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Abstract: This paper classifies a class of holomorphic D-branes, closely related to
framed torsion-free sheaves, on threefolds fibered in resolved ADE surfaces over a
general curve C , in terms of representations with relations of a twisted Kronheimer–
Nakajima-type quiver in the category Coh(C) of coherent sheaves on C . For the local
Calabi–Yau case C ∼= A1 and special choice of framing, one recovers the N = 1 ADE
quiver studied by Cachazo–Katz–Vafa.

Introduction

The purpose of this paper is to study, via dimensional reduction, certain holomorphic
D-branes, closely related to torsion-free sheaves, on threefolds X→C fibered in resolved
ADE surfaces over a curve. Fibered local Calabi–Yau threefolds X → A

1 of this type, as
well as their deformations Xs → A

1 and extremal transitions, were thoroughly analyzed
in [6,7] from the point of view of supersymmetric gauge theory. The paper [6] contains
an assertion, made explicit in [14] and studied in [21], that exceptional components of
a natural threefold contraction Xs → X̄s are classified by irreducible representations of
a certain quiver with loop edges, the N = 1 ADE quiver (see Fig. 3.2 for an example),
satisfying a specific set of relations. This statement is in the spirit of Gabriel’s theorem
classifying exceptional (not necessarily irreducible) rational curves in resolved ADE
surfaces in terms of irreducible representations of the corresponding Dynkin quiver.

In this paper we generalize the work of [6,14,21] in two directions: we consider
holomorphic D-branes, objects in the derived category of coherent sheaves, instead
of exceptional components, and we study the semi-local case: the neighbourhood of a
deformed ADE fibration Xs → C over a general curve C . The main result is Theo-
rem 3.1, which shows that certain holomorphic D-branes on the fibered threefold Xs
are classified by representations with relations of a Kronheimer–Nakajima-type quiver
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in the category Coh(C) of coherent sheaves on the curve C . In particular, moduli spaces
of such holomorphic D-branes are quiver bundle varieties over C . If C ∼= A

1, a fur-
ther dimensional reduction leads to Theorem 3.4, relating sheaves on the threefold to the
zero-dimensional problem of ordinary matrix representations of the N = 1 ADE quiver
of [6,14,21]. The loops in the N = 1 ADE quiver arise as the action by multiplication
of a parameter t ∈ H0(OA1) on spaces of sections of sheaves on the base A

1.
The geometry considered in this paper is non-monodromic, meaning that there is no

global [19] nor local [6] monodromy in the fibration of ADE surfaces over the curve C .
It appears to be an interesting question to extend the results proved here to these more
general cases involving monodromy.

In recent work [9], the moduli space of certain very special holomorphic D-branes
on resolved A1-fibered geometries X → C has been connected, via imposing a super-
potential and going through a large N transition, to the Hitchin system on C . The branes
studied in [9] are not of the type classified by our results; they should rather correspond to
a complex of quiver representations. Understanding the precise connection between [9]
and the present paper is left for future work.

After introducing basic notation in Sect. 1, Sect. 2 describes the threefolds we study,
and defines some auxiliary sheaves of non-commutative algebras over the curve C . Sec-
tion 3 contains our results, in particular the general statement Theorem 3.1 connecting
quiver bundles to holomorphic D-branes on ADE fibrations, as well as the statement for
the affine case. Proofs are discussed in Sect. 4.

1. Finite Groups of Type ADE and Surfaces

Let � < SL(2, C) be a finite subgroup of type A, D or E . Let h0 be the Cartan subal-
gebra of the finite dimensional Lie algebra of the same type. Fix a set of simple roots
{ηa : a ∈ �0} indexed by nodes of the Dynkin diagram �0, and let R+ be the set of
positive roots. Let h be the corresponding affine Cartan with simple roots indexed by
nodes of the Dynkin diagram � ⊃ �0.

The group ring C� has center Z(C�) ∼= C
�; explicitly, for λ ∈ Z(C�), the isomor-

phism is obtained by taking the trace of λ on a set of irreps, indexed by the nodes of �

according to the McKay correspondence. There is also a natural identification

h0 = {λ ∈ C
� | λ · δ = 0} ⊂ h ∼= C

�,

where δ = (δa) are the dimensions of the irreps of �.

Lemma 1.1. The centralizer CGL(2,C)(�) of � in GL(2, C) is
(1) the full group GL(2, C) for type A1;
(2) a torus (C�)2 in GL(2, C) for type An with n > 1;
(3) the center C

� of GL(2, C) for types D and E.

