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Conjugate gradients for Ax=b (n×n) 
 
Introduced in 1952 by Hestenes & Stiefel. 

In theory, CG computes x exactly in n steps, O(n3) operations. 

This aspect of CG as a direct method was emphasized in the early years. 
But for the most part CG could not compete with other methods. 

Wilkinson's 1965 magnum opus cites 148 references, H&S not among them. 

Yet as H&S knew, CG also has an iterative aspect: it constructs successive 
approximations to x in a sequence of nested Krylov subspaces. 

John Reid, 1971:  "The method of conjugate gradients has several very 
pleasant features when regarded as an iterative method." 

(Tractable n was getting larger by 1971, tipping the balance.) 

In the years following Reid's paper, preconditioned iterations 
transformed scientific computing. 

CG is now seen as the archetypical iterative method.  
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Gaussian elimination for Ax=b 
 
Roots in Chinese antiquity. 

A direct method, finishing its work in n steps, O(n3) operations.  
To this day, the standard algorithm for dense matrices. 

Usual description: subtract rows from other rows to introduce zeros in A. 

Alternative description: approximate A by A1, A2, ..., An of rank 1, 2, ..., n. 

Specifically, we consider GE with complete pivoting: at each step, 
first find the biggest entry a ij of the remaining matrix, the "pivot". 
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                           GE WITH COMPLETE PIVOTING 

               For k=1 to n:  Find biggest entry aij  of A 

                      Set A=A−colj×rowi/aij  
 
         After n steps, A is reduced to zero. 



Numerical example 
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   17      5     17     19      8 

    1      9      5     21      7 

    3     12     10     14      4 

    8     20     15      9     13 

    3      6     13     11      8 

 

 

 

16.09  -3.14  12.47      0   1.67 

    0      0      0      0      0 

 2.33   6.00   6.67      0  -0.67 

 7.57  16.14  12.85      0  10.00 

 2.47   1.28  10.38      0   4.33 

 

 

 

17.56      0  14.98      0   3.61 

    0      0      0      0      0 

-0.48      0   1.88      0  -4.38 

    0      0      0      0      0 

 1.87      0   9.35      0   3.53 

    0      0      0      0      0 

    0      0      0      0      0 

    0      0   2.30      0  -4.28 

    0      0      0      0      0 

    0      0   7.76      0   3.15 

 

 

 

    0      0      0      0      0 

    0      0      0      0      0 

    0      0      0      0  -5.22 

    0      0      0      0      0 

    0      0      0      0      0 

 

 

 

    0      0      0      0      0 

    0      0      0      0      0 

    0      0      0      0      0 

    0      0      0      0      0 

    0      0      0      0      0 



GE as an iterative algorithm 
 
What if we stop before step n? 

GE becomes an iterative method for constructing low-rank approxs of A.  

 

        =        +       +       +  

 

 
GE is thus a cheaper alternative to the SVD (singular value decomposition). 
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Iterative GE in the literature 
 
Variants of this idea, though without the name GE, have been appearing: 
 
                    Bebendorf:  adaptive cross approximation 

                    Hackbusch:  H-matrices 

                Tyrtyshnikov:  skeletons, pseudoskeletons 

    Martinsson & Rokhlin:  interpolative decompositions 

       Mahoney & Drineas:  CUR decompositions 
 
Other contributors include Gesenhues, Goreinov, Grasedyck, Halko, 
Khoromskij, Liberty, Oseledets, Savostyanov, Tropp, Typgert, Woolfe, 
Zamarashkin.  The details vary widely (e.g., pivoting strategies). 
 

There are also links to rank-revealing factorization, model reduction, 
randomized principal component analysis, compressed sensing, Fast Multipole 
Method, matrix completion, the