKG and symmetry,

$$\varepsilon > \mathbb{P}\left(\frac{1}{K}\right) \geq \mathbb{P}\left(\frac{1}{K}\right) \cdot \mathbb{P}\left(\frac{1}{K}\right) = \mathbb{P}\left(\frac{1}{K}\right)^{4}$$

Now, by a union bound and color switching (p = 1/2),

Assume that $N_{\infty}(\{\sigma=1\}) \geq 1$. Take K large. By FKG and symmetry,

$$\varepsilon > \mathbb{P}\left(\underbrace{\begin{array}{c} \\ \\ \\ \\ \end{array}} \right) \geq \underbrace{\begin{array}{c} \\ \\ \\ \end{array}} \left(\underbrace{\begin{array}{c} \\ \\ \\ \end{array}} \right) \cdot \mathbb{P}\left(\underbrace{\begin{array}{c} \\ \\ \\ \\ \end{array}} \right) = \mathbb{P}\left(\underbrace{\begin{array}{c} \\ \\ \\ \end{array}} \right)^{4}$$

Now, by a union bound and color switching (p = 1/2),

$$1 - 4\varepsilon^{1/4} < \mathbb{P}\left(\sum_{\infty}^{\infty}\right)$$

Assume that $N_{\infty}(\{\sigma=1\}) \geq 1$. Take K large. By FKG and symmetry,

$$\varepsilon > \mathbb{P}\left(\underbrace{\begin{array}{c} \\ \\ \\ \\ \end{array}} \right) \geq \underbrace{\begin{array}{c} \\ \\ \\ \end{array}} \mathbb{P}\left(\underbrace{\begin{array}{c} \\ \\ \\ \end{array}} \right) \cdot \mathbb{P}\left(\underbrace{\begin{array}{c} \\ \\ \\ \\ \end{array}} \right) = \mathbb{P}\left(\underbrace{\begin{array}{c} \\ \\ \\ \end{array}} \right)^{4}$$

Now, by a union bound and color switching (p = 1/2),

$$1 - 4\varepsilon^{1/4} < \mathbb{P}\left(\underbrace{\begin{array}{c} \\ \\ \end{array}}\right) \le \mathbb{P}\left(\text{exists} \ge 2 \text{ open or } \ge 2 \text{ closed infinite clusters}\right)$$

Assume that $N_{\infty}(\{\sigma=1\}) \geq 1$. Take K large. By FKG and symmetry,

$$\varepsilon > \mathbb{P}\left(\underbrace{\begin{array}{c} \\ \\ \\ \\ \end{array}} \right) \geq \underbrace{\begin{array}{c} \\ \\ \\ \end{array}} \mathbb{P}\left(\underbrace{\begin{array}{c} \\ \\ \\ \end{array}} \right) \cdot \mathbb{P}\left(\underbrace{\begin{array}{c} \\ \\ \\ \\ \end{array}} \right) = \mathbb{P}\left(\underbrace{\begin{array}{c} \\ \\ \\ \end{array}} \right)^{4}$$

Now, by a union bound and color switching (p = 1/2),

$$1 - 4\varepsilon^{1/4} < \mathbb{P}\left(\underbrace{\sum_{i=1}^{\infty}}\right) \le \mathbb{P}\left(\text{exists} \ge 2 \text{ open or } \ge 2 \text{ closed infinite clusters}\right)$$

By ergodicity, $N_{\infty}(\{\sigma=1\})=\infty$, almost surely.

Theorem (Glazman- H. - Zelesko, 2025+)

Let *G* be a locally finite, connected planar graph, and $\sigma: V(G) \to \{0, 1\}$ a site percolation process that satisfies:

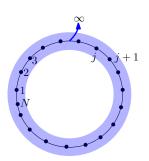
- tail triviality,
- positively association (i.e. the FKG inequality), and
- stochastic domination of $\{\sigma = 1\}$ by $\{\sigma = 0\}$.

Then $N_{\infty}(\{\sigma=1\})=0$ a.s., or $N_{\infty}(\{\sigma=1\})=\infty$ a.s.

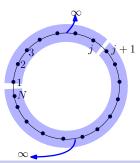
Assume that $N_{\infty}(\{\sigma=1\}) \geq 1$.

Assume that $N_{\infty}(\{\sigma=1\}) \ge 1$. Pick a Jordan domain large enough so that the probability it *does not* intersect an infinite component is at most ε .

Assume that $N_{\infty}(\{\sigma=1\}) \geq 1$. Pick a Jordan domain large enough so that the probability it *does not* intersect an infinite component is at most ε .



