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This chapter discusses spectral methods for domains with boundaries.
The effect of boundaries in spectral calculations is great, for they often in-
troduce stability conditions that are both highly restrictive and difficult to
analyze. Thus for a first-order partial differential equation solved on an N-
point spatial grid by an explicit time-integration formula, a spectral method
typically requires k = O(N~2) for stability, in contrast to k= O(N~!) for fi-
nite differences. For a second-order equation the disparity worsens to O(N~%)
vs. O(N~2). To make matters worse, the matrices involved are usually non-
normal, and often very far from normal, so they are difficult to analyze as well
as troublesome in practice.

Spectral methods on bounded domains typically employ grids consisting
of zeros or extrema of Chebyshev polynomials (“Chebyshev points”), zeros or
extrema of Legendre polynomials (“Legendre points”), or some other set of
points related to a family or orthogonal polynomials. Chebyshev grids have
the advantage that the FFT is available for an O(NlogN) implementation
of the differentiation process, and they also have slight advantages connected
their ability to approximate functions. Legendre grids have various theoretical
and practical advantages because of their connection with Gauss quadrature.
At this point one cannot say which choice will win in the long run, but in this
book, in keeping with out emphasis on Fourier analysis, most of the discussion
is of Chebyshev grids.

Since explicit spectral methods are sometimes troublesome, implicit spec-
tral calculations are increasingly popular. Spectral differentiation matrices are
dense and ill-conditioned, however, so solving the associated systems of equa-
tions is not a trivial matter, even in one space dimension. Currently popular
methods for solving these systems include preconditioned iterative methods
and multigrid methods. These techniques are discussed briefly in §8.7.
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8.1. Polynomial interpolation

Spectral methods arise from the fundamental problem of approximation
of a function by interpolation on an interval. Multidimensional domains of a
rectilinear shape are treated as products of simple intervals, and more compli-
cated geometries are sometimes divided into rectilinear pieces.® In this section,
therefore, we restrict our attention to the fundamental interval [—1,1]. The
question to be considered is, what kinds of interpolants, in what sets of points,
are likely to be effective?

Let N >1 be an integer, even or odd, and let z,...,z5 or sometimes
Tq,...,Ty be a set of distinct points in [—1,1]. For definiteness let the num-
bering be in reverse order:

The following are some grids that are often considered:

o
Equispaced points: r;=1- ﬁ] (0<j<N),
) —1/2
Chebyshev zero points: z;= COS% (1<j<N),

Chebyshev extreme points: z;=cos ‘% (0<j<N),

Legendre zero points: x;=jth zero of Py (1<j<N),

Legendre extreme points: z;=jth extremum of Py (0<j<N),

where Py is the Legendre polynomial of degree N. Chebyshev zeros and ex-
treme points can also be described as zeros and extrema of Chebyshev polyno-
mials Ty, (more on these in §8.3). Chebyshev and Legendre zero points are also
called Gauss-Chebyshev and Gauss-Legendre points, respectively, and Cheby-
shev and Legendre extreme points are also called Gauss-Lobatto-Chebyshev
and Gauss-Lobatto-Legendre points, respectively. (These names originate in
the field of numerical quadrature.)

*Such subdivision methods have been developed independently by I. Babushka and colleagues for
structures problems, who call them “p” finite element methods, and by A. Patera and colleagues
for fluids problems, who call them spectral element methods.
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It is easy to remember how Chebyshev points are defined: they are the
projections onto the interval [—1,1] of equally-spaced points (roots of unity)
along the unit circle |z| =1 in the complex plane:

Figure 8.1.1. Chebyshev extreme points (/N =38).

To the eye, Legendre points look much the same, although there is no
elementary geometrical definition. Figure 8.1.2 illustrates the similarity:

(b) N=25

Figure 8.1.2. Legendre vs. Chebyshev zeros.

As N — 00, equispaced points are distributed with density

N
p(z)= 5} Equally spaced, (8.1.2)
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and Legendre or Chebyshev points—either zeros or extrema—have density

B N
N

Indeed, the density function (8.1.3) applies to point sets associated with any
Jacobi polynomials, of which Legendre and Chebyshev polynomials are special
cases.

Why is it a good idea to base spectral methods upon Chebyshev, Legen-
dre, and other irregular grids? We shall answer this question by addressing
a second, more fundamental question: why is it a good idea to interpolate a
function f(z) defined on [—1,1] by a polynomial py(x) rather than a trigono-
metric polynomial, and why is it a good idea to use Chebyshev or Legendre
points rather than equally spaced points?