Let Ȳ = A
2/� be the singular affine quotient, Y → Ȳ its minimal resolution.

Exceptional curves in the resolution are in one-to-one correspondence with the nodes of
�0, and thus with a set of simple roots of h0; the positive roots η ∈ R+ correspond to
connected, possibly reducible exceptional rational curves. The universal deformations
Y → h0 and Ȳ → h0/W of Y and Ȳ , where W denotes the Weyl group, are connected
by the well known commutative diagram

Y −→ p∗Ȳ −→ Ȳ
↘ ↓ ↓

h0
p−→ h0/W.
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2. Threefolds: Definitions

2.1. The geometry. Let C be a curve, and let Q be a rank-two vector bundle on C
whose structure group reduces from GL(2, C) to the centralizer CGL(2,C)(�). Thus, by
Lemma 1.1,

• for type A1, Q is an arbitrary rank-two vector bundle;
• for type An with n > 1, Q ∼= Q1 ⊕ Q2 is the direct sum of two line bundles;
• for types D, E , Q ∼= Q⊕2

0 for some line bundle Q0.

There is a fiberwise �-action on the total space of the vector bundle Q, and the quotient
X̄ = Q/� is a threefold with a curve of compound Du Val singularities along the image
of the zero section. Let f : X → X̄ be the crepant resolution, with a map π : X → C
whose fibres are minimal resolutions of the corresponding surface singularity, with trivial
monodromy in the fibres. The canonical bundle of X is

ωX ∼= π∗(ωC ⊗ det Q∨).

In particular, X is Calabi–Yau if and only if Q has canonical determinant on C .
Part of the deformation theory of the threefold X was described in [19]. Let H0 =

det Q ⊗ h0, a vector bundle over C , and let S = H0(C,H0) be its space of sections.
Then there is a smooth family of threefolds X → S, with injective Kodaira–Spencer
map and central fibre X0 ∼= X , together with a fibration X → C × S and a contraction
X → X̄ over S. Thus, for every s ∈ S, the threefold fibre Xs possesses a fibration
πs : Xs → C in surfaces and a contraction fs : Xs → X̄s to a singular threefold with
compound Du Val singularities. More precisely, for every positive root η ∈ R+ of h0,
there is a map pη : H0 → det Q, whose vanishing locus is a family of root hyperplanes
in the h0 fibers, and we have

Lemma 2.1. Let s ∈ S = H0(C,H0) be a section of H0, and let η ∈ R+ be a positive
root of h0. The contraction fs : Xs → X̄s contracts a (possibly reducible) rational
curve corresponding to the root η over a point P ∈ C, if and only if the projected
section pη(s) ∈ H0(C, det Q) vanishes at P ∈ C.

Thus if the projected section pη(s) is not identically zero for any root η, then fs is a
small contraction, contracting rational curves to isolated singularities in certain config-
urations. If for different roots η, the sections pη(s) have different simple zeros, then fs
contracts a set of isolated (−1,−1)-curves to simple nodes. If the linear system det Q
has no base points on C , then this holds for generic s ∈ S.

In the special case C ∼= A
1, the central fiber X0 = A

1 × Y is Calabi–Yau, and
its deformations are parameterized by an h0-valued polynomial s ∈ h0[t]. Under the
isomorphism h0 ∼= {λ | s · δ = 0} ⊂ C

�, we can also parameterize deformations by a
set of ordinary polynomials 	a ∈ C[t] indexed by nodes of the affine Dynkin diagram
�, satisfying

∑
a δa	a = 0. The exceptional fibres of fs : Xs → X̄s lie over roots

of the various polynomials 	ηa = 	a , corresponding to simple roots ηa , as well as
over roots of their linear combinations 	η = ∑

a µa	a , corresponding to other positive
roots η = ∑

a µaηa ∈ R+. For generic choice of parameter s ∈ S, equivalently for
generic choice of {	a}, the polynomials {	η : η ∈ R+} have distinct simple roots, and
the exceptional set of fs : Xs → X̄s consists of isolated (−1,−1)-curves.
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2.2. Sheaves of non-commutative algebras and their sheaves of modules. Given (C,Q),
let H = det Q⊗ h, a vector bundle on the curve C containing H0 as a subbundle. Given
a section s ∈ H0(C,H), consider the natural composition

σs : Q∨ ⊗ Q∨ ∧2−→ det Q∨ ·s−→ h ⊗ OC
∼−→ Z(C�) ⊗ OC ,

a family of Z(C�)-valued symplectic forms in the fibres of the vector bundle Q∨. Also
fix, once and for all, a trivializing section z ∈ H0(OC ).

