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Finite di�erence methods	 like 
nite element methods	 are based on local
representations of functions�usually by low�order polynomials� In contrast	
spectral methods make use of global representations	 usually by high�order
polynomials or Fourier series� Under fortunate circumstances the result is a
degree of accuracy that local methods cannot match� For large�scale compu�
tations	 especially in several space dimensions	 this higher accuracy may be
most important for permitting a coarser mesh	 hence a smaller number of data
values to store and operate upon� It also leads to discrete models with little
or no arti
cial dissipation	 a particularly valuable feature in high Reynolds
number 
uid 
ow calculations	 where the small amount of physical dissipation
may be easily overwhelmed by any dissipation of the numerical kind� Spectral
methods have achieved dramatic successes in this area�

Some of the ideas behind spectral methods have been introduced several
times into numerical analysis� One early proponent was Cornelius Lanczos	 in
the ����s	 who showed the power of Fourier series and Chebyshev polynomials
in a variety of problems where they had not been used before� The emphasis
was on ordinary di�erential equations� Lanczos�s work has been carried on	
especially in Great Britain	 by a number of colleagues such as C� W� Clenshaw�

More recently	 spectral methods were introduced again by Kreiss and
Oliger	 Orszag	 and others in the ����s for the purpose of solving the par�
tial di�erential equations of 
uid mechanics� Increasingly they are becoming
viewed within some 
elds as an equal competitor to the better established

nite di�erence and 
nite element approaches� At present	 however	 they are
less well understood�

Spectral methods fall into various categories	 and one distinction often
made is between �Galerkin	� �tau	� and �collocation� �or �pseudospectral��
spectral methods� In a word	 the 
rst two work with the coe�cients of a global
expansion	 and the latter with its values at points� The discussion in this book
is entirely con
ned to collocation methods	 which are probably used the most
often	 chie
y because they o�er the simplest treatment of nonlinear terms�

Spectral methods are a�ected far more than 
nite di�erence methods by
the presence of boundaries	 which tend to introduce stability problems that are
ill�understood and sometimes highly restrictive as regards time step� Indeed	
di�culties with boundaries	 direct and indirect	 are probably the primary rea�
son why spectral methods have not replaced their lower�accuracy competition
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in most applications� Chapter � considers spectral methods with boundaries	
but the present chapter assumes that there are none� This means that the spa�
tial domain is either in
nite�a theoretical device	 not applicable in practice�
or periodic� In those cases where the physical problem naturally inhabits a
periodic domain	 spectral methods may be strikingly successful� Conspicuous
examples are the global circulation models used by meteorologists� Limited�
area meteorological codes	 since they require boundaries	 are often based on

nite di�erence formulas	 but as of this writing almost all of the global circula�
tion codes in use� which model 
ow in the atmosphere of the entire spherical
earth� are spectral�
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���� An example

Spectral methods have been most dramatically successful in problems with
periodic geometries� In this section we present two examples of this kind that
involve elastic wave propagation� Both are taken from B� Fornberg	 �The
pseudospectral method� comparisons with 
nite di�erences for the elastic wave
equation	� Geophysics �� ������	 �������� Details and additional examples
can be found in that paper��

Elastic waves are waves in an elastic medium such as an iron bar	 a build�
ing	 or the earth	 and they come in two varieties� �P� waves �pressure or
primary�	 characterized by longitudinal vibrations	 and �S� waves �shear or
secondary�	 characterized by transverse vibrations� The partial di�erential
equations of elasticity can be written in various forms	 such as a system of
two second�order equations involving displacements� For his numerical simu�
lations	 Fornberg chose a formulation as a system of 
ve 
rst�order equations�

Figures ����� and ����� show the results of calculations for two physical
problems� In the 
rst	 a P wave propagates uninterruptedly through a periodic	
uniform medium� In the second	 an oblique P wave oriented at ��� hits a
horizontal interface at which the wave speeds abruptly cut in half� The result
is re
ected and transmitted P and S waves� For this latter example	 the actual
computation was performed on a domain of twice the size shown � which is
a hint of the trouble one may be willing to go to	 with spectral methods	 to
avoid coping explicitly with boundaries�

The 
gures show that spectral methods may sometimes decisively outper�
form second�order and fourth�order 
nite di�erence methods� In particular	
spectral methods are nondispersive� and in a wave calculation	 that property
can be of great importance� In these examples the accuracy achieved by the
spectral calculation on a ����� grid is not matched by fourth�order 
nite dif�
ferences on a ������� grid	 or by second�order 
nite di�erences on a �������
grid� The corresponding di�erences in work and storage are enormous�

