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Bernoulli Site Percolation
Setting: Let G be an infinite, locally finite, connected graph,

and p ∈ [0,1].
Consider σ : V (G)→ {0,1}, an independent two-coloring of the vertices of G:

P(σ) = p #open(σ) · (1− p)#closed(σ)

As p increases, more sites open. We define:

pc(G) := inf{p : Pp[∃ an infinite component of open sites] > 0}
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Percolation on Transitive Graphs

Let N∞ be the number of infinite connected open components.

When G is transitive, N∞ is almost surely constant, and must be 0,1, or∞.

When G is amenable, N∞ ∈ {0,1} (Burton – Keane, 1989).

Gk

|∂Gk|
|Gk

→ 0
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When G is transitive, N∞ is almost surely constant, and must be 0,1, or∞.

When G is amenable, N∞ ∈ {0,1} (Burton – Keane, 1989).

Conjecture

Let pu = inf{p : Pp[N∞({σ = 1}) = 1] > 0} and G be a quasi-transitive
graph.

Then pc = pu if and only if G is amenable.
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General Planar Graphs

For general planar graphs, many of these orthodoxies are no longer true!

Conjecture 8 (Benjamini–Schramm, 1996)

Let G be any locally finite, connected planar graph. Then, for Bernoulli
percolation of parameter 1/2, N∞({σ = 1}) ∈ {0,∞}.
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Main Percolation Result

Theorem (Glazman– H. – Zelesko, 2025+)

Let G be a locally finite, connected planar graph, and σ : V (G)→ {0,1}
a site percolation process that satisfies:

tail triviality,

positively association (i.e. the FKG inequality), and
stochastic domination of {σ = 1} by {σ = 0}

.
Then N∞({σ = 1}) = 0 a.s., or N∞({σ = 1}) =∞ a.s.

General G: no symmetry or accumulation points assumptions on G.

General σ: no assumption of independence.

In particular, the result holds for Bernoulli percolation of parameter p ≤ 1/2.
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Consequences for pc

For which graphs is N∞({σ = 1}) = 0 for p ≤ 1/2?

Corollary (Glazman– H. – Zelesko, 2025+)

Let G be a planar graph that is expressible as the Benjamini–Schramm
limit of finite planar graphs.

Equivalently, G is a planar, unimodular,
invariantly amenable graph. Then pc(G) ≥ 1/2.

When G has minimal degree 7 and has a well-separated embedding:
pc < 1/2 (Haslegrave and Panagiotis, 2021), and

pu ≥ 1− pc (Li, 2023).

Peled (2020) showed that ∃p∗ > 0 such that, p < p∗ implies the circle packing
of Bernoulli percolation exhibits exponential decay in geometric distance.
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Application: Divide and Color Models

Corollary (Glazman– H. – Zelesko, 2025+)

Consider a translation-invariant partition of T into finite classes.

Color
each class red or blue, uniformly and independently. Then the resulting
2-coloring is translation invariant and has finite connected components.
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Application: the loop O(n) model
Let D be a finite domain in the hexagonal lattice H.

We say ω, a subgraph of D, is a loop configuration if every vertex in D has
even degree in ω.

Given n, x > 0, we sample a loop configuration ω by

PD,n,x [ω] =
1

ZD,n,x
· nℓ(ω) · x |ω|,

where ℓ(ω) is the number of loops, and |ω| is the number of edges.
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Some special cases

We can see other known models as special cases of the loop O(n) model:

2-to-1

When n = 1, the faces have a nearest-neighbor interaction.

Therefore, loop O(1) model↔ Ising model with x = e−2β .
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For the level line loops, we must give each loop a weight of 2 — one for an
upwards gradient and one for a downwards one.

Therefore, loop O(2) model↔ integer valued Lipschitz functions.
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Geometry of the loop O(n) model

Question

What does a typical configuration of the loop O(n) model look like?

n = 1.4, x = 0.6 n = 1.4, x = 0.63
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The conjectured phase diagram

Nienhuis (’82) predicted the following phase diagram for the loop O(n) model:

n

x

xc =
1√

2+
√
2−n

11√
2

1√
2+

√
2

1

2

Conformal Invariance

1√
3

Exponential Decay

Kager–Nienhuis (’06) got more specific about the critical behavior:
If x = xc(n), convergence to CLE(κ1(n)),
If x > xc(n), convergence to CLE(κ2(n)),

where κ1(n) = 4π
2π−cos−1(−n/2) , and κ2(n) = 4π

cos−1(−n/2) .
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The rigorously known phase diagram

The following has been rigorously established:

n

x

xc =
1√

2+
√
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SAW
0

√
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n >> 2
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The rigorously known phase diagram

Theorem (Glazman– H. – Zelesko, 2025+)

If 1 ≤ n ≤ 2 and 1/
√

2 ≤ x ≤ 1, any translation-invariant Gibbs mea-
sure has long loops.

If nx2 ≤ 1, macroscopic loops.
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Proof Outline
We create a ‘defect’ representation of the loop O(n) model:

A loop is a defect with probability (n − 1)/n, and

a Y -vertex off a loop is a defect with probability 1− x2

.
By divide and color theorem, defects do not percolate.

The ∆-bond percolation of the defects does not percolate either!

We now divide and color again – via components of ∆.
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Warm up: Zhang’s argument for T at p = 1/2

Assume that N∞({σ = 1}) ≥ 1. Take K large.

By FKG and symmetry,

∞

ε > P
K

Now, by a union bound and color switching (p = 1/2),

1− 4ε1/4 < P
∞

∞ ∞

By ergodicity, N∞({σ = 1}) =∞, almost surely.

