
Nick Trefethen and Alex Townsend
Oxford

From iterative Gaussian elimination
to Chebfun2

1/16

Conjugate gradients for Ax=b (n×n)

Introduced in 1952 by Hestenes & Stiefel.

In theory, CG computes x exactly in n steps, O(n3) operations.

This aspect of CG as a direct method was emphasized in the early years.
But for the most part CG could not compete with other methods.

Wilkinson's 1965 magnum opus cites 148 references, H&S not among them.

Yet as H&S knew, CG also has an iterative aspect: it constructs successive
approximations to x in a sequence of nested Krylov subspaces.

John Reid, 1971: "The method of conjugate gradients has several very
pleasant features when regarded as an iterative method."

(Tractable n was getting larger by 1971, tipping the balance.)

In the years following Reid's paper, preconditioned iterations
transformed scientific computing.

CG is now seen as the archetypical iterative method.

2/17

. .

Gaussian elimination for Ax=b

Roots in Chinese antiquity.

A direct method, finishing its work in n steps, O(n3) operations.
To this day, the standard algorithm for dense matrices.

Usual description: subtract rows from other rows to introduce zeros in A.

Alternative description: approximate A by A1, A2, ..., An of rank 1, 2, ..., n.

Specifically, we consider GE with complete pivoting: at each step,
first find the biggest entry a ij of the remaining matrix, the "pivot".

3/17

 GE WITH COMPLETE PIVOTING

 For k=1 to n: Find biggest entry aij of A

 Set A=A−colj×rowi/aij

 After n steps, A is reduced to zero.

Numerical example

4/17

 17 5 17 19 8

 1 9 5 21 7

 3 12 10 14 4

 8 20 15 9 13

 3 6 13 11 8

16.09 -3.14 12.47 0 1.67

 0 0 0 0 0

 2.33 6.00 6.67 0 -0.67

 7.57 16.14 12.85 0 10.00

 2.47 1.28 10.38 0 4.33

17.56 0 14.98 0 3.61

 0 0 0 0 0

-0.48 0 1.88 0 -4.38

 0 0 0 0 0

 1.87 0 9.35 0 3.53

 0 0 0 0 0

 0 0 0 0 0

 0 0 2.30 0 -4.28

 0 0 0 0 0

 0 0 7.76 0 3.15

 0 0 0 0 0

 0 0 0 0 0

 0 0 0 0 -5.22

 0 0 0 0 0

 0 0 0 0 0

 0 0 0 0 0

 0 0 0 0 0

 0 0 0 0 0

 0 0 0 0 0

 0 0 0 0 0

GE as an iterative algorithm

What if we stop before step n?

GE becomes an iterative method for constructing low-rank approxs of A.

 = + + +

GE is thus a cheaper alternative to the SVD (singular value decomposition).

5/17

. . . A

. .

Iterative GE in the literature

Variants of this idea, though without the name GE, have been appearing:

 Bebendorf: adaptive cross approximation

 Hackbusch: H-matrices

 Tyrtyshnikov: skeletons, pseudoskeletons

 Martinsson & Rokhlin: interpolative decompositions

 Mahoney & Drineas: CUR decompositions

Other contributors include Gesenhues, Goreinov, Grasedyck, Halko,
Khoromskij, Liberty, Oseledets, Savostyanov, Tropp, Typgert, Woolfe,
Zamarashkin. The details vary widely (e.g., pivoting strategies).

There are also links to rank-revealing factorization, model reduction,
randomized principal component analysis, compressed sensing, Fast Multipole
Method, matrix completion, the Netflix Prize,....

6/17

.

.

GE for functions rather than matrices

Now suppose f(x,y) is a smooth function on a rectangle in the x-y plane.

Motivated by Chebfun, we want efficient ways to manipulate such functions
to 16-digit precision.

Idea: use GE in continuous mode to compress f to low rank.

 = + + +

Maple co-inventor Keith Geddes and his students have done such things
for quadrature (cubature), calling the method Geddes-Newton series.

We like this method because:

• The approximations converge surprisingly fast (theory being developed);

• It leverages our well-developed 1D Chebfun technology

7/17

. . . f(x,y)

.

.

Digression concerning

Chebfun is an open-source software system based on Matlab.
Idea: overload Matlab's vectors & matrices to functions & operators.
Computations are based on piecewise Chebyshev interpolants.
Freely available. Google chebfun.

