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Introduction

This paper is a continuation of [15]. In that paper, I introduced a general frame-
work which allows one to produce ‘weak’ counterexamples to Torelli for Calabi–Yau
threefolds: deformation families containing non-isomorphic varieties Yt, Y

+
t with iso-

morphic Hodge theory on the third cohomology. The varieties arise as deformations
of threefolds Y that are resolutions of singular varieties X with rather special prop-
erties (cf. Section 1). In [15], I discussed two families containing suitable X that
do provide a counterexample and a third family with remarkably similar properties
where however the existence of a nontrivial generic automorphism destroys the coun-
terexample. This shows that explicit examples are necessary; there is a precise set of
conditions one needs to check carefully in order to obtain counterexamples to Torelli
(Theorem 1·1). In fact, there exist several families with renitent automorphisms
(Remark 4·5).

The conditions involve two things: log-extremal contractions on the resolution Y
and the automorphism group of X. Both contractions and automorphisms can be
conveniently investigated if X is embedded in a suitable ambient space; it is natural
to restrict to families arising as complete intersections of low codimension in weighted
projective spaces.

The main result of this paper is that Calabi–Yau threefolds with the prescribed
class of singularities embedded as low-codimensional complete intersections in
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weighted projective spaces can be classified (Theorem 1), using an explicit Riemann–
Rock formula (Section 2) and the Hilbert series of a complete intersection variety
(Section 3) following Reid–Fletcher. Contractions on the resolutions of these varieties
can be studied using toric geometry; their automorphism groups can be determined
by doing explicit algebra with polynomials. The final list of counterexamples to
Torelli that one obtains this way is the following (for the proof, see Section 4):

Theorem 0·1. Let X be a general member of one of the families

X8 ⊂ P4[12, 23], X4,6 ⊂ P5[12, 24], X4,4,4 ⊂ P6[12, 25],
X12 ⊂ P4[1, 22, 3, 4], X6,6 ⊂ P5[1, 24, 3], X4,4,6 ⊂ P6[1, 25, 3],
X12 ⊂ P4[12, 22, 6], X6,8 ⊂ P5[1, 23, 3, 4], X4,6,6 ⊂ P6[25, 32].

Let Y be the crepant resolution of X. Then the period map is a finite map of degree at
least two from the set of deformations of Y to the period domain modulo monodromy.

The really important issue here is perhaps not the list itself, but rather the way in
which it is obtained: the search based on the Hilbert series of graded rings, coupled
to the power of toric geometry and explicit calculations. The author hopes that this
method will prove to be useful in different contexts as well.

Notation and definitions

A Calabi–Yau threefold is a normal projective threefold X with canonical Goren-
stein singularities, satisfying KX ∼ 0 and H1(X,OX) = 0. These conditions imply in
particular that Pic (X)%H2(X,Z). The nef cone of X is the closed cone generated
by ample classes in Pic (X) ⊗ R%H2(X,R). Faces of this cone correspond in most
cases to contractions on X, for a classification and the Type convention see [17].

The weighted projective space P = Pm[w0, . . . ,wm] is the quotient of Cn+1\{0}
by the C∗-action having the given positive integer weights {wi}. It is a normal
projective variety with quotient singularities. It is called well-formed if the great-
est common divisor of every set of n weights is one. A weighted complete intersection
X = Xd1,...,dc ⊂ Pm[w0, . . . ,wm] is defined by the vanishing of a regular sequence
of homogeneous polynomials f1, . . . , fc of the appropriate (weighted) degrees. X is
called quasi-smooth if the affine cone CX ⊂ Cn+1 over X is smooth apart from its
vertex. In this case, X is also a normal projective variety with only quotient singu-
larities. X is called well-formed if the ambient space P is well-formed and X does not
contain a c + 1-codimensional singular stratum of P , where c is the codimension of
X in P. If X is well-formed and quasi-smooth then the adjunction formula holds in
the form

KX ∼ OX

(∑
di −

∑
wj

)
.

For more details on this material, consult Fletcher [6].
Finally, H∗(X) and H∗(X) denote integer (co)homology modulo torsion.