Definition 2.2. Let As be the sheaf of non-commutative algebras on C whose sections
on an open set U ⊂ C are

As(U ) = T Q∨(U ) ∗ C�
/ 〈〈[x1, x2] + σs(x1, x2)〉〉 ,

where T Q∨(U ) is the full tensor algebra of Q∨(U ), xi ∈ Q∨(U ) are local sections,
and

〈〈
. . .

〉〉
denotes the two-sided ideal generated by all given expressions. Define also

Ps(U ) = T (Q∨ ⊕ OC )(U ) ∗ C�
/ 〈〈

[x1, x2] + σs(x1, x2)z
2, [xi , z]

〉〉
,

where the fixed section z ∈ H0(OC ) commutes with elements of C�. The sheaf Ps
becomes a sheaf of graded algebras by assigning degree 1 to local sections xi ∈ Q∨(U )

as well as to z ∈ H0(OC ); thus its degree-zero piece is

Ps,0 ∼= OC ⊗ C�.

Remark 2.3. The sheaf of algebras As is a relavitive version of the following non-com-
mutative deformation of the skew group algebra, introduced by Crawley–Boevey and
Holland in [8], depending on a deformation parameter λ ∈ h ∼= Z(C�):

Aλ = C〈x1, x2〉 ∗ �
/ 〈〈[x1, x2] + λ〉〉.

The graded version is

Pλ = C〈y0, y1, y2〉 ∗ �
/ 〈〈

[y0, yi ], [y1, y2] + λy2
0

〉〉
.

For � = {1}, λ is just a complex number; if λ �= 0, Aλ is isomorphic to the first
Weyl algebra, whereas Pλ is a degenerate Sklyanin algebra deforming the algebra of
functions on the commutative projective plane P

2. As proved in [8], for general � and
λ ∈ h0 ⊂ Z(C�) the algebra Aλ is finite over its center

Z Aλ
∼= C[Ȳλ].

The latter is the coordinate ring of the affine variety Ȳλ corresponding to the deformation
parameter λ ∈ h0, a deformation of the invariant ring C[x1, x2]� ∼= C[Ȳ ]. For λ ∈ h\h0,
Aλ is “genuinely” non-commutative.

By abuse of notation, we will refer to Ps = Proj C Ps as the non-commutative pro-
jective bundle corresponding to s ∈ S, with fibration πs : Ps → C . Setting z = 0, we
have its divisor at infinity

is : Ds ↪→ Ps .
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The divisor Ds has the structure of an ordinary (commutative) P
1-bundle

πs |Ds = τs : Ds → C

equipped with a �-action on the fibres. Its complement As = Ps \ Ds = Spec C As is a
non-commutative affine bundle.

The sheaf Ps is a sheaf of regular graded algebras in the sense of [1]; sheaf theory
on Ps works in complete analogy with the absolute case discussed in [3]. The category
of coherent sheaves Coh(Ps) is by definition the quotient of the category of sheaves
of finitely generated graded right Ps-modules by the subcategory of sheaves of torsion
Ps-modules; we will sometimes refer to objects in this category as Ps-modules. The
trivial module, graded in degree n, defines the object OPs (n) ∈ Coh(Ps); given a sheaf
E , its twists E(n) are obtained by shifting the grading. We have Ext groups as the derived
functors of Hom, and also functors Ext i (−,OPs ); the latter take values in the category
of left Ps-modules (compare [3]).

Pushforward

πs∗ : Coh(Ps) → Coh�(C)

along the morphism πs : Ps → C is defined in the usual way, as the coherent �-sheaf
on C defined by sections over preimages of open sets of C , the section spaces being
(right) C�-modules; the action of � on C is taken to be trivial. The higher pushforwards
Rpπs∗(−) are the derived functors of πs∗. Given a Ps-module E , we will also use the
relative Hom-functor

HomC (E,−) : Coh(Ps) → Coh�(C),

defined by homomorphisms on preimages of open sets in C , as well as its derived functors

Exti
C (E,−) : Coh(Ps) → Coh�(C).