Legendre, Chebyshev. (8.1.3)

[The remainder of this section is just a sketch. .. details to be supplied later.]

PHENOMENA

Trigonometric interpolation in equispaced points suffers from the Gibbs
phenomenon, due to Michelson and Gibbs at the turn of the twentieth cen-
tury. ||f—pyl|=0(1) as N — oo, even if f is analytic. One can try to get
around the Gibbs phenomenon by various tricks such as doubling the domain
and reflecting, but the price is high.

Polynomial interpolation in equally spaced points suffers from the Runge
phenomenon, due to Meray and Runge (Figure 8.1.3). ||f —py | =0(2")—
much worse!

Polynomial interpolation in Legendre or Chebyshev points: ||f—py|l =
O(constant™) if f is analytic (for some constant greater than 1). Even if
f is quite rough the errors will still go to zero provided f is, say, Lipschitz
continuous.
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Figure 8.1.3. The Runge phenomenon.
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FIRST EXPLANATION—EQUIPOTENTIAL CURVES

Think of the limiting point distribution u(x), above, as a charge density
distribution; a charge at position z is associated with a potential log |z — x|.
Look at the equipotential curves of the resulting potential function ¢(z) =

I (@) log |z — x| dz.

CONVERGENCE OF POLYNOMIAL INTERPOLANTS

Theorem 8.1.

In general, ||f —py|| = 0 as N — oo in the largest region bounded by an
equipotential curve in which f is analytic. In particular:

For Chebyshev or Legendre points, or any other type of Gauss-Jacobi points,
convergence is guaranteed if f is analytic on [—1,1].

For equally spaced points, convergence is guaranteed if f is analytic in a
particular lens-shaped region containing (—1,1) (Figure 8.1.4).

Figure 8.1.4. Equipotential curves.
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SECOND EXPLANATION—LEBESGUE CONSTANTS

Definition of Lebesgue constant:

An =[xl

where I is the interpolation operator I : f — pp. A small Lebesgue constant
means that the interpolation process is not much worse than best approxima-
tion:

If =pnll < (Ax+ DI —pxll, (8.1.1)

where p} is the best (minimax, equiripple) approximation.

LEBESGUE CONSTANTS

Theorem 8.2.

Equispaced points: Ay ~ 2N /e N'log N.
Legendre points: Ay ~ const V/N.
Chebyshev points: Ay ~ constlog N.

THIRD EXPLANATION-—NUMBER OF POINTS PER WAVELENGTH

Consider approximation of, say, fy(z)=cosaNz as N —oco. Thus fy
changes but the number of points per wavelength remains constant. Will the
error ||fy —pull go to zero? The answer to this question tells us something
about the ability of various kinds of spectral methods to resolve data.

POINTS PER WAVELENGTH

Theorem 8.3.

Equispaced points: convergence if there are at least 6 points per wavelength.

Chebyshev points: convergence if there are at least m points per wavelength
on average.

We have to say “on average” because the grid is nonuniform. In fact, it
is 7/2 times less dense in the middle than the equally spaced grid with the
same number of points N (see (8.1.2) and (8.1.3)). Thus the second part of
the theorem says that we need at least 2 points per wavelength in the center
of the grid—the familiar Nyquist limit. See Figure 8.1.5. The first part of
the theorem is mathematically valid, but of little value in practice because of
rounding errors.
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(a) Equally spaced points

(b) Chebyshev points

Figure 8.1.5. Error as a function of NV in interpolation of cos aNz,
with «, hence the number of points per wavelength, held fixed.
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8.2. Chebyshev differentiation matrices

[Just a sketch]

From now on “Chebyshev points” means Chebyshev extreme points.
Multiplication by the first-order Chebyshev differentiation matrix D,

transforms a vector of data at the Chebyshev points into approximate deriva-
tives at those points:

Yo W

ChY W

As usual, the implicit definition of D is as follows:

CHEBYSHEV SPECTRAL DIFFERENTIATION BY POLYNOMIAL INTERPOLA-
TION.

(1) Interpolate v by a polynomial q(z) = qx(x);
(2) Differentiate the interpolant at the grid points x;:

w; = (Dyv);=q'(x;). (8.2.1)

Higher-order differentiation matrices are defined analogously. From this
definition it is easy to work out the entries of Dy in special cases. For N =1:

N[
D[ =

X = y Dlz

D[ =
D=

For N =2:

N[
D=

DO =
[\
|
[\V][Y)
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For N =3:

7 r 19 4 1 7

1 5 4 3 3

1 1 1

3 1 -3 -1 3

X = y D3 =
1 1 1

—3 -3 1 3 -1

1 4 19
[—1 L2 —3 4 —%

These three examples illustrate an important fact, mentioned in the introduc-
tion to this chapter: Chebyshev spectral differentiation matrices are in general
not symmetric or skew-symmetric. A more general statement is that they are
not normal.* This is why stability analysis is difficult for spectral methods.
The reason they are not normal is that unlike finite difference differentiation,
spectral differentiation is not a translation-invariant process, but depends in-
stead on the same global interpolant at all points T
The general formula for Dy is as follows. First, define

2 fori=0or N,
C: =
‘ 1 for1<i<N-—1,

and of course analogously for ¢j. Then:

(8.2.2)

CHEBYSHEV SPECTRAL DIFFERENTIATION

Theorem 8.4. Let N >1 be any integer. The first-order spectral differen-
tiation matrix Dy has entries

2N?2+1 2N?2+1
(Dn)oo = —5 (Dn)nN = %
_l‘j .
(DN)jj:m for1<j<N-—-1,
c; (—1)i*i o,
Dy)y = G T iz
( N)zg Cj xi_xj Ol"l;lé]

Analogous formulas for D%; can be found in Peyret (1986), Ehrenstein &
Peyret [ref?] and in Zang, Streett, and Hussaini, ICASE Report 89-13, 1989.
See also Canuto, Hussaini, Quarteroni & Zang.

*Recall that a normal matrix A is one that satisfies AAT = ATA. Equivalently, A possesses an
orthogonal set of eigenvectors, which implies many desirable properties such as p(A"™) = ||A"|| =
[|A||"™ for any n.
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A note of caution: Dy is rarely used in exactly the form described in
Theorem 8.4, for boundary conditions will modify it slightly, and these depend
on the problem.

EXERCISES

> 8.2.1. Prove that for any N, D is nilpotent: D} =0 for a sufficiently high integer n.
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8.3. Chebyshev differentiation by the FFT

Polynomial interpolation in Chebyshev points is equivalent to trigonometric interpo-
lation in equally spaced points, and hence can be carried out by the FFT. The algorithm
described below has the optimal order O(NlogN),* but we do not worry about achieving
the optimal constant factor. For more practical discussions, see Appendix B of the book by
Canuto, et al., and also P. N. Swarztrauber, “Symmetric FFTs,” Math. Comp. 47 (1986),
323-346. Valuable additional references are the book The Chebyshev Polynomials by Rivlin
and Chapter 13 of P. Henrici, Applied and Computational Complex Analysis, 1986.

Consider three independent variables § € R, z € [-1,1], and z € S, where S is the
complex unit circle {z: |z| =1}. They are related as follows:

z=¢e", z=Rez=12%(z+2"")=cos¥, (8.3.1)

which implies

d—m——sint‘):—\/l—aﬂ. (8.3.2)

g
See Figure 8.3.1. Note that there are two conjugate values z € S for each z € (—1,1), and
an infinite number of possible choices of 6.

Figure 8.3.1. z, =, and 6.

*optimal, that is, so far as anyone knows as of 1994.
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In generalization of the fact that the real part of z is z, the real part of 2z (n >0)
is T,,(x), the Chebyshev polynomial of degree n. This statement can be taken as a
definition of Chebyshev polynomials:

T,(z)=Rez"=1(2"+2z"")=cosnd, (8.3.3)

where = and z and 6 are, as always, implicitly related by (8.3.1).* It is clear that (8.3.3)
defines T, () to be some function of z, but it is not obvious that the function is a polynomial.
However, a calculation of the first few cases makes it clear what is going on:

Ty(z) = 5(x"+27°%) = 1,
Ti(z) = (2" +271) = x,
(8.3.4)
Ty(z) = 2(z°+27%) = L(z'+271)* -1 = 22° -1,
Ty(x) = 1(2°+27%) = 12" +271)P =3 (21 +271) = 42° - 3a.

In general, the Chebyshev polynomials are related by the three-term recurrence relation
Tn+1(x) = %
=1+ E ) -3 (8.3.5)
2$1%($)—-T%71($)
By (8.3.2) and (8.3.3), the derivative of T, () is

df nsinnd
’ I @
T, (x) = —n sin nf T g

(8.3.6)

Thus just as z, z, and 6 are equivalent, so are T, (z), 2", and cos nf. By taking linear
combinations, we obtain three equivalent kinds of polynomials. A trigonometric polyno-
mial ¢(#) of degree N is a 2w-periodic sum of complex exponentials in 6 (or equivalently,
sines and cosines). Assuming that ¢(#) is an even function of 6, it can be written

N N
q()= % Z an(eme —|—e*i”0) = Z a,, cos nf. (8.3.7)
n=0 n=0

A Laurent polynomial ¢(z) of degree N is a sum of negative and positive powers of z up
to degree N. Assuming ¢(z) =¢q(z) for z € S, it can be written

N
q(z)=1 Z a,(z"+z""). (8.3.8)

An algebraic polynomial ¢(z) of degree N is a polynomial in z of the usual kind, and we
can express it as a linear combination of Chebyshev polynomials:

N
q(z)= ZanTn(m). (8.3.9)

* Equivalently, the Chebyshev polynomials can be defined as a system of polynomials orthogonal on
[—1, 1] with respect to the weight function (1 —m2)71/2.
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The use of the same coefficients a,, in (8.3.7)—(8.3.9) is no accident, for all three of the
polynomials above are identical:

q(8) =q(z) = q(), (8.3.10)

where again, z and z and 6 are implicitly related by (8.3.1). For this reason we hope to be
forgiven the sloppy use of the same letter ¢ in all three cases.
Finally, for any integer N > 1, we define regular grids in the three variables as follows:

Jm i0, -
Oi:ﬁ’ zj:eeﬂ, a:j:Rezj:%(zj—kzj l)zcost‘)j (8.3.11)
for 0 <j <N. The points {z;} and {z;} were illustrated already in Figure 8.1.1. And now
we are ready to state the algorithm for Chebyshev differentiation by the FFT.
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ALGORITHM FOR CHEBYSHEV DIFFERENTIATION

1. Given data {v;} defined at the Chebyshev points {z;}, 0 <j < N, think of the same
data as being defined at the equally spaced points {6} in [0,7].

2. (FFT) Find the coefficients {a,} of the trigonometric polynomial
=> a,cosnd (8.3.12)

that interpolates {v;} at {0;}.
3. (FFT) Compute the denvamve
Zna sin nf. (8.3.13)

4. Change variables to obtain the derivative with respect to x:

N .
dg dq df na,, sinnf na,, sin m‘)
A A 8.3.14
dr df dx 2:: sin 6 Z ( )
At x==1, i.e. § =0,m, L’Hopital’s rule gives the special values
N
dgq
+1 +1)"n? 3.1
T (F) = HXZ%( )'n’a,, (8.3.15)

5. Evaluate the result at the Chebyshev points:

dgq
w; = (). (8.3.16)

Note that by (8.3.3), equation (8.3.12) can be interpreted as a linear combination of
Chebyshev polynomials, and by (8.3.6), equation (8.3.14) is the corresponding linear com-
bination of derivatives.* But of course the algorithmic content of the description above
relates to the 8 variable, for in Steps 2 and 3, we have performed Fourier spectral differenti-
ation exactly as in §7.3: discrete Fourier transform, multiply by i€, inverse discrete Fourier
transform. Only the use of sines and cosines rather than complex exponentials, and of n
instead of &, has disguised the process somewhat.

*or of Chebyshev polynomials U, (z) of the second kind.
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EXERCISES

» 8.3.1. Fourier and Chebyshev spectral differentiation.
Write four brief, elegant Matlab programs for first-order spectral differentiation:

FDERIVM, CDERIVM: construct differentiation matrices;
FDERIV, CDERIV: differentiate via FFT.

In the Fourier case, there are N equally spaced points T_ N2 TNja (N even) in
[, 7], and no boundary conditions. In the Chebyshev case, there are N Chebyshev points
Zy,...,xy in [—1,1) (N arbitrary), with a zero boundary condition at x =1. The effect of
this boundary condition is that one removes the first row and first column from D, leading
to a square matrix of dimension NV instead of N +1.

You do not have to worry about computational efficiency (such as using an FFT of length
N rather than 2N in the Chebyshev case), but you are welcome to worry about it if you
like.

Experiment with your programs to make sure they differentiate successfully. Of course, the

matrices can be used to check the FFT programs.

(a) Turn in a plot showing the function u(z) = cos(z/2) and its derivative computed by
FDERIV, for N =32. Discuss the results.

(b) Turn in a plot showing the function u(z) = cos(mwx/2) and its derivative computed by
CDERIV, again for N =32. Discuss the results.

(c) Plot the eigenvalues of Dy for Fourier and Chebyshev spectral differentiation with
N =8, 16, 32, 64.
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8.5. Stability

This section is not yet written. What follows is a copy of a paper of mine from K.
W. Morton and M. J. Baines, eds., Numerical Methods for Fluid Dynamics III, Clarendon
Press, Oxford, 1988.

Because of stability problems like those described in this paper, more and more atten-
tion is currently being devoted to implicit time-stepping methods for spectral computations.
The associated linear algebra problems are generally solved by preconditioned matrix iter-
ations, sometimes including a multigrid iteration.

This paper was written before I was using the terminology of pseudospectra. I would
now summarize Section 5 of this paper by saying that although the spectrum of the Legendre
spectral differentiation matrix is of size @ (V) as N — oo, the pseudospectra are of size ©(N?)
for any € > 0. The connection of pseudospectra with stability of the method of lines was
discussed in Sections 4.5—4.7.
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8.6. Some review problems

EXERCISES

> 8.6.1. TRUE or FALSE? Give each answer together with at most two or three
sentences of explanation. The best possible explanation is a proof, a counterexample,
or the citation of a theorem in the text from which the answer follows. If you can’t
do quite that well, try at least to give a convincing reason why the answer you have
chosen is the right one. In some cases a well-thought-out sketch will suffice.

(a) The Fourier transform of f(z)=exp(—2z*) has compact support.

(b) When you multiply a matrix by a vector on the right, i.e. Az, the result is a
linear combination of the columns of that matrix.

(c) If an ODE initial-value problem with a smooth solution is solved by the fourth-

order Adams-Bashforth formula with step size k, and the missing starting values
vl, v?, v3 are obtained by taking Euler steps with some step size &', then in
general we will need &' = O(k*) to maintain overall fourth-order accuracy.

(d) If a consistent finite difference model of a well-posed linear initial-value problem
violates the CFL condition, it must be unstable.

(e) If you Fourier transform a function u € L? four times in a row, you end up with
u again, times a constant factor.

(f) If the function f(z) = (z?—22+26/25) ! is interpolated by a polynomial g (z)
in N equally spaced points of [—1,1], then || f —¢y|loc = 0 as N — oo.

(g) €® = O(ze*?) as & — .

(h) If a stable finite-difference approximation to u, =u, with real coefficients has
order of accuracy 3, then the formula must be dissipative.

(i) If
1

(5 4)
2

then ||A™|| < C Vn for some constant C' < oo.

NO[—

(j) If the equation u, = —100A4%u is solved by the fourth-order Adams-Moulton
formula, where u(z,t) is a 2-vector and A is the matrix above, then £ =0.01 is
a sufficiently small time step to ensure time-stability.

(k) Let u, =u,, on [—m,7], with periodic boundary conditions, be solved by Fourier
pseudospectral differentiation in z coupled with a fourth-order Runge-Kutta
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formula in ¢. For N =32, £ =0.01 is a sufficiently small time step to ensure
time-stability.

(I) The ODE initial-value problem u, = f(u,t) = cos?u, u(0) =1, 0 <t < 100, is
well-posed.

(m) In exact arithmetic and with exact starting values, the numerical approxima-
tions computed by the linear multistep formula

Un+3 _ %(vn+2 +Un+1 +’Un)+§k(fn+2+fn+1+fn)
are guaranteed to converge to the unique solution of a well-posed initial-value
problem in the limit £ — 0.

(n) If computers did not make rounding errors, we would not need to study stability.

(o) The solution at time t=1 to u; =u, +u,, (z€R, initial data u(z,0)= f(z)) is
the same as what you would get by first diffusing the data f(z) according to the
equation u; = u,,,, then translating the result leftward by one unit according to
the equation u; =u,,.

(p) The discrete Fourier transform of a three-dimensional periodic set of data on an
N x N x N grid can be computed on a serial computer in O(N?3log N) operations.

(q) The addition of numerical dissipation may sometimes increase the stability limit
of a finite difference formula without affecting the order of accuracy.

(r) For a nondissipative semidiscrete finite-difference model (i.e., discrete space but
continuous time), phase velocity as well as group velocity is a well-defined quan-
tity.

s) vPt =7 is a stable left-hand boundary condition for use with the leap frog
0 4
model of u; =u, with k/h=0.5.

(t) If a finite difference model of a partial differential equation is stable with k/h =
Ag for some Ay >0, then it is stable with k/h =X for any A <X.

(u) To solve the system of equations that results from a standard second-order
discretization of Laplace’s equation on an N X N x N grid in three dimensions
by the obvious method of banded Gaussian elimination, without any clever
tricks, requires ©(N7) operations on a serial computer.

(v) If u(z,t) is a solution to u, =iu,, for z € R, then the 2-norm ||u(-,¢)| is inde-
pendent of ¢.

(w) In a method of lines discretization of a well-posed linear IVP, having the ap-
propriate eigenvalues fit in the appropriate stability region is sufficient but not
necessary for Lax-stability.

(x) Suppose a signal that’s band-limited to frequencies in the range [-40kHz, 40kHz|
is sampled 60,000 times a second, i.e., fast enough to resolve frequencies in the
range [—30kHz,30kHz|. Then although some aliasing will occur, the information
in the range [—20kHz,20kHz| remains uncorrupted.
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8.7. Two final problems

EXERCISES

» 8.7.1. Equipotential curves. Write a short and elegant Matlab program to plot
equipotential curves in the plane corresponding to a vector of point charges (inter-
polation points) zy,...,7,. Your program should simply sample N ! > log|z — ;]
on a grid, then produce a contour plot of the result. (See meshdom and contour.)
Turn in beautiful plots corresponding to (a) 6 equispaced points, (b) 6 Chebyshev
points, (c¢) 30 equispaced points, (d) 30 Chebyshev points. By all means play around
with 3D graphics, convergence and divergence of associated interpolation processes,
or other amusements if you're in the mood.

> 8.7.2. Fun with Chebyshev spectral methods. The starting point of this problem
is the Chebyshev differentiation matrix of Exercise 8.3.1. It will be easiest to use
a program like CDERIVM from that exercise, which works with an explicit matrix
rather than the FFT. Be careful with boundary conditions; you will want to square
the (N +1) x (N +1) matrix first before stripping off any rows or columns.

(a) Poisson equation in 1D. The function u(z) = (1 —x2)e® satisfies u(£1) =0 and
has second derivative u”(z) = —(1+4x +z?)e®. Thus it is the solution to the
boundary value problem

u,, =—(1+4z+2%)e", zec[-1,1], u(xl)=0. (1)

Write a little Matlab program to solve (1) by a Chebyshev spectral method and
produce a plot of the computed discrete solution values (N +1 discrete points in
[—1,1]) superimposed upon exact solution (a curve). Turn in the plot for N =6
and a table of the errors ucomputed (0) —Uexact (0) for N =2,4,6,8. What can you
say about the rate of convergence?

(b) Poisson equation in 2D. Similarly, the function u(z,y) = (1—2?)(1—y?) cos(z+y)
is the solution to the boundary value problem

Uy U, = <sorry, illegible!>, z,y€[—1,1], u(z,£1)=u(£l,y)=0. (2)

Write a Matlab program to solve (2) by a Chebyshev spectral method involving
a grid of (N —1)? interior points. You may find that the Matlab command
KRON comes in handy for this purpose. You don’t have to produce a plot of
the computed solution, but do turn in a table of ucomputed (0,0) — Uexact (0,0) for
N =2,4,6,8. How does the rate of convergence look?

(c) Heat equation in 1D. Back to 1D now. Suppose you have the problem

Uy =1Uy,, u(£1,6)=0, u(z,0)=(1-2z7)e. (3)



8.7. TWO FINAL PROBLEMS TREFETHEN 1994 - 300

At what time ¢, does max,¢c_ 1ju(z,?) first fall below 17 Figure out the answer
to at least 2 digits of relative precision. Then describe what you would do if I

asked for 12 digits.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /FlateEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (General TeX->PDF lossless compression 600dpi)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