1. The framework

Assume that Y is a smooth Calabi–Yau threefold containing a surface E ruled over
a curve C of genus g. Assume that E can be contracted inside Y by a log-extremal
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contraction given by the divisor H ∈ Pic (Y ):

ϕ|H| : Y → X
x x
E → C.

By [17, 18], C is smooth and the singularities of X along C are generically cA1 or
cA2, the latter only occuring under special circumstances.

Let Y→ S be the the Kuranishi family of Y ; by Unobstructedness, the base S is
smooth. Let SE denote the subspace of S that corresponds to deformation directions
along which E deforms together with the deformation.

In [15], I proved the following theorem.

Theorem 1·1. Assume that the following conditions are satisfied.
(1) The genus g of C is at least 2.
(2) Every automorphism of the linear space Pic R(Y ), fixing the nef cone of Y and

mapping faces of this cone to other faces of the same type, must be the trivial one.
(3) X has no involutions i with the following property: if j denotes the corresponding

involution on Y , then the fixed locus of the induced map j∗ : S → S equals SE.
Then (weak) global Torelli fails for Y : the period map from deformations of Y mod-
ulo isomorphisms to the period domain is of degree at least two onto its image in the
appropriate period domain.

Sketch Proof. The first condition ensures that for a general one-parameter defor-
mation Y of Y , a finite positive number of fibres of the ruling E → C deform. These
rational curves can be flopped in the family to obtain a new deformation Y+ of
Y [15, 1·3]. Fibres Yt , Y +

t of the two families have isomorphic Hodge structures [10,
4·12–13]. Using the other two assumptions, Yt and Y +

t are not isomorphic for general
t by [15, 4·2], thus proving the conclusion.

Condition (1) is easy to check in a concrete situation. However, conditions (2)
and (3) are in general harder. They can be conveniently investigated for hypersur-
faces or more generally complete intersections in projective or weighted projective
spaces. On one hand, this condition ensures that the Picard number of Y is two,
which makes condition (2) easy to deal with (cf. Proposition 4·2). On the other hand,
automorphism groups of complete intersections can be computed explicitly (Propo-
sition 4·4).

2. A Riemann–Roch formula

From now on, I make the assumption that the singular Calabi–Yau variety X is
a quasi-smooth well-formed weighted complete intersection

Xd1,...,dc ⊂ Pm[w0, . . . ,wm]

of codimension at most four and that the curve C is a curve of cA1-singularities of
X. The latter is equivalent to E being geometrically ruled over C. It follows that
the Picard number of X is one and that X is not factorial but only Q-factorial.
Let D ∈ Weil (X) \ Pic (X) denote the ample Q-Cartier class (unique up to torsion)
which is Cartier away from the singular curve and non-divisible as a Weil divisor.
The aim of this Section is to prove the following Riemann–Roch type expression for
h0(X,nD), the number of sections of the divisorial sheaf OX(nD) (cf. [12]).
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Proposition 2·1. The number of sections of the divisorial sheaf OX(nD) is given by

the following formula:

h0(X,nD) = 1
6n

3D3 + 1
12nc2(X) ·D − 1

8nkI (n ≡ 1 mod 2),

where I is an indicator function and, as usual, c2(X) · D is to be calculated on any
resolution (e.g. on Y ).

Proof. As in the previous section, let f : Y → X be the blowup of C on X. Note
that H2(Y ) and H2(Y ) % Pic (Y )/torsion are free rank-two dual Z-modules. Let
H = f∗(2D), a primitive (non-divisible) class in H2(Y ); let l be the class of the fibre
of the ruling of E.

Lemma 2·2. l is a non-divisible class in H2(Y ), whereas the class H +E is 2-divisible
in H2(Y ).

Proof. Assume that l = 2f for some f ∈ H2(Y ), then the intersection numbers are

H · f = 0, E · f = −1.

Hence f is necessarily primitive, so one can choose a class r ∈ H2(Y ) which together
with f forms a Z-basis of H2(Y ). Let H · r = m, E · r = n, then n is an integer and
m is an odd integer, the latter by Poincaré duality.