We also have a pullback functor

π∗
s : Coh�(C) → Coh(Ps)

taking a sheaf of (right) C�-modules F to the sheaf F ⊗C� Ps of (right) Ps-modules.
The pair (π∗

s , πs∗) forms an adjoint pair as in the commutative case. Similarly, for the
inclusion is : Ds → Ps , we have a pullback (restriction) functor

i∗s : Coh (Ps) → Coh �(Ds),

defined by factoring modules of local sections by the ideal 〈z〉 (recall that z is central),
as well as a pushforward

is∗ : Coh �(Ds) → Coh (Ps),

with z acting on local sections by zero. There is also a restriction functor to the finite
part As , defined by factoring the ideal 〈z − 1〉.
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Definition 2.4. A πs -free sheaf on Ps is an object E ∈ Coh(Ps), which admits an embed-
ding

E ↪→ π∗
s (U)(n)

for some U ∈ Coh�(C) and n ∈ Z. A framed πs -free sheaf (E, ϕ) on (Ps, Ds) is a
πs -free sheaf E on Ps , together with a fixed isomorphism

ϕ : i∗s E ∼−→ τ ∗
s W,

on the divisor Ds at infinity, for some W ∈ Coh�(C).

Remark 2.5. If π : P → {∗} is a (non-commutative) projective space over a point, the
π -free sheaves are exactly the torsion free ones (compare [3, Sect. 2]). To see this, note
that a π -free sheaf is certainly torsion free, since it embeds into a locally free sheaf. Con-
versely, a torsion free sheaf embeds into some locally free sheaf, which in turn embeds
into some Om

P (n).

Lemma 2.6. If E is πs -free, then L j i∗s E = 0 for j > 0.

Proof. As in the commutative case, the structure sheaf is∗ODs has a resolution

0 → OPs (−1)
z→ OPs → is∗ODs → 0,

which implies that L j i∗s E = 0 for j > 1 for any E ∈ Coh(Ps), and also that L1i∗s is
left exact. If E is πs-free, applying the latter to an embedding E ↪→ π∗

s (U)(n) gives the
vanishing of L1 also. ��

3. Threefolds: The Results

3.1. Twisted quiver representations and quiver sheaves. Recall that, given a quiver with
arrows a → b marked by objects Oab ∈ C of an abelian tensor category C, a represen-
tation of the marked quiver in C consists of a set of objects Oa of C associated to nodes,
and a set of morphisms ϕab ∈ HomC(Oa ⊗ Oab, Ob) associated to the arrows a → b.
Representations of a marked quiver in the category Coh(X) of an algebraic variety X
are also called quiver sheaves [12] on X .

In the specific context of classifying holomorphic D-branes on the threefold X and
its deformations, the following quiver marked in Coh(C) will arise naturally. The quiver
is the standard extended McKay quiver of [16], obtained from the original one by adding
an extra leaf at each node with arrows in both directions. Using the data of the vector
bundle Q on C , we mark this quiver in Coh(C) as follows:

• The marked An quiver for n > 1 is illustrated on Fig. 3.1; recall that in this case,
there is a decomposition Q = Q1 ⊕Q2 into a sum of line bundles, since the structure
group of Q reduces to the diagonal torus.

• The marked A1 quiver consists of only two nodes 0 and 1 and two arrows 0 →
1, 1 → 0 marked by the rank-two bundle Q∨, as well as leaves marked as in the
higher An case.

• For types D and E , arrows between nodes are all marked by the line bundle Q∨
0 ,

where Q = Q⊕2
0 ; leaves are marked as before.
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Fig. 3.1. The marked extended McKay quiver for A2

3.2. The main classification result.

Theorem 3.1. Given s ∈ H0(C,H), there is a 1-to-1 correspondence between the
following sets of data:

(1) Isomorphism classes of framed πs -free sheaves (E, ϕ) on (Ps, Ds).
(2) Quintuples (V,W,B, I,J ), where W,V are coherent �-sheaves on C, and

B ∈ Hom�
C (V ⊗ Q∨,V),

I ∈ Hom�
C (W,V),

J ∈ Hom�
C (V ⊗ det Q∨,W),

satisfying the following two conditions:
(a) the ADHM relation

B ∧ B + I ◦ J + s = 0 ∈ Hom�
C (V ⊗ det Q∨,V),

where

H0(C, Z(C�) ⊗ det Q) ↪→ Hom�
C (V ⊗ det Q∨,V)

is the natural embedding as the central subspace;
(b) non-degeneracy: if V ′ ⊂ V is a �-subsheaf such that B(V ′ ⊗ Q∨) ⊂ V ′ and