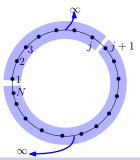
Assume that $N_{\infty}(\{\sigma=1\}) \geq 1$. Pick a Jordan domain large enough so that the probability it *does not* intersect an infinite component is at most ε .



Assume that $N_{\infty}(\{\sigma=1\}) \ge 1$. Pick a Jordan domain large enough so that the probability it *does not* intersect an infinite component is at most ε .

Pick *j* to be the largest index so that

$$\mathbb{P}\left([1,j]\not\longleftrightarrow\infty\right)>\sqrt{\varepsilon/2}.$$

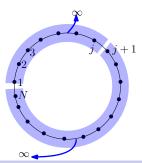


Assume that $N_{\infty}(\{\sigma=1\}) \geq 1$. Pick a Jordan domain large enough so that the probability it *does not* intersect an infinite component is at most ε .

Pick *j* to be the largest index so that

$$\mathbb{P}\left([1,j]\not\longleftrightarrow\infty\right)>\sqrt{\varepsilon/2}.$$

By FKG, $\mathbb{P}([j+1,N] \not\longleftrightarrow \infty) \le \sqrt{2\varepsilon}$,



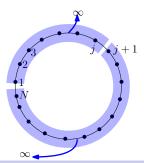
Assume that $N_{\infty}(\{\sigma=1\}) \geq 1$. Pick a Jordan domain large enough so that the probability it *does not* intersect an infinite component is at most ε .

Pick *j* to be the largest index so that

$$\mathbb{P}\left([1,j]\not\longleftrightarrow\infty\right)>\sqrt{\varepsilon/2}.$$

By FKG, $\mathbb{P}\left(\left[j+1,N\right]\not\longleftrightarrow\infty\right)\leq\sqrt{2\varepsilon},$ and

$$\mathbb{P}(\{j+1\}\not\longleftrightarrow\infty)\cdot\mathbb{P}([1,j]\not\longleftrightarrow\infty)\leq\sqrt{\varepsilon/2}.$$



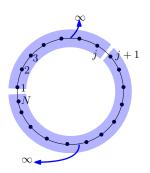
Assume that $N_{\infty}(\{\sigma=1\}) \geq 1$. Pick a Jordan domain large enough so that the probability it *does not* intersect an infinite component is at most ε .

Pick *j* to be the largest index so that

$$\mathbb{P}\left([1,j]\not\longleftrightarrow\infty\right)>\sqrt{\varepsilon/2}.$$

By FKG, $\mathbb{P}\left(\left[j+1,N\right]\not\longleftrightarrow\infty\right)\leq\sqrt{2\varepsilon},$ and

$$\frac{1}{2} \cdot \mathbb{P}([1,j] \not\longleftrightarrow \infty) \le \sqrt{\varepsilon/2}.$$



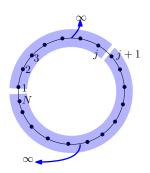
Assume that $N_{\infty}(\{\sigma=1\}) \geq 1$. Pick a Jordan domain large enough so that the probability it *does not* intersect an infinite component is at most ε .

Pick *j* to be the largest index so that

$$\mathbb{P}\left([1,j]\not\longleftrightarrow\infty\right)>\sqrt{\varepsilon/2}.$$

By FKG, $\mathbb{P}([j+1, N] \not\longleftrightarrow \infty) \le \sqrt{2\varepsilon}$, and

$$\mathbb{P}\left([1,j]\not\longleftrightarrow\infty\right)\leq\sqrt{2\varepsilon}.$$



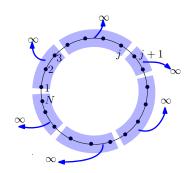
Assume that $N_{\infty}(\{\sigma=1\}) \geq 1$. Pick a Jordan domain large enough so that the probability it *does not* intersect an infinite component is at most ε .

Pick *j* to be the largest index so that

$$\mathbb{P}\left(\left[1,j\right]\not\longleftrightarrow\infty\right)>\sqrt{\varepsilon/2}.$$

By FKG, $\mathbb{P}([j+1, N] \not\longleftrightarrow \infty) \le \sqrt{2\varepsilon}$, and

$$\mathbb{P}\left([1,j]\not\longleftrightarrow\infty\right)\leq\sqrt{2\varepsilon}.$$



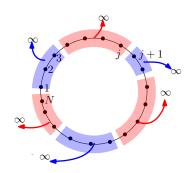
Assume that $N_{\infty}(\{\sigma=1\}) \geq 1$. Pick a Jordan domain large enough so that the probability it *does not* intersect an infinite component is at most ε .