Fornberg picked his examples carefully� spectral methods do not always
perform so convincingly� Nevertheless	 sometimes they are extremely impres�
sive� Although the reasons are not fully understood	 their advantages often
hold not just for problems involving smooth functions	 but even in the presence
of discontinuities�

�The �gures in this section will appear in the published version of this book only with permission�
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�a� Schematic initial and end states

�b� Computational results

Figure ������ Spectral and 
nite di�erence simulations of a P wave
propagating through a uniform medium �from Fornberg	 ������
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�a� Schematic initial and end states

�b� Computational results

Figure ������ Spectral and 
nite di�erence simulations of a P wave
incident obliquely upon an interface �from Fornberg	 ������
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���� Unbounded grids

We shall begin our study of spectral methods by looking at an in
nite	 un�
bounded domain� Of course	 real computations are not carried out on in
nite
domains	 but this simpli
ed problem contains many of the essential features
of more practical spectral methods�

Consider again ��h	 the set of square�integrable functions v� fvjg on the
unbounded regular grid hZ� As mentioned already in x���	 the foundation
of spectral methods is the spectral di�erentiation operator D � ��h � ��h	
which can be described in several equivalent ways� One is by means of the
Fourier transform�

SPECTRAL DIFFERENTIATION BY THE SEMIDISCRETE FOURIER TRANS�

��� Compute �v����

��� Multiply by i��

��� Inverse transform�

Dv�F��
h �i�Fh�v��� �������

Another is in terms of band�limited interpolation� As described in x���	
one can think of the interpolant as a Fourier integral of band�limited complex
exponentials or	 equivalently	 as an in
nite series of sinc functions�

SPECTRAL DIFFERENTIATION BY SINC FUNCTION INTERPOLATION�

��� Interpolate v by a sum of sinc functions q�x��
P
�

k��� vkSh�x�xk��

��� Di	erentiate the interpolant at the grid points xj �

�Dv�j � q��xj� �������

Recall that the sinc function Sh�x�	 de
ned by

Sh�x��
sin��x�h�

�x�h
� �������
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is the unique function in L� that interpolates the discrete delta function ej 	

ej �

�
� j��	

� j ���	
�������

and that moreover is band�limited in the sense that its Fourier transform has
compact support contained in ����h���h��

For higher order spectral di�erentiation	 we multiply Fh�v� by higher
powers of i�	 or equivalently	 di�erentiate q�x� more than once�

Why are these two descriptions equivalent The fundamental reason is
that Sh�x� is not just any interpolant to the delta function e	 but the band�

limited interpolant� For a precise argument	 note that both processes are
obviously linear	 and it is not hard to see that both are shift�invariant in the
sense that D�Kmv� �KmDv for any m� �The shift operator K was de
ned
in ��������� Since an arbitrary function v � ��h can be written as a convolution
sum vj �

P
�

k���vkej�k	 it follows that it is enough to prove that the two
processes give the same result when applied to the particular function e� That
equivalence results from the fact that the Fourier transform of e is the constant
function h	 whose inverse Fourier transform is in turn precisely Sh�x��

Since spectral di�erentiation constitutes a linear operation on ��h	 it can
also be viewed as multiplication by a biin
nite Toeplitz matrix�

D �
	

h

�BBBBBBBBBBBBBBBBBBBB�

� � �

� � � ��
�

�
� �� � � ��

�
�
� � � �

� � �

�CCCCCCCCCCCCCCCCCCCCA

� �������

As discussed in x���	 this matrix is the limit of banded Toeplitz matrices
corresponding to 
nite di�erence di�erentiation operators of increasing orders
of accuracy� see Table ����� on p� ���� �In this chapter we drop the subscript
on the symbol D

�
used in x����� We shall be careless in this text about

the distinction between the operator D and the matrix D that represents it�
Another way to express the same thing is to write

Dv� a�v� a �
�

h�
� � � � �

� �
�
� � � �� �

� �
�
� � � � � �������
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Figure ������ The sinc function Sh�x� and its derivative �Sh�x�x��

as in ���������
The coe�cients of ��������������� can be derived from either the Fourier

transform or the sinc function interpretation� Let us begin with the latter�
The sinc function has derivative

�Sh�x�x� �
cos��x�h�

x
�

sin��x�h�

�x��h
� �������

with values

�Sh�x�xj� �

����	
� if j��	

���	j

jh if j ���
�������

at the grid points� See Figure ������ This is precisely the �zeroth column�
of D	 since that column must by de
nition contain the values on the grid of
the spectral derivative of the delta function�� The other columns	 correspond�
ing to delta functions centered at other points xj 	 contain the same entries
appropriately shifted�

Now let us rederive ��������������� by means of the Fourier transform� If

Dv � a� v	 then dDv��� � �a����v���	 and for spectral di�erentiation we want
�a���� i�� Therefore by the inverse semidiscrete Fourier transform �������	

aj �
�

��

Z ��h

���h
i�ei�jhd��

For j �� the integral is �	 giving a
 ��	 while for j ���	 integration by parts

�Think about this� Make sure you understand why ������	 represents a column rather than a row of
D�
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yields

aj �
�

��
i�

ei�jh

ijh







��h

���h

�
�

��

Z ��h

���h

iei�jh

ijh
d��

The integral here is again zero	 since the integrand is a periodic exponential	
and what remains is

aj �
�

��jh

�
�

h
ei�j���

�

h
�e�i�j

�

�
�

�jh�
�ei�j!e�i�j��

����j

jh�
�

�������

as in ��������
The entries of D are suggestive of the Taylor expansion of log��!x�	 and

this is not a coincidence� In the notation of the spatial shift operator K of
�������	 D can be written

D �
	

h
�K� �

�K
�! �

�K
���� ���

	

h
�K��� �

�K
��! �

�K
����� ���

which corresponds formally to

D �
	

h
log��!K��

	

h
log��!K���

�
	

h
log
�

�!K

�!K��

�
�

	

h
logK�

��������

Therefore formally	 ehD �K	 and this makes sense� by integrating the deriva�
tive over a distance h	 one gets a shift� See the proof of Theorem ����

If vj � ei�jh for some � � ����h���h�	 then Dv � i�v� Therefore i� is an
eigenvalue of the operator D�� On the other hand	 if v has the same form with
� �� ����h���h�	 then � will be indistinguishable on the grid from some alias
wave number �� � ����h���h� with ��� �!����h for some integer �	 and the
result will be Dv� i��v� In other words in Fourier space	 the spatial di�eren�
tiation operator becomes multiplication by a periodic function	 thanks to the
discrete grid	 and in this sense is only an approximation to the exact di�er�
entiation operator for continuous functions� Figure ����� shows the situation
graphically� For band�limited data	 however	 the spectral di�erentiation op�
erator is exact	 in contrast to 
nite di�erence di�erentiation operators	 which
are exact only in the limit �� � �dashed line in the Figure��

�Actually
 this is not quite true� by de�nition
 an eigenvector must belong to ��
 and ei�jh does not�
Strictly speaking
 i� is in the spectrum of D but is not an eigenvalue� However
 this technicality is
unimportant for our purposes
 and will be ignored in the present draft of this book�
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�
����h ���h ��h ���h

�

i
�eigenvalue

Figure ������ Eigenvalue of D �divided by i� corresponding to the
eigenfunction ei�x	 as a function of �� The dashed line shows corre�
sponding eigenvalues for the 
nite di�erence operator D��

�i�h

��i�h

i�h

�i�h

C C

�a� D� �
nite di�erence� �b� D �spectral�

Figure ������ Eigenvalues of 
nite di�erence and spectral 
rst�order
di�erentiation matrices	 as subsets of the complex plane�

Figure ����� compares the spectrum of D to that of the second�order 
nite
di�erence operator D�� �
 of x����

D is a bounded linear operator on ��h	 with norm

kDk � max
������h���h�

ji�j �
�

h
��������

�see xx���	����� Notice that the norm increases to in
nity as the mesh is re
ned�
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This is inevitable	 as the di�erentiation operator for continuous functions is
unbounded�

So far we have described the spectral approximation to the 
rst derivative
operator 	�	x	 but it is an easy matter to approximate higher derivatives too�
For the second derivative	 the coe�cients turn out to be

D� �
�

h�

�BBBBBBBBBBBBBBBBBBBB�

� � �

� � � �
� ��

�
�
� ���

�
�
� ��

�
�
� � � �

� � �

�CCCCCCCCCCCCCCCCCCCCA

� ��������

To derive the entries of this matrix	 one can simply square D� this leads to
in
nite series to be summed� One can di�erentiate ������� a second time� Or
one can compute the inverse Fourier transform of �a�������	 as follows� Two
integrations by parts are involved	 and terms that are zero have been dropped�
For j ���	

aj �
�

��

Z ��h

���h
���ei�jhd�

�
�

��

Z ��h

���h
��

ei�jh

ijh
d�

�
�

�

ei�jh

�ijh��







��h

���h

� �
eij�!e�ij�

j�h�
�

�����j��

j�h�
�

��������

For j�� the integral is simply

a
 � �
�

��
�
���

�h�
� � �

��

�h�
�

The e�ect of D� on a function vj � ei�jh is to multiply it by the square
of the factor associated with D	 as illustrated in Figure ������ Again one has
a periodic multiplier that is exactly correct for � � ����h���h�� The dashed
line shows the analogous curve for the standard centered three�point 
nite
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�
����h ���h ��h ���h

eigenvalue

Figure ������ Eigenvalue of D� corresponding to the eigenfunction
ei�x	 as a function of �� The dashed line shows corresponding eigen�
values for the 
nite di�erence operator �

�
�

����h����h�

C C

�a� �
�

�
nite di�erence� �b� D� �spectral�

Figure ����	� Eigenvalues of 
nite di�erence and spectral second�
order di�erentiation matrices	 as subsets of the complex plane�

di�erence operator �
�

of x���� The spectrum of D� must be real	 since D is
symmetric� it is the interval �����h�����

The developments of this section are summarized	 and generalized to the
mth�order case	 in the following theorem�
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SPECTRAL DIFFERENTIATION ON AN UNBOUNDED REGULAR GRID

Theorem ���� The mth
order spectral di	erentiation operator Dm is a
bounded linear operator on ��h with norm

kDmk��
�

h
�m� ��������

If m is odd� Dm has the imaginary spectrum ��i���h�m� i���h�m� and can
be represented by an in�nite skew
symmetric Toeplitz matrix with entries

a
��� aj � h�m�  � for j ���� ��������

If m is even� Dm has the real spectrum ����m��� ������h�m� and can be
represented by an in�nite symmetric Toeplitz matrix with entries

a
�  � aj � h�m�  � for j ���� ��������

The purpose of all of these spectral di�erentiation matrices is to solve
partial di�erential equations� In a spectral collocation computation this is
done in the most straightforward way possible� one discretizes the continuous
problem as usual and integrates forward in time by a discrete formula	 usually
by 
nite di�erences�� Spatial derivatives are approximated by the matrix
D� This same prescription holds regardless of whether the partial di�erential
equation has variable coe�cients or nonlinear terms� For example	 to solve
ut� a�x�ux by spectral collocation	 one approximates a�x�ux at each time step
by a�xj�Dv� For ut � �u��x	 one uses D�v��	 where v� denotes the pointwise

square �v��i � �vi�
�� �Alternative discretizations may also be used for better

stability properties� see����� This is in contrast to Galerkin or tau spectral
methods	 in which one adjusts the coe�cients in the Fourier expansion of v to
satisfy the partial di�erential equation globally�

�Spectral approximations with respect to time can also sometimes be used� see H� Tal�Ezer
 �Spectral
methods in time for hyperbolic equations
� SIAM J� Numer� Anal� �� �����	
 pp� ������
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EXERCISES


 ������ Coe�cients of D�� Determine the matrix coe	cients of the third
order spectral
di�erentiation matrix D�� Compare your result with the coe	cients of Table ������


 ������

�a� Compute the integral
R
�

��
Sh�x
dx of the sinc function ������
� One could do this by

complex contour integration� but instead� be cleverer than that and �nd the answer
by considering the Fourier transform� The argument is quite easy� be sure to state it
precisely�

�b� By considering the trapezoid rule for integration �Exercise �����
� explain why the
answer above had to come out as it did� �Hint	 what is the integral of a constant
function�
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���� Periodic grids

To be implemented in practice� a spectral method requires a bounded domain� In this
section we consider the case of a periodic domain�or equivalently� an unbounded domain
on which we permit only functions with a �xed periodicity� The underlying mathematics
of discrete Fourier transforms was described in x���� The next chapter will deal with more
general bounded problems�

o o o o o o o o o* * * * * * * * * o o o o o o o o o* * * * * * * * *x �
�h

�
�

N
�

��N
� ���� �N

�

� N
�x

�
N
�

��� x��� xN
�

��

Figure ������ Space and wave number domains for the discrete Fourier trans

form�

To repeat some of the material of x���� our fundamental spatial domain will now be
�����
� as illustrated in Figure ������ Let N be a positive even integer� set

h�
��

N
�N even
� ������


and de�ne xj � jh for any j� The grid points in the fundamental domain are

x
�N������ � � � � x���� � � � � xN�������h�

and the �invaluable identity� is this�
N

�
�
�

h
� ������


The �
norm k�k and space ��N were de�ned in x���� as was the discrete Fourier transform�

�v� ��FNv
� �h

N����X
j��N��

e�i�jhvj � ������


the inverse discrete Fourier transform�

vj ��F
��
N �v
j �

�

��

N����X
���N��

ei�jh�v� � ������


and the discrete convolution�

�v�w
k �h

N����X
j��N��

vk�jwj � ������
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Recall that since the spatial domain is periodic� the set of wave numbers � is discrete�
namely the set of integers Z�and this is why we have chosen to use � itself as a subscript
in ������
 and ������
� We take � ��N��� � � � �N���� as our fundamental wave number
domain� The properties of the discrete Fourier transform were summarized in Theorems ���
and ����� recall in particular the convolution formula