IW ⊂ V ′, then V ′ = V .
Sets of quintuples are identified under the action of invertible elements of Hom�

C (V,V).
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(3) Representations ({Va}, {Wa}, {Bab}, {Ia}, {Ja}) in Coh(C) of the marked McKay-
type quiver introduced in 3.1, satisfying
(a) the ADHM relations

∑

b

εabBba ◦ Bab + Ia ◦ Ja + sa = 0 ∈ HomC (Va ⊗ det Q∨,Va)

at each node a, where εab ∈ {±1} is a standard assignment of signs to arrows
with εab = −εba, and sa = Pηa (s) is the projected section corresponding to the
simple root ηa, and

(b) non-degeneracy: if {V ′
a} is a B-invariant set of subsheaves containing the images

of Ia’s, then V ′
a = Va at all nodes.

Two representations are identified under invertible elements of
∏

a HomC (Va,Va).

If s ∈ S = H0(C,H0) is a deformation parameter of the threefold X = X0, then the
same data also parametrizes

(4) Certain objects in D(Coh Xs), the derived category of coherent sheaves on Xs.

Proof. The equivalence (1) ⇐⇒ (2) follows from a version of the relative Beilin-
son resolution for the non-commutative projective bundle Ps → C ; details are given
in Sect. 4.1. McKay’s definition of the quiver describing the representation theory of �

implies (2) ⇐⇒ (3) in the standard way. Finally the mapping (1) =⇒ (4) in the
geometric case s ∈ S = H0(C,H0) is given by a derived equivalence to be discussed
in Sect. 4.2. ��
Remark 3.2. As X = X0 and its deformations Xs for s ∈ S are not projective, one
needs to rigidify before holomorphic D-branes, in other words objects in Db(Xs) have a
sensible moduli space. For the central fibre X = X0, a crepant resolution of the singular
threefold Q/�, one has a derived equivalence [5]

D(X0) ∼= D�(Q)

between the derived categories of coherent sheaves on X0 and that of �-equivariant
sheaves on the total space of the bundle Q → C . One can easily rigidify on the latter by
considering �-sheaves on the projective bundle P0 = P(Q ⊕ OC ) → C , framed on the
divisor at infinity D0 = P(Q) ↪→ P0. Theorem 3.1 is the appropriate generalization of
this approach which also works for deformations: for the analogous problem on Xs , we
consider framed sheaves on the non-commutative projective bundle Ps → C .

In the surface case, this approach was used earlier in [3]. To quote the result, let
λ ∈ Z(C�). Then for �-modules V, W , Nakajima’s non-singular quiver variety MV,W,λ

parametrizes torsion free sheaves on the non-commutative space P
2
λ = Proj Pλ, framed

on the commutative �-line at ∞. This statement generalizes earlier work of [10,15,17,
18,13] and others. The origin of all such results is of course the ADHM classification [2]
of finite-action SU(dim(W ))-instantons on R

4 of charge dim(V ).

3.3. Some holomorphic D-branes on ADE fibrations over A
1. If C ∼= A

1, Theorem 3.1
can in some cases be re-written in terms of classical quiver representations: represen-
tations of a quiver in vector spaces. This will give an interpretation of an assertion
of [6,14,21].
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Fig. 3.2. A representation of the affine N = 1 A2 quiver

Recall that for C ∼= A
1, a deformation parameter s ∈ S of the central fibre X0 =

A
1 × Y can be specified by a set of polynomials {	a ∈ C[t] : a ∈ �} indexed by the

vertices of the affine quiver, subject to
∑

a δa · 	a = 0. The following definition is due
to Cachazo–Katz–Vafa [6,14].

Definition 3.3. The affine N = 1 ADE quiver is the McKay quiver extended by a loop
a → a at each vertex. For a (finite-dimensional) representation ({Va}, {Bab}, {�a}) of
this quiver, the ADHM-type relations are

∑

b

εab Bba Bab + 	a(�a) = 0 ∈ Hom(Va, Va) (3.1)

at each vertex a ∈ � of the quiver, where 	a(�a) is to be interpreted as the evaluation
of a polynomial on an endomorphism of Va, as well as

�a Bba = Bba�b ∈ Hom(Va, Vb) (3.2)

along each arrow a → b of the quiver �.

Consider quadruples ({Va}, {Bab}, {�a}, v0), where ({Va}, {Bab}, {�a}) is a repre-
sentation of the affine N = 1 ADE quiver satisfying the ADHM-type relations, and
v0 ∈ V0 is a fixed vector in the vector space attached to the affine node. Call a quadru-
ple non-degenerate if there is no (B, �)-invariant collection of subspaces {V ′

a ⊂ Va}
with v0 ∈ V ′

0.