Pick *j* to be the largest index so that

$$\mathbb{P}\left(\left[1,j\right]\not\longleftrightarrow\infty\right)>\sqrt{\varepsilon/2}.$$

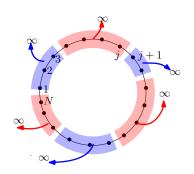
By FKG, $\mathbb{P}([j+1, N] \not\longleftrightarrow \infty) \le \sqrt{2\varepsilon}$, and

$$\mathbb{P}\left([1,j]\not\longleftrightarrow\infty\right)\leq\sqrt{2\varepsilon}.$$



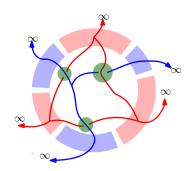
If there are *k* open and *k* closed arcs, we claim that, *for any coloring*,

$$N_{\infty}(\{\sigma=1\})+N_{\infty}(\{\sigma=0\})\geq k+1.$$



If there are *k* open and *k* closed arcs, we claim that, *for any coloring*,

$$N_{\infty}(\{\sigma=1\})+N_{\infty}(\{\sigma=0\})\geq k+1.$$

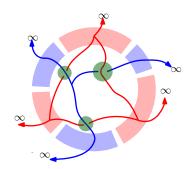


If there are *k* open and *k* closed arcs, we claim that, for any coloring,

$$N_{\infty}(\{\sigma=1\}) + N_{\infty}(\{\sigma=0\}) \ge k+1.$$

This implies that

$$1 - \delta \le \mathbb{P}[N_{\infty}(\{\sigma = 1\}) \ge (k+1)/2 \text{ or } N_{\infty}(\{\sigma = 0\}) \ge (k+1)/2]$$

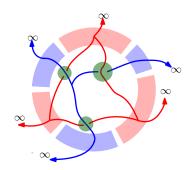


If there are *k* open and *k* closed arcs, we claim that, for any coloring,

$$N_{\infty}(\{\sigma=1\})+N_{\infty}(\{\sigma=0\})\geq k+1.$$

This implies that

$$1-\delta \leq 2 \cdot \mathbb{P}[N_{\infty}(\{\sigma=1\}) \geq (k+1)/2].$$

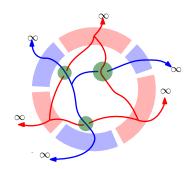


If there are *k* open and *k* closed arcs, we claim that, for any coloring,

$$N_{\infty}(\{\sigma=1\}) + N_{\infty}(\{\sigma=0\}) \ge k+1.$$

This implies that

$$\frac{1-\delta}{2} \leq \mathbb{P}[N_{\infty}(\{\sigma=1\}) \geq (k+1)/2].$$



On the percolation side:

On the percolation side:

• necessary and sufficient condition for $N_{\infty} = 0$ at p = 1/2?

On the percolation side:

• necessary and sufficient condition for $N_{\infty} = 0$ at p = 1/2?

Conjecture (Benjamini)

Let G be a planar graph such that both G and G^* have uniformly bounded degrees. Then $p_c \ge 1/2$ if and only if G is recurrent.

On the percolation side:

• necessary and sufficient condition for $N_{\infty} = 0$ at p = 1/2?

Conjecture (Benjamini)

Let G be a planar graph such that both G and G^* have uniformly bounded degrees. Then $p_c \ge 1/2$ if and only if G is recurrent.

• Is $p_u \ge 1 - p_c$ true for all planar graphs?

On the percolation side:

• necessary and sufficient condition for $N_{\infty} = 0$ at p = 1/2?

Conjecture (Benjamini)

Let G be a planar graph such that both G and G^* have uniformly bounded degrees. Then $p_c \ge 1/2$ if and only if G is recurrent.

• Is $p_u \ge 1 - p_c$ true for all planar graphs?

Further applications:

On the percolation side:

• necessary and sufficient condition for $N_{\infty} = 0$ at p = 1/2?

Conjecture (Benjamini)

Let *G* be a planar graph such that both *G* and G^* have uniformly bounded degrees. Then $p_c \ge 1/2$ if and only if *G* is recurrent.

• Is $p_u \ge 1 - p_c$ true for all planar graphs?

Further applications:

• Which planar, unimodular, invariantly amenable graphs are recurrent?

On the percolation side:

• necessary and sufficient condition for $N_{\infty} = 0$ at p = 1/2?

Conjecture (Benjamini)

Let *G* be a planar graph such that both *G* and G^* have uniformly bounded degrees. Then $p_c \ge 1/2$ if and only if *G* is recurrent.

• Is $p_u \ge 1 - p_c$ true for all planar graphs?

Further applications:

- Which planar, unimodular, invariantly amenable graphs are recurrent?
- BKT phase transitions on more general planar geometries?

Thank you!