The reflexive sheaf OX(D) is invertible away from C, so there is a Cartier divisor
A on Y with a surjective map of sheaves

f∗(OX(D))→ OY (A)

the kernel of which is supported on the exceptional locus. In other words, asQ-Cartier
divisors,

A = f∗D + βE

with β rational. Then however H + 2βE is 2-divisible in H2(Y ), so

(H + 2βE) · f = −2β ∈ 2Z

and

(H + 2βE) · r = m + 2βn ∈ 2Z.

But this is a contradiction, for if the first integer is even, the second must be odd as
m is odd. This proves the first statement.

Let now r ∈ H2(Y ) denote a class which, together with l, gives a Z-basis of H2(Y ).
The intersection numbers H · r, E · r must be odd integers by Poincaré duality. But
then the integers (H + E) · l, (H + E) · r are both even and using Poincaré duality
again, the second statement follows.

Lemma 2·3. E ·H = kl ∈ H2(Y,Z) for a positive integer k.

Proof. By construction, E and H intersect in a number of fibres. This number is
given by the intersection number (2D) · C on X, positive as D is ample.

Conclusion of the proof of Proposition 2·1. All that remains to do is to copy [12,
9·2]. By Kawamata–Viehweg, h0(X,nD) = χ(X,nD) as D is ample. Next, if n is
even then clearly χ(X,nD) = χ(Y, 1

2nH) and Riemann–Roch for the latter together
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with the obvious D3 = 1

8H
3, c2(X) ·D = 1

2c2(Y ) ·H gives the formula. If n is odd, then
by Lemma 2·2, 1

2 (E + nH) is Cartier on Y . Moreover, f∗OY ( 1
2 (E + nH)) = OX(nD)

and Rif∗OY ( 1
2 (E + nH)) = 0 for i > 0. So by Leray and Riemann–Roch on Y ,

χ(X,nD) = χ
(
Y, 1

2 (E + nH)
)

= 1
48 (E + nH)3 + 1

24c2(Y ) · (E + nH)

= 1
48n

3H3 + 1
16nE

2 ·H + 1
48

(
E3 + 2c2(Y ) · E) + 1

24nc2(Y ) ·H.
This simplifies to the formula in the statement, as

E3 = K2
E = 8(1− g)

and using [4, 2·3],

c2(Y ) · E = c2(E)− E3 = 4(1− g)− 8(1− g) = 4(g − 1).

The formula can be rewritten in the slightly more attractive form

Corollary 2·4.

h0(X,nD) = 1
6 (n3 − n)D3 + nh0(D) + 1

8nk I (n ≡ 0 mod 2).

3. Classification

The aim of this section is to classify varieties X with the properties stated at the
beginning of Section 2, following Fletcher [6, III·9].

As explained in detail by Fletcher in [6, III·9], Riemann–Roch formulae can be
used to generate examples of varieties in weighted projective spaces as follows: fix a
set of constants {D3, h0(D), k} and form the power series

P (t) =
∞∑
n=0

h0(X,nD) tn

using the formula. If the triple {D3, h0(D), k} comes from a variety

X = Xd1,...,dc ⊂ Pm[w0, . . . ,wm]

then this series equals the Hilbert series of the graded ring

RD =
∞⊕
n=0

Γ(X,OX(nD)).

It is well-known that this latter series has the closed form

PX,D(t) =
∏c
i=1(1− tdi)∏m
i=0(1− twi)

.

Conversely, if P (t) can be written in the closed form PX,D(t), then the constants
{di, wj} can be read off and the resulting family of complete intersections may possess
all the required properties.

In the first Appendix, I show that there is a finite set of triples {D3, h0(D), k}
satisfying the conditions. Details of the finite search are also in the Appendix; one
obtains a list of possible configurations. An interesting feature of the list is that there
are no codimension four complete intersections at all. Some of these configurations
need to be discarded: the numerical conditions are not sufficient for the existence of
quasi-smooth complete intersections.
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Table 1.

The other
The variety X D3 k g χ(Y ) contraction on Y Condition (3)

X6,10 ⊂ P5[24, 3, 5] 1
4 15 31 −176

Type II to sing.
Z3,5 ⊂ P5[15, 3]

X4,6,6 ⊂ P6[25, 32] 1
2 18 28 −148

K3 fibration
over P1

√

X12 ⊂ P4[1, 22, 3, 4] 1
4 3 4 −144

Type II to sing.
Z6 ⊂ P4[14, 2]

√

X14 ⊂ P4[1, 23, 7] 1
4 7 15 −240

Type II to
Z7 ⊂ P4[14, 3]

X6,8 ⊂ P5[1, 23, 3, 4] 1
2 6 7 −120

Type II to sing.
Z3,4 ⊂ P5[15, 2]

√

X4,10 ⊂ P5[1, 24, 5] 1
2 10 16 −196

Type II to sing.
Z2,5 ⊂ P4[15, 2]

X6,6 ⊂ P5[1, 24, 3] 3
4 9 10 −120

Type II to sing.
Z3,3 ⊂ P5

√

X4,4,6 ⊂ P6[1, 25, 3] 1 12 13 −128
Type II to sing.
Z2,2,3 ⊂ P6

√

X12 ⊂ P4[12, 22, 6] 1
2 2 2 −252

K3 fibration
over P1

√

X8 ⊂ P4[12, 23] 1 4 3 −168
K3 fibration
over P1

√

X4,6 ⊂ P5[12, 24] 3
2 6 4 −132

K3 fibration
over P1

√

X4,4,4 ⊂ P6[12, 25] 2 8 5 −112
K3 fibration
over P1

√

Theorem 3·1. The complete intersection Calabi–Yau threefolds in codimension at most
four, with a smooth curve of cA1-singularities of genus at least two and OX(1) a primitive
Q-Cartier divisor, general in moduli with these properties, are listed in Table 1

Proof. The search detailed in the Appendix gives a ‘raw list’ of possible configura-
tions, some of which need to be discarded as they do not give quasi-smooth varieties.
[6, III·3·6–7], or analogous methods in the case of codimension three, prove that the
general complete intersection is quasi-smooth for all families listed above.

As the varieties are complete intersections, h1(OX) = 0 and rk Pic (X) = 1. Well-
formedness is easily checked, so adjunction holds and gives KX ∼ 0. All singularities
are quotient singularities; using the techniques discussed in [6, III·3·19], it is easily
seen that in all cases and on all relevant singular strata they are 1

2 (0, 1, 1) or cA1 along
a smooth curve, the genus g of which is easily computed. The Euler characteristic
of Y is given by χ(Y ) = χ(X)− 3 (g − 1) using additivity of χ and χ(E) = 4 (1− g).
χ(X) can be computed from the formula in [8, section 2].

The entries in the last two columns will be checked in the final section.

Remark 3·2. Most of these varieties have of course occured in the literature be-
fore, although in a non-systematic way (see [4, 8, 17]); and in particular computer-
generated lists such as Klemm’s [9]. The last author ignores the possibility that
one weight wi can actually be larger than a degree di for codimension two complete
intersections, cf. [6, III·9·14], so his list is not complete.
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Remark 3·3. In the second Appendix, I make some remarks about non-complete

intersection varieties whose existence is predicted by this method.

Remark 3·4. The clause about the varieties being general in moduli refers to the
following: the method used above, based on the Hilbert series, cannot distinguish
between the varieties X8 ⊂ P4[12, 23] and X4,8 ⊂ P5[12, 23, 4] where the quartic
polynomial does not involve the degree four variable. However, a general deformation
of the latter is clearly an octic in P4[12, 23]. This phenomenon occurs with many of
the varieties above.

Remark 3·5. The method of course supplies an explicit list of complete intersec-
tion Calabi–Yau threefolds in codimension at most four, with a smooth curve of
cA1-singularities of genus zero or one. As these are excluded by Condition (1) of
Theorem 1·1, I omit this list; the interested reader will find it in [16].

4. Contractions and automorphisms

To complete the analysis of the examples, one needs to check conditions (2) and
(3) of Theorem 1·1.

The penultimate column of Table 1 describes geometrically the nef cone of the
smooth model Y which has Picard number 2, so its nef cone has precisely two ex-
tremal faces. One face is of course generated by H. The other face is expected to
correspond to a different contraction: if the face is rational and generated by the nef
(effective) Cartier divisor L, then for large m the morphism g = ϕ|mL| : Y → Z maps
Y to a Calabi–Yau Z with canonical singularities or a lower dimensional variety.

The singularX is a subvariety of a weighted projective space P, which is a toric va-
riety (I use the language of toric varieties [7]). This ambient variety can be partially
resolved by a suitable blowup f̃ : P̃→ P which restricts to the resolution f : Y → X
(cf. [2, 3]). P̃ is also a toric variety and it has a two-dimensional space of curves. So
in the closed cone of curves NE(P̃), there are two extremal rays. The corresponding
curves are represented by toric strata. Denote by g̃ : P̃ → P̄ the other contraction.
If g̃ contracts a numerical class of curves that is represented in the subvariety Y ,
then g = g̃ |Y gives the new contraction on Y .

The structure of the toric contraction is described by

Theorem 4·1 (Reid [11]). Let P̃ be an n-dimensional projective Q-factorial toric va-
riety. Let w be an (n− 1)-dimensional cone in its fan such that the corresponding closed
toric stratum lw gives an extremal ray. Let w be the intersection w = σn w σn+1 of two
different n-cones generated by the primitive vectors {f1, . . . , fn}, {f1, . . . , fn−1, fn+1}.
Then there is a relation

n+1∑
i=1

aifi = 0

with an+1 = 1, an > 0. Assume that ai is negative for 1 6 i 6 δ, zero for δ+1 6 i 6 β and
positive for β + 1 6 i 6 n+ 1, where of course 0 6 δ 6 β 6 n− 1. There is a contraction
morphism g̃ : P̃ → P̄ contracting precisely those curves which are numerically equivalent
to lw. If g̃ |A : A → B denotes the locus where g̃ is not an isomorphism, then A, B are
irreducible closed strata, A corresponds to the cone spanned by {f1, . . . ,fδ}. One has
dimA = n− δ and dimB = β − δ.
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This result can be used to check

Proposition 4·2. For every variety in Table 1, the contraction g̃ restricted to Y gives
a nontrivial contraction g : Y → Z, with the Type and image variety indicated. In
particular, all the families satisfy condition (2) of Theorem 1·1.

Proof. The proof is a not very difficult if somewhat tedious case-by-case check. I
give the details of the calculation for two cases.

X6,10 ⊂ P5[24, 3, 5]. The ambient toric variety P is given in the lattice N = Z5 by the
fan spanned by proper subsets of the vectors

e0 = (−1,−1,−1,−4, 1), e1 = (1, 0, 0, 0, 0), e2 = (0, 1, 0, 0, 0), e3 = (0, 0, 1, 0, 0),
e4 = (0, 0, 0, 1, 1), e5 = (0, 0, 0, 1,−1).

The partial resolution is obtained by barycentric subdivision using the extra vector

e6 = 1
2 (e4 + e5) = (0, 0, 0, 1, 0).

The cone w = (e0e1e2e4) represents an extremal ray. The relation between the rays
in the star of this cone is −e4 + e0 + e1 + e2 + e3 + 5e6 = 0. The contraction g̃ contracts
the divisor given by the ray e4 to the point (0:0:0:0:0:1)∈ P5[15, 3], where the latter
is the toric variety spanned by the remaining edges.

The intersection of Y with the exceptional locus of g̃ is a divisor, contracted to a
point, so g̃ restricts as a contraction of Type II to the Calabi–Yau hypersurface Y .
The image Z of Y under this contraction is Z3,5 ⊂ P5[15, 3], where the degree three
equation does not involve the degree three variable. So Z is singular at the point
(0:0:0:0:0:1) of the weighted projective space.

X4,6 ⊂ P5[12, 24]. In this case the fan is given by

e0 = (−1,−2,−2,−2,−2), e1 = (1, 0, 0, 0, 0), . . . , e5 = (0, 0, 0, 0, 1)

in the lattice N = Z5, together with the vertex e6 = 1
2 (e0 + e1) = (0,−1,−1,−1,−1).

The new extremal ray corresponds to the cone w = 〈e1, e2, e3, e4〉 with relation
e2 + e3 + e4 + e5 + e6 = 0. Now α = 0 and β = 1, so the exceptional locus is the
whole P̃ and the image of the contraction is P1. This contraction restricts to the
threefold Y as a K3 fibration over P1.

Remark 4·3. Notice that in two cases, Z is an interesting degeneration of the quin-
tic threefold: the general deformation of the singular varieties Z3,5 ⊂ P5[15, 3] or
Z2,5 ⊂ P4[15, 2] is a smooth quintic.

In the final Proposition, I check the last condition of Theorem 1·1.

Proposition 4·4. Let X be a general variety of any of the families in Table 1, marked
with a tick in the final column. Then condition (3) of Theorem 1·1 is indeed satisfied for
X.

Proof. For the families X8 ⊂ P4[12, 23] and X12 ⊂ P4[12, 22, 6], this was already
proved in [15]. In all the remaining cases, the claim is that for general X, the auto-
morphism group is trivial; this can be checked case-by-case, by explicit calculations.
I do the computation in two of the cases again; the rest is done following a similar
pattern.
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X12 ⊂ P4[1, 22, 3, 4]. After a change of variables, the general equation is

F8 = t3 + f8(x, yi, z) t + (z4 + f6(x, yi)z2 + f9(x, yi)z + f12(x, yi)) = 0.

Assume that the automorphism σ given by

σ(x) = βx,

σ(~y) = A~y +Bx2,

σ(z) = γz + F~yx + λx3,

σ(t) = δ t + εxz +DS2~y + E~yx2 + ηx4.

fixes the hypersurfaceX12 in question. Then it must fix the singular locus, the general
curve C % C6 ⊂ P2[1, 1, 2]. Such a curve has no projective automorphisms, as can
be checked directly, so necessarily A = I, δ = 1, D = 0. As there is no t2 term in F8,
ε = η = 0, E = 0. The term having degree zero in t contains no z3 term, so F = 0
and λ = 0. Thus, one is left with

σ(x) = βx,

σ(~y) = ~y +Bx2,

σ(z) = γz,

σ(t) = t.

On one hand, f12 is really a general sextic polynomial in x2 and the yis, so it has no
automorphisms and hence B = 0, β2 = 1. On the other hand, the z2 term must be
fixed so γ2 = 1. Finally the general polynomial will contain an x9z-term so βγ = 1.
So (β, γ) = ±(1, 1), this latter sign change being part of the C∗-action defining the
weighted projective space.

X4,4,4 ⊂ P6[12, 25]. After a change of variables, the equations are
F4 =

∑
y2
i + f4(xi) = 0

G4 = y1g2(xi, y2, . . . ,y5) + g4(xi, y2, . . . ,y5) = 0
H4 = y1h2(xi, y2, . . . ,y5) + h4(xi, y2, . . . ,y5) = 0

 .

The singular locus is the general genus five curve C2,2,2 ⊂ P4 with no projective
automorphisms. So σ must act as

σ(~x) = A~x,

σ(~y) = ~y +BS2(~x).

However, the fact that the quadratic yi terms are invariant and that y2
1 only appears

in F4 forces σ(F4) = F4 and this immediately implies B = 0. Then A must be an
automorphism of the general quartic f4 and thus A = ±I.

Proof of Theorem 0·1. The period map is finite using the main result of [14] and a
computation identical to that of [15, 2·7]. The degree is at least two by Theorem 1·1
and the results of this section.

Remark 4·5. In the remaining three cases

X14 ⊂ P4[1, 23, 7], X4,10 ⊂ P5[1, 24, 5], X6,10 ⊂ P5[24, 3, 5]

the generic automorphism group is (at least) Z/2Z and the corresponding involution



202 Balázs Szendrői
violates condition (3) of Theorem 1·1. This was checked in one case in [15, 2·4]; the
other two cases behave in the same way. In particular, these families do not provide
counterexamples to weak global Torelli.

Appendices

The search

The task is to find triples {D3, h0(D), k} such that the power series

P (t) =
∞∑
n=0

h0(X,nD)tn

formed using the Dimension Formula (2·4) gives the closed Hilbert function

P (t) =
∏c
i=1(1− tdi)∏m
i=0(1− twi)

of the graded ring of a complete intersection variety X = Xd1,...,dc ⊂ Pm[w0, . . . ,wm]
of dimension three. Denote d = D3, h = h0(D).

The basic recursive method is the following (cf. [6, III·9·3]):

(i) fix a triple {d, h, k} and form the power series P (t);
(ii) find the smallest nonzero non-constant term nrt

r of P (t);
(iii) assume that nr is positive; then nr of the weights on the weighted projective

space must be r. Add these to the list of wi-s, multiply P (t) by (1−tr)nr and go
back to the second step, unless the number of weights exceeds eight, in which
case stop;

(iv) suppose that nr is negative. Then there must be | nr | relations of degree r
among the relations defining X. Add these to the list of dis, multiply the
power series by (1 − tr)nr again and go back to the second step unless either
the power series becomes 1, or the number of relations exceeds four, in which
cases stop.

The procedure either stops after producing at most eight weights and four less re-
lations, in which case one obtains a family of varieties that must be investigated
further, or else there are too many weights or relations. In the latter case the triple
is discarded.

Lemma. There are only finitely many triples {d, h, k} that need to be considered.

Proof. The codimension of X is assumed to be at most four, so there are no more
than eight weights, and it is easily seen that at least two of them must be different
from one. So h 6 6.

The formula for h0(2D) shows that l = 4d andm = 1
4k+dmust be positive integers.

The coefficient of t2 in (1− t)hP (t) is 3
2h−h2 +m and there are two cases: either this

coefficient is negative, which gives an upper bound for m immediately, or it is non-
negative in which case it gives the number of twos among the weights, so necessarily
h+(3

2h−h2 +m) 6 8 and this is an upper bound for m. Finally k as positive, l < 4m.
Consequently there are finitely many possible possible triples {l, h,m} and so finitely
many possible triples {d, h, k}.
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Based on this result and the particular numerical values, a short computer pro-

gram produces the results discussed in Section 3. The interested reader can find the
code of the program in [16].

Non-complete intersection varieties

The Hilbert series P (t) gives information about non-complete intersection vari-
eties as well, this is discussed in detail in [1]. Choosing integers wi in a suitable
way, the polynomial

∏m
i=0(1 − twi)P (t) gives the degrees of the defining equations

and the higher syzygies of such X ⊂ Pm[w0, . . ., wm], necessarily of codimension
at least three. (The varieties studied here are automatically projectively Gorenstein
and projectively Cohen–Macaulay, so if they have codimension at most two then they
are complete intersections.) The search gives a finite list of these varieties for fixed
codimension; the list below gives all codimension three candidates, with the degrees
of the defining equations indicated. (There is a large number of codimension four
candidates.)

The variety X d k

X{5,5,6,6,6} ⊂ P6[12, 23, 32] 3
2 2

X{4,5,5,6,6} ⊂ P6[12, 24, 3] 7
4 5

X{4,4,4,5,5} ⊂ P6[13, 24] 13
4 3

A simple condition for existence is to use the Cohen–Macaulay assumption and ‘cut
the varieties by four hyperplanes’, i.e. to find a product

∏3
i=0(1− twji )P (t) which is a

polynomial with positive coefficients, giving the Hilbert series of a finite-dimensional
Artinian ring. This property can easily be checked in the above cases. It would be of
some interest to see whether the methods developed by Reid–Altınok (cf. [1]), can
be used to establish the existence of these varieties.
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