Theorem 3.4. Equivalence classes of non-degenerate quadruples ({Va}, {Bab},{�a},v0)

satisfying the ADHM relations, identified under the action of
∏

a GL(Va), parametrize
certain objects in D(Coh Xs), holomorphic D-branes on the threefold Xs.



636 B. Szendrői

Proof. Quiver sheaf data on C parametrize certain branes on Xs by Theorem 3.1. The
correspondence between representations of the N = 1 ADE quiver and a special class
of quiver sheaf data will be discussed in Sect. 4.3. ��
Remark 3.5. As explained in [6], the quiver relations (3.1)-(3.2) come from the natural
superpotential of the quiver gauge theory on �, involving adjoint fields �a as well as
bifundamental fields Bab.

Remark 3.6. Let the finite N = 1 ADE quiver be obtained from the affine one by
deleting the affine node. Representations of the finite N = 1 ADE quiver, satisfying
the ADHM-type relations (3.1)-(3.2), parametrize holomorphic D-branes supported on
exceptional fibres of fs : Xs → X̄s . This follows from the statement that the vanish-
ing of the affine component of V forces all other Va to be supported on points P ∈ C
at which some projected section pη(s) vanishes for some positive root η ∈ R+, in
other words on points of the base curve over which the surface fiber π−1

s (P) contains
exceptional curves. Observing that the section s ∈ H0(C, Z(C�) ⊗ det Q) is central in
Hom�

C (V ⊗ det Q∨,V), so commutes with all components of B, the latter statement is
essentially proved in [6, 4.1–4.2]. This establishes a direct link to [14,21], according to
which (in the generic case) irreducible representations of the finite N = 1 quiver with the
given relations parametrize exceptional components of the contraction fs : Xs → X̄s .

4. Proofs

4.1. The Beilinson argument. The aim of this section is to prove of the equivalence
(1) ⇐⇒ (2) of the classification result Theorem 3.1 via an analysis of framed πs-free
sheaves on Ps .

Given s ∈ H0(C,H), recall the sheaf of algebras Ps on the curve C , and the associ-
ated non-commutative bundle πs : Ps → C . Define Ps-modules Ti by

T0 = OPs ,

0 −→ OPs −→ π∗
s (Q ⊕ OC )(1) −→ T1 −→ 0,

T2 = π∗
s (det Q)(3).

(4.3)

Proposition 4.1. A πs -free sheaf E on Ps , framed on the divisor Ds, is the cohomology
of a monad

π∗
s Ext1

C (T2(−1), E) (−1) → π∗
s Ext1

C (T1, E) → π∗
s Ext1

C (T0(1), E) (1)

of Ps -modules.

Proof. Given a Ps-module F , a Koszul duality argument, in an analogous way to the
absolute case in [3, Sect. 7] following [4, Thm. 2.6.1], leads to a Beilinson-type spectral
sequence with E1 term

E p,q
1 = π∗

s Extq
C

(
T−p(p),F

)
(p),

nonzero only for −2 ≤ p ≤ 0, 0 ≤ q ≤ 2, converging to F in the limit. The vanishing
results

Extq
C

(
T−p(p), E(−1)

) = 0 for q = 0, 2, p = −1,−2
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which follow from the existence of the framing of E on the divisor Ds (compare [13,
Lemma 6.2], [3, Lemma 4.2.12]), reduce the spectral sequence for F = E(−1) to the
monad given in the statement. Details are left to the reader. ��

We also record an auxiliary result.

Lemma 4.2. There are natural isomorphisms

HomPs

(
π∗

s det Q∨, π∗
s Q∨(1)

) ∼= HomPs

(
π∗

s Q∨,OPs (1)
) ∼= Hom�

C

(
Q∨,Q∨ ⊕ OC

)
.

Proof. The first isomorphism follows from Lemma 4.3 below. The second one follows
from adjunction for the pair (π∗

s , πs∗), together with

πs∗OPs (1) ∼= Ps,1 ∼= (Q∨ ⊕ OC ) ∗ C� ∈ Coh�(C),

an identity well known from the commutative context. ��
Lemma 4.3. Let Q be a rank-two bundle on a (commutative) space. Then there is a
natural isomorphism

Q ⊗ det Q∨ ∼= Q∨.