M. Harel (Northeastern University) Planar Percolation and Loop O(n) Nov. 18 2025 14 / 17



Warm up: Zhang’s argument for T at p = 1/2

Assume that N∞({σ = 1}) ≥ 1. Take K large.

By FKG and symmetry,

∞

ε > P
K

Now, by a union bound and color switching (p = 1/2),

1− 4ε1/4 < P
∞

∞ ∞

By ergodicity, N∞({σ = 1}) =∞, almost surely.

M. Harel (Northeastern University) Planar Percolation and Loop O(n) Nov. 18 2025 14 / 17



Warm up: Zhang’s argument for T at p = 1/2

Assume that N∞({σ = 1}) ≥ 1. Take K large. By FKG and symmetry,

∞

ε > P
K

Now, by a union bound and color switching (p = 1/2),

1− 4ε1/4 < P
∞

∞ ∞

By ergodicity, N∞({σ = 1}) =∞, almost surely.

M. Harel (Northeastern University) Planar Percolation and Loop O(n) Nov. 18 2025 14 / 17



Warm up: Zhang’s argument for T at p = 1/2

Assume that N∞({σ = 1}) ≥ 1. Take K large. By FKG and symmetry,

∞
≥
P P

P P
P=

4

∞

∞ ∞

∞

∞

ε > P
K

Now, by a union bound and color switching (p = 1/2),

1− 4ε1/4 < P
∞

∞ ∞

By ergodicity, N∞({σ = 1}) =∞, almost surely.

M. Harel (Northeastern University) Planar Percolation and Loop O(n) Nov. 18 2025 14 / 17



Warm up: Zhang’s argument for T at p = 1/2

Assume that N∞({σ = 1}) ≥ 1. Take K large. By FKG and symmetry,

∞
≥
P P

P P
P=

4

∞

∞ ∞

∞

∞

ε > P
K

Now, by a union bound and color switching (p = 1/2),

1− 4ε1/4 < P
∞

∞ ∞

By ergodicity, N∞({σ = 1}) =∞, almost surely.

M. Harel (Northeastern University) Planar Percolation and Loop O(n) Nov. 18 2025 14 / 17



Warm up: Zhang’s argument for T at p = 1/2

Assume that N∞({σ = 1}) ≥ 1. Take K large. By FKG and symmetry,

∞
≥
P P

P P
P=

4

∞

∞ ∞

∞

∞

ε > P
K

Now, by a union bound and color switching (p = 1/2),

1− 4ε1/4 < P
∞

∞ ∞

By ergodicity, N∞({σ = 1}) =∞, almost surely.

M. Harel (Northeastern University) Planar Percolation and Loop O(n) Nov. 18 2025 14 / 17



Warm up: Zhang’s argument for T at p = 1/2

Assume that N∞({σ = 1}) ≥ 1. Take K large. By FKG and symmetry,

∞
≥
P P

P P
P=

4

∞

∞ ∞

∞

∞

ε > P
K

Now, by a union bound and color switching (p = 1/2),

1− 4ε1/4 < P
∞

∞ ∞

≤ P exists ≥ 2 open or ≥ 2 closed infinite clusters

By ergodicity, N∞({σ = 1}) =∞, almost surely.

M. Harel (Northeastern University) Planar Percolation and Loop O(n) Nov. 18 2025 14 / 17



Warm up: Zhang’s argument for T at p = 1/2

Assume that N∞({σ = 1}) ≥ 1. Take K large. By FKG and symmetry,

∞
≥
P P

P P
P=

4

∞

∞ ∞

∞

∞

ε > P
K

Now, by a union bound and color switching (p = 1/2),

1− 4ε1/4 < P
∞

∞ ∞

≤ P exists ≥ 2 open or ≥ 2 closed infinite clusters

By ergodicity, N∞({σ = 1}) =∞, almost surely.

M. Harel (Northeastern University) Planar Percolation and Loop O(n) Nov. 18 2025 14 / 17



Proof Outline

Theorem (Glazman– H. – Zelesko, 2025+)

Let G be a locally finite, connected planar graph, and σ : V (G)→ {0,1}
a site percolation process that satisfies:

tail triviality,
positively association (i.e. the FKG inequality), and
stochastic domination of {σ = 1} by {σ = 0}.

Then N∞({σ = 1}) = 0 a.s., or N∞({σ = 1}) =∞ a.s.
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Proof Outline
Assume that N∞({σ = 1}) ≥ 1.

Pick a Jordan domain large enough so that
the probability it does not intersect an infinite component is at most ε.

Pick j to be the largest index so that

P ([1, j] ̸←→ ∞) >
√

ε/2.

By FKG, P ([j + 1,N] ̸←→ ∞) ≤
√

2ε, and

P({j + 1} ̸←→ ∞) · P ([1, j] ̸←→ ∞) ≤
√
ε/2.

1

2

j

N

3 j + 1

∞
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Proof Outline
If there are k open and k closed arcs, we claim that, for any coloring,

N∞({σ = 1}) + N∞({σ = 0}) ≥ k + 1.

This implies that

1− δ ≤ P[N∞({σ = 1}) ≥ (k + 1)/2 or N∞({σ = 0}) ≥ (k + 1)/2]

1
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j

N

3 j + 1
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Future Work

On the percolation side:

necessary and sufficient condition for N∞ = 0 at p = 1/2?

Conjecture (Benjamini)

Let G be a planar graph such that both G and G∗ have uniformly
bounded degrees. Then pc ≥ 1/2 if and only if G is recurrent.

Is pu ≥ 1− pc true for all planar graphs?

Further applications:

Which planar, unimodular, invariantly amenable graphs are recurrent?

BKT phase transitions on more general planar geometries?
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Thank you!
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