 V1 2004 Zachary Battles

 V2 2008 Ricardo Pachón, Rodrigo Platte, Toby Driscoll

 V3 2009 Rodrigo Platte, Toby Driscoll, Nick Hale,
 Ásgeir Birkisson, Mark Richardson

 V4 2011 Nick Hale, Ásgeir Birkisson, Toby Driscoll, ...

 V5 2013 (we hope)

... also Anthony Austin, Folkmar Bornemann, Pedro Gonnet, Stefan Güttel,
 Mohsin Javed, Sheehan Olver, Alex Townsend, Joris Van Deun,
 Kuan Xu, ...

8/17

.

demo .

Chebfun2 — moving Chebfun to 2D

A project begun last year after much discussion, building
on related work by the whole Chebfun team, especially Nick Hale.

9/17

DESIGN PRINCIPLES (in analogy to floating point arithmetic):

• Represent functions on rectangles to 16 digits by low-rank approxs

• After each operation like exp(f) or f+g, trim the rank as far as possible

• Build on Chebfun's powerful 1D capabilities

.

.

Example of low-rank approximation

 f(x,y) = exp(−100(x2−xy+2y2−½)2) on [−1,1]×[−1,1]

10/17

The final 16-digit approximation is of rank 88.

Comparison of iterative GE and SVD

f(x,y) = exp(−100(x2−xy+2y2−½)2) again

11/17

More functions, showing pivot points

12/17

For efficiency, Chebfun2 doesn't actually do GE in purely "continuous mode"
but uses an approximation starting from Chebyshev grids of size 9×9,
17×17, 33×33,....

Example of algebraic operations in Chebfun2

13/17

f(x,y) =cos(10x(1+y2)) g(x,y) =(1+10(x+2y)2) −1 h(x,y) =f(x,y)g(x,y)

rank 18 rank 85 rank 98

(not 1530)

x =

Chebfun2 methods

14/17

>> methods chebfun2

Methods for class chebfun2:

abs del2 integral2 min quad2d surfc

cheb2poly diag isempty min2 rdivide surfl

cheb2polyplot diff isequal minandmax2 real svd

chebfun2 display isreal minus restrict tan

chebpolyplot eig laplacian mldivide roots tand

chol exp length movie schur tanh

complex feval log mrdivide sign times

conj flipdim log10 mtimes sin trace

contour fliplr lu norm sinh transpose

contourf flipud max pivotplot sqrt uminus

cos fred max2 pivots squeeze uplus

cosh get mean plot std2 vertcat

ctranspose gradient mean2 plot3 subsref volt

cumprod gsvd median plus sum waterfall

cumsum horzcat mesh power surf wronskian

cur imag meshc prod surface

dblquad integral meshz qr surfacearea

Vector functions ( chebfun2v objects)

f(x,y): scalar field F(x,y): vector field

Some operations:

 H = f*G [scalar-vector product]

 h = F.*G [dot product]

 h = F*G [cross product]

 g = div(F)

 G = grad(f)

 g = div(grad(f)) = laplacian(f)

 g = curl(F)

 plot(f), contour(f)

 quiver(F)

15/17

.

A summary of some Chebfun2 algorithms

Key theme always: exploit the 1D rows and columns and the
"Chebyshev technology" they inherit from Chebfun

DIFFERENTIATION — from Chebyshev series for 1D interpolants
diff(f,k,1), diff(f,k,2) [kth derivative wrt y, x]

INTEGRATION — Clenshaw-Curtis quadrature
sum(f,1), sum(f,2); sum2(f) [integral wrt y, x; global integral]

MINIMA/MAXIMA — initial guess via convhulln, then Newton iteration
max(f,[],1), max(f,[],2), max2(f) [maxima along y, x slices; global maximum]

SCALAR ZEROFINDING — initial guess via contourc, then Newton iteration
roots(f) [curves]

VECTOR ZEROFINDING — 2D subdivision, regularization, & resultants
roots(F) [points]

16/17

.
demo

.

Ahead
• Theory of convergence of low-rank approximations

• Partial differential equations

• Numerical linear algebra of operators (what is chol(f)?)

• PhD for Alex

17/17

.

Maybe later
• Singularities

• Non-rectangular domains

• 3D

Our style
Chebfun grew slowly, aiming to do
numerical calculation with 1D functions
reliably to 16-digit precision.
ODES — a big success — came later.

Chebfun2 too has a general-purpose,
high-precision aim: numerical
computation with functions in 2D.
This is not a CFD package.

h