Proof. The embedding ι : det Q∨ → Q∨ ⊗ Q∨ induces a natural map

Hom
(
det Q∨, det Q∨) → Hom

(
det Q∨, (Q∨)⊗2

) ∼= Hom
(
Q ⊗ det Q∨,Q∨)

.

The image of the identity of the first Hom-group gives a natural morphism as in the
statement, which can be checked on a local basis to be an isomorphism. ��

Now return to the context of the classification result Theorem 3.1, and consider a
quintuple (V,W,B, I,J ) as in Theorem 3.1(2); recall that

W,V ∈ Coh�(C),

and

B ∈ Hom�
C (V ⊗ Q∨,V),

I ∈ Hom�
C (W,V),

J ∈ Hom�
C (V ⊗ det Q∨,W).

Let

c ∈ HomPs

(
π∗

s det Q∨, π∗
s Q∨(1)

)
, d ∈ HomPs

(
π∗

s Q∨,OPs (1)
)

denote the images, under the isomorphisms of Lemma 4.2, of the canonical element

Id ∈ Hom�
C (Q∨,Q∨) ⊂ Hom�

C

(
Q∨,Q∨ ⊕ OC

)
.

Note also that we have a fixed section

z ∈ HomPs (OPs ,OPs (1)).
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Define

a =
(

π∗
s (B ◦ (IdV ⊗ ι)) ⊗ z − π∗

s (IdV ) ⊗ c (−1)

π∗
s (J ) ⊗ z

)

: π∗
s (V ⊗ det Q∨)(−1)

−→ π∗
s (V ⊗ Q∨ ⊕ W),

where ι : det Q∨ → (Q∨)⊗2 is the natural map. Define similarly

b = (
π∗

s (B) ⊗ z + π∗
s (IdV ) ⊗ d π∗

s (I) ⊗ z
) : π∗

s (V ⊗ Q∨ ⊕ W) → π∗
s (V)(1),

to obtain the chain of morphisms

π∗
s (V ⊗ det Q∨)(−1)

a−→ π∗
s (V ⊗ Q∨ ⊕ W)

b−→ π∗
s (V)(1). (4.4)

The following result completes the proof of the equivalence (1) ⇐⇒ (2) of the
classification result Theorem 3.1.

Proposition 4.4. If the quintuple satisfies the ADHM relation, then (4.4) is a com-
plex of Ps -modules. Furthermore, it is a monad defining a framed πs -free sheaf E if
and only if the quintuple (V,W,B, I,J ) is non-degenerate. Conversely, every πs -free
Ps -module E , framed on Ds, arises from this construction.

Proof. The standard direct computation shows that b◦a = 0 is equivalent to the ADHM
relation. The proof of the equivalence of the monad property and non-degeneracy is anal-
ogous to the absolute case [3, Sect. 4.1]. For the converse, given a framed sheaf (E, ϕ),
let V = Ext1

C (OPs (1), E). Then by Proposition 4.1, E is the middle cohomology of the
monad

π∗
s (V ⊗ det Q∨)(−1) → π∗

s Ext1
C (T1, E) → π∗

s V(1).

The usual arguments [13, Theorem 6.7] show that, since E is framed on Ds , this monad
is isomorphic to a monad of the form (4.4) for some quintuple (V,W,B, I,J ). ��

4.2. A derived equivalence. In this section we complete the proof of Theorem 3.1 by
establishing the missing link (1) =⇒ (4).

Proposition 4.5. Let s ∈ S be a deformation parameter of the central fibre X = X0.
There is a distinguished equivalence of triangulated categories

D(Coh Xs) ∼= D(Mod As),

where Mod As is the category of sheaves of finitely generated right As -modules, and
D(−) denotes the bounded derived category on both sides.

Proof. This assertion is a fibered version of the analogous two-dimensional equivalence
proved in [11], and the proof carries over verbatim. A deformation argument starting
from the central fibre X = X0 shows that a certain specific component Ms of a fine mod-
uli space of torsion sheaves on As maps by a semi-small birational map to the singular
variety X̄s . By [20], generalizing an argument of [5], this implies that Ms is a crepant
resolution of X̄s , and one has a derived equivalence

D(Coh Ms) ∼= D(Mod As)

defined by the universal sheaf. But since Xs is the unique crepant resolution of X̄s ,
necessarily Ms ∼= Xs and the proposition follows. Details are left to the reader. ��
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This equivalence gives the mapping (1) =⇒ (4) of Theorem 3.1 from framed πs-
free sheaves on Ps to objects in D(Coh Xs). Indeed, a right Ps-module can be restricted
to the affine part As to give a right As-module, and then mapped using the derived
equivalence to an object in D(Coh Xs), in other words a holomorphic D-brane on Xs .

4.3. Fibrations over the affine line. In this section, we take a fibration Xs → C ∼= A
1

and discuss the proof of Theorem 3.4. From Theorem 3.1, we know that certain ho-
lomorphic D-branes on Xs are classified by non-degenerate quintuples (V,W,B, i, j)
satisfying the ADHM equation. Consider the subclass of representations in Coh(A1)

with the simplest possible framing W ∼= OA1 and V a torsion �-sheaf on A
1. It follows

that J = 0 and I ∈ H0(A1,V�). Decompose V and the map B into �-components to
obtain torsion sheaves Va and sheaf homomorphisms Bab : Va → Vb indexed by nodes
and edges of the McKay quiver.

Set Va = H0(A1,Va), and let Bab = H0(Bab) : Va → Vb be the map on global
sections induced by Bab. Let v0 ∈ V0 be the section corresponding to I. Let also
�a : Va → Va be the map induced by multiplication by the section t ∈ H0(A1,OA1)

∼=
C[t]. Theorem 3.4 follows from Theorem 3.1, together with

Proposition 4.6. The map

(V,OC ,B, 0, 0) �→ ({Va}, {Bab}, {�a}, v0 ∈ V0)

sets up a one-to-one correspondence from this restricted set of quiver ADHM data to
representations of the affine N = 1 ADE quiver satisfying the relations (3.1)-(3.2).

Proof. Given (V,B), the edge relations (3.2) �a Bba = Bba�b for the data
({Va}, {Bab}, {�a}) hold by definition. Further, the ADHM equation for (V,B) is

B ∧ B + s = 0 ∈ Hom(V,V ⊗ det Q),

which in �-components says that
∑

b

εabBba ◦ Bab + sa = 0 ∈ Hom(Va,Va).

Replacing sa by the polynomial 	a , and remembering that the effect of t ∈ H0(OA1)

on H0(V) is exactly �a , for global sections we obtain
∑

b

εab Bba ◦ Bab + 	a(�a) = 0 ∈ Hom(Va, Va)

which is exactly relation (3.1) for the node a.
Conversely, given a representation ({Va}, {Bab}, {�a}, v0 ∈ V0) of the N = 1 ADE

quiver, define torsion sheaves attached to the nodes by

Va = coker
(
Va ⊗ OA1

1⊗t−�a⊗1−−−−−−→ Va ⊗ OA1
)
.

Using Lemma 4.7 below, for adjacent nodes a, b we have a diagram

0 −−−−→ Va ⊗ OA1
1⊗t−�a⊗1−−−−−−→ Va ⊗ OA1 −−−−→ Va −−−−→ 0

Bab⊗1

⏐
⏐
� Bab⊗1

⏐
⏐
�

0 −−−−→ Vb ⊗ OA1
1⊗t−�b⊗1−−−−−−→ Vb ⊗ OA1 −−−−→ Vb −−−−→ 0
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which, by commutativity �a Bba = Bba�b, induces a map Bab : Va → Vb. The converse
of the above argument shows that the ADHM relation follows from the relations (3.1).
By Lemma 4.7, the two constructions are inverses to each other. ��

The proof used the elementary

Lemma 4.7. Given a torsion sheaf V on A
1 = Spec C[t], let V = H0(A1,V) and let

� : V → V be the map given by multiplication by t ∈ H0(OA1). Then the sequence of
sheaves

0 −−−−→ V ⊗ OA1
1⊗t−�⊗1−−−−−−→ V ⊗ OA1

c−−−−→ V −−−−→ 0

is exact on A
1, where c : H0(V) ⊗ OA1 → V is the canonical map. Conversely, given a

vector space with an endomorphism (V, �), the exact sequence defines a torsion sheaf
V on A

1, and the two constructions are mutual inverses.

Remark 4.8. In this lemma, V ∼= OZ is a structure sheaf of a 0-dimensional subscheme
Z ⊂ A

1 if and only if � is a regular endomorphism. Their moduli space is

Mat(n, C)//GL(n, C) ∼= {regular endomorphisms}/GL(n, C) ∼= A
n ∼= (A1)[n],

where the map is given by taking the coefficients of the characteristic polynomial of �,
which is also the equation of the corresponding subscheme.
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