�dv�w
� ��v� �w� � ������


As was described in x���� the discrete Fourier transform can be computed with great
e	ciency by the fast Fourier transform �FFT
 algorithm� for which a program was given on
p� ���� The discovery of the FFT in ���� was an impetus to the development of spectral
methods for partial di�erential equations in the �����s� Curiously� however� practical imple

mentations of spectral methods do not always make use of the FFT� but instead sometimes
perform an explicit matrix multiplication� The reason is that in large
scale computations�
which typically involve two or three space dimensions� the grid in each dimension may have
as few as �� or �� points� or even fewer in so
called �spectral element� computations� and
these numbers are low enough that the costs of an FFT and of a matrix multiplication may
be roughly comparable�

Now we are ready to investigate DN � �
�
N � ��N � the spectral di�erentiation operator

for N 
periodic functions� As usual� DN can be described in various ways� One is by means
of the discrete Fourier transform�

SPECTRAL DIFFERENTIATION BY THE DISCRETE FOURIER TRANSFORM�

��
 Compute �v�


��
 Multiply by i�� except that �v
�N�� is multiplied by ��

��
 Inverse transform	

DNv�F
��
N � � for ���N��� i��v� otherwise 
� ������


The special treatment of the value �v
�N�� is required to maintain symmetry� and appears

only in spectral di�erentiation of odd order�
Another is in terms of interpolation by a �nite series of complex exponentials or�

equivalently� periodic sinc functions�

PERIODIC SPECTRAL DIFFERENTIATION BY SINC INTERPOLATION�

��
 Interpolate v by a sum of periodic sinc functions

q�x
�

N����X
k��N��

vkSN �x�xk
�

��
 Di�erentiate the interpolant at the grid points xj 	

�DNv
j � q��xj
� ������
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In the second description we have made use of the periodic sinc function on the N 
point
grid�

SN �x
�
sin �x

h
��
h tan

x
�

� �������


which is the unique ��
periodic function in L� that interpolates the discrete delta function
ej on the grid�

ej �



� j���

� j��N��� � � � ������ � � � �N�����
�������


and which is band
limited in the sense that its Fourier transform has compact support
contained in ����h���h� �and furthermore satis�es �v

�N����vN��
� Compare ������
�
For higher order spectral di�erentiation on the periodic grid� we multiply �v� by higher

powers of i�� or equivalently� di�erentiate q�x
 more than once� If the order of di�erentiation
is odd� �v

�N�� is multiplied by the special value � to maintain symmetry�
As in the last section� the spectral di�erentiation process can be viewed as multiplica


tion by a skew
symmetric Toeplitz matrix DN �compare ������

�
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DN �

�BBBBBBBBBBBBBBBBBBBBBBBBBBBBB�

� �
� cot

h
� � �

� cot
�h
� � �

� cot
h
�

� � �

�
� cot

�h
� � �

� cot
h
� � �

� cot
h
� � �

� cot
�h
�

� � �

�
� cot

h
�

�
� cot

�h
� � �

� cot
h
� �

�CCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

� �������


In contrast to the matrix D of ������
� DN is �nite� it applies to vectors �v�N��� � � � �vN����
�
and has dimension N �N � DN is not only a Toeplitz matrix� but is in fact circulant�
This means that its entries �DN 
ij �wrap around�� depending not merely on i� j but on
�i�j
�modN
��

As in the last section� the entries of �������
 can be derived either by the inverse discrete
Fourier transform or by di�erentiating a sinc function� The latter approach is illustrated in
Figure ������ which shows SN and S�N for N ���� Since N is even� symmetry implies that
S�N �x
� � for x��� as well as for x��� Di�erentiation yields

S�N �x
�
cos �xh
�tan x

�

�
sin �x

h
��
h sin

� x
�

� �������


and at the grid points the values are

S�N �xj
�

��	
� if j���

�
� ���


j cot jh� if j ����
�������


Notice that for jjhj � �� these values are approximately the same as in ������
� Thus the
�i� j
 entry of DN � as indicated in �������
� is

�DN 
ij �

��	
� if i� j�

�
� ���


i�j cot�
xi�xj

� 
 if i �� j�
�������


�Any circulant matrix describes a convolution on a periodic grid
 and is equivalent to a pointwise
multiplication in Fourier space� In the case of DN 
 that multiplication happens to be by the function
i��
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Figure ������ The periodic sinc function SN �x
 and its derivative S
�

N �x
�

To derive �������
 by the Fourier transform� one can make use of �summation by parts��
the discrete analog of integration by parts� See Exercise ������

The eigenvectors of DN are the vectors ei�x with � 	Z� and the eigenvalues are the
quantities i� with �N�� �
 �
N������ These are precisely the factors i� in the de�nition
ofDN by the Fourier transform formula ������
� The number � is actually a double eigenvalue
of DN � corresponding to two distinct eigenvectors� the constant function and the sawtooth�

What about the spectral di�erentiation operator of second order� Again there are
various ways to describe it� This time� because ��� is an even function� no special treatment
of ���N�� is required to preserve symmetry in the Fourier transform description�

��
 Compute �v� �

��
 Multiply by ����

��
 Inverse transform�

D
��	
N v�F ��

N �����v�
� �������


The sinc interpolation description follows the usual pattern�

��
 Interpolate v by a sum of periodic sinc functions

q�x
�

N����X
k��N��

vkSN �x�xk
�

��
 Di�erentiate the interpolant twice at the grid points xj �

�D
��	
N v
j � q���xj
� �������


The matrix looks like this �compare �������

�

�Now that DN is �nite
 they are truly eigenvalues� there are no technicalities to worry about as in
the footnote on p� ����



���� PERIODIC GRIDS TREFETHEN ���� � ���

D
��	
N �

�BBBBBBBBBBBBBBBBBBBBBBBBBBBBB�

� ��

�h��
�



�
�csc

� h
� � �

�csc
� �h
�

�
�csc

� h
�

� � �

� �
�csc

� �h
�

�
�csc

� h
� � ��

�h��
�



�
�csc

� h
� � �

�csc
� �h
�

� � �

�
�csc

� h
� � �

�csc
� �h
�

�
�csc

� h
� � ��

�h��
�



�CCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
�������


Note that because � ��N�� has been treated di�erently in the two cases� D
��	
N is not the

square of DN � which is why we have put the superscript in parentheses� In general� the

mth
order spectral di�erentiation operator can be written as a power of D
��	
N if m is even�

and as a power of DN �or as DN times a power of D
��	
N 
 if m is odd� See Exercise ������

Figures �����!����� are the analogs of Figures �����!����� for a periodic grid�
We summarize and generalize the developments of this section in the following theorem�
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SPECTRAL DIFFERENTIATION ON A PERIODIC GRID

Theorem ���� Let N be even� Ifm is odd� themth
order spectral di�erentiation matrix

D
�m	
N is a skew
symmetric matrix with entries

a���� aj �� � 
 for j ���� �������


eigenvalues ��i��h ��

m� i��h ��


m�� and norm

kD
�m	
N k�

��
h
��
�m

� �������


If m is even� D
�m	
N is a symmetric matrix with entries

a�� � � aj �� � 
 for j ���� �������


eigenvalues ���
m��� �����h 

m�� and norm

kD
�m	
N k�

��
h

�m
� �������
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Figure ������ Eigenvalues of �nite di�erence and spectral �rst
order di�erenti

ation matrices on a periodic grid� as subsets of the complex plane� for N ����
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Figure ����
� Eigenvalues of second
order �nite di�erence and spectral di�eren

tiation matrices on a periodic grid� as subsets of the complex plane� for N ����
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EXERCISES


 ������ Fourier transform derivation of DN � �Not yet written��


 ������ D
��	
N ��D�

N � For most values ofN � the matrixD
�
N would serve as quite a good discrete

second
order di�erentiation operator� but as mentioned in the text� it is not identical toD
��	
N �

�a� Determine DN � D
�
N � and D

��	
N for N ��� and con�rm that the latter two are not equal�

�b� Explain the result of �a� by considering sinc interpolation as in Figure ������

�c� Explain it again by considering Fourier transforms as in Figure ����� and ������

�d� Give an exact formula for the eigenvalues of D
�J	
N for arbitrary J � ��


������ ������ Spectral di�erentiation�

Making use of a program for computing the FFT �in Matlab such a program is built
in� in
Fortran one can use the program of p� ���
� write a program DERIV that computes the
mth
order spectral derivative of an N 
point data sequence v representing a function de�ned
on ������ or �������

N � length of sequence �power of �
 �input

m� order of derivative �integer � �
 �input

v� sequence to be di�erentiated �real sequence of length N
 �input

w� mth spectral derivative of v �real sequence of length N
 �output


Although a general FFT code deals with complex sequences� make v and w real variables
in your program� since most applications concern real variables� Allow m to be any integer
m� �� and make sure to treat the distinction properly between even and odd values of m�

Test DERIV with N ��� and N ��� on the functions

u��x
� exp�sin�x
 and u��x
� jsin xj
�

for the values m����� and hand in two ��� tables�one for each function�of the resulting
errors in the discrete �
norm� Put a star � where appropriate� and explain your results�
Plot the computed derivatives with m���


������ ������ Spectral integration� Modify DERIV to accept negative as well as positive values of
m� For m	 �� DERIV should return a scalar representing the de�nite integral of v over one
period� together with a function w representing the jmjth inde�nite integral� Explore the
behavior of DERIV with various v and m	 ��


������ ������ Hamming window� Write a program FILTER that takes a sequence v and smooths
it by transforming to �v� multiplying the transform by the �Hamming window��

�wk ������ ����cos
��k

N

�vk�

and inverse transforming� Apply FILTER to the function jsin xj and hand in a plot of the
result�
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 ������ Fourier transform derivation of DN � �Not yet written��


 ������ D
��	
N ��D�

N � For most values ofN � the matrixD
�
N would serve as quite a good discrete

second
order di�erentiation operator� but as mentioned in the text� it is not identical toD
��	
N �

�a�Determine DN � D
�
N � and D

��	
N for N ��� and con�rm that the latter two are not equal�

�b�Explain the result of �a�by considering sinc interpolation as in Figure ������

�c�Explain it again by considering Fourier transforms as in Figures ����� and ������


������ ������ Spectral di�erentiation� Type the program FFT of Figure ����� into your computer
and experiment with it until you are con�dent you understand how to compute both a
discrete Fourier transform and an inverse discrete Fourier transform� For example� try as
input a sine wave and a sinc function� and make sure the output you get is what you expect�
Then make sure you can get the input back again by inversion�

Making use of FFT� write a program DERIV�N �m�v�w
 which returns the mth
order spec

tral derivative of the N 
point data sequence v representing a function de�ned on ������ or
�������

N � length of sequence �power of �
 �input

m� order of derivative �integer � �
 �input

v� sequence to be di�erentiated �real sequence of length N
 �input

w� mth spectral derivative of v �real sequence of length N
 �output


Although FFT deals with complex sequences� make v and w real variables in your program�
since most applications concern real variables� Allow m to be any integer m� �� and make
sure to treat the distinction properly between even and odd values of m�

Test DERIV with N ��� and N ��� on the functions

u��x
� exp�sin
�x
 and u��x
� jsin xj

�

for the values m����� and hand in two ��� tables�one for each function�of the result

ing errors in the discrete �
norm� Explain your results� If possible� plot the computed
derivatives with m���


������ ������ Spectral integration� Modify DERIV to accept negative as well as positive values of
m� For m	 �� DERIV should return a scalar representing the de�nite integral of v over one
period� together with a function w representing the jmjth inde�nite integral� Explore the
behavior of DERIV with various v and m	 ��


������ ������ Hamming window� Write a program FILTER�N �v�w
 which takes a sequence v and
smooths it by transforming to �v� multiplying the transform by the �Hamming window��

�wk ����� ���cos
��k

N

�vk �

and inverse transforming� Apply FILTER to the function jsin xj and hand in the result� A
plot would be nice�
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���� Stability

�Just a few results so far� The �nished section will be more substantial��

Spectral methods are commonly applied to time
dependent problems according to the
�method of lines� prescription of x���� �rst the problem is discretized with respect to space�
and then the resulting system of ordinary di�erential equations is solved by a �nite di�erence
method in time� As usual� we can investigate the eigenvalue stability of this process by
examining under what conditions the eigenvalues of the spectral di�erentiation operator are
contained in the stability region of the time discretization formula� The separate question of
stability in the sense of the Lax Equivalence Theorem is rather di�erent� and involves some
subtleties that were not present with �nite di�erence methods� these issues are deferred to
the next section�

In xx������� we have introduced two families of spectral di�erentiation matrices� D and

its powers Dm for an in�nite grid� and DN and its higher
order analogs D
�m	
N �not exactly

powers
 for a periodic grid� The spectra of all of these matrices lie in the closed left half of
the complex plane� and that is the same region that comes up in the de�nition of A
stability�
We conclude that if any equation

ut�

mu


xm
������


is modeled on a regular grid by spectral di�erentiation in space and an A
stable formula in
time� the result is eigenvalue stable� regardless of the time step�

By Theorem ����� an A
stable linear multistep formula must be implicit� For a model
problem as simple as ������
� the system of equations involved in the implicit formula can be
solved quickly by the FFT� but in more realistic problems this is often not true� Since spec

tral di�erentiation matrices are dense �unlike �nite di�erence di�erentiation matrices
� the
implementation of implicit formulas can be a formidable problem� Therefore it is desirable
to look for explicit alternatives�

On a regular grid� satisfactory explicit alternatives exist� For example� suppose we
solve ut� ux by spectral di�erentiation in space and the midpoint formula ������
 in time�
The stability region for the midpoint formula is the complex interval ��i�k�i�k�� From
Theorem ��� or Figure ������ we conclude that the time
stability restriction is ��h
 ��k�
i�e�

k

h

�
� ������


This is stricter by a factor � than the time
stability restriction k 
 h for the leap frog
formula� which is based on second
order �nite di�erence di�erentiation� The explanation
goes back to the fact that the sawtooth curve in Figure ����� is � times taller than the
dashed one�

On a periodic grid� Theorem ��� or Figure ����� loosens ������
 slightly to

k 

h

��h
�

�

N��
� ������


Other explicit time
discretization formulas can also be used with ut � ux� so long as
their stability regions include a neighborhood of the imaginary axis near the origin� Figure
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����� reveals that this is true� for example� for the Adams
Bashforth formulas of orders �!��
The answer to Exercise ������b
 can readily be converted to the exact stability bound for
the �rd
order Adams
Bashforth discretization�

For ut � uxx� the eigenvalues of D or DN become real and negative� so we need a
stability region that contains a segment of the negative real axis� Thus the midpoint rule
will be unstable� On the other hand the Euler formula� whose stability region was drawn in
Figure ����� and again in Figure ������ leads to the stability restriction ���h�
 ��k� i�e�

k

�h�

��
� ������


On an in�nite grid this is ���� stricter than the stability restriction for the �nite di�erence
forward Euler formula considered in Example ������� �The cusped curve in Figure ����� is
���� times deeper than the dashed one�
 By Theorem ���� exactly the same restriction is
also valid for a periodic grid�

k

�h�

��
�
�

N�
� ������


As another example� the answer to Exercise ������a
 can be converted to the exact
stability bound for the �rd
order Adams
Bashforth discretization of ut�uxx�

In general� spectral methods on a periodic grid tend to have stability restrictions that
are stricter by a constant factor than their �nite di�erence counterparts� �This is opposite
to what the CFL condition might suggest� the numerical domain of dependence of a spectral
method is unbounded� so there is no CFL stability limit�
 The constant factor is usually
not much of a problem in practice� for spectral methods permit larger values of h than �nite
di�erence methods in the �rst place� because of their high order of spatial accuracy� In other
words� relatively small time steps k are needed anyway to avoid large time
discretization
errors�

EXERCISES


������ ������ A simple spectral calculation�

Write a program to solve ut � ux on ������ with periodic boundary conditions by the
pseudospectral method� The program should use the midpoint time integration formula
and spatial di�erentiation obtained from the program DERIV of Exercise ������

�a� Run the program up to t � �� with k � h��� N � � and N � ��� and initial data
v�� f�x
� v�� f�x k
� with both

f��x
� cos
�x and f��x
�

�
cos�x for jxj 
��� �mod��
�

� otherwise�

List the four ��N errors you obtain at t� ��� Plot the computed solutions v�x���
 if
possible�

�b� Rerun the program with k�h�� and list the same four errors as before�

�c� Explain the results of �a� and �b�� What order of accuracy is observed� How might it
be improved�

�Why is the ratio not �� � Because �
�
� ���h��	

�
 not ���h	
��
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������ ������ Spectral calculation with �ltering�

�a� Modify the program above so that instead of computing vn at each step with DERIV
alone� it uses DERIV followed by the program FILTER of Exercise ������ Take k�h��
again and print and plot the same results as in the last problem� Are the errors smaller
than they were without FILTER�

�b� Run the program again in DERIV"FILTER mode with k � h��� Print and plot the
same results as in �c��

�c� What is the exact theoretical stability restriction on k for the DERIV"FILTERmethod�
You may consider the limit N �� for simplicity�

Note� Filtering is an important idea in spectral methods� but this simple linear problem is
not a good example of a problem where �ltering is needed�


������ ������ Inviscid Burgers� equation�

Write a program to solve ut � �u
�
x on ������ with periodic boundary conditions by the

pseudospectral method� The program should use forward Euler time integration formula
and spatial di�erentiation implemented with the program DERIV�

�a� Run the program up to t � �� with k � h��� N � ��� and initial data v� � ��� 
����sinx� Plot the computed results �superimposed on a single plot
 at times t �
�� ���� ���� � � � ����

�b� Explain the results of part �a� as well as you can�

�c� �Optional�� Can you �nd a way to improve the calculation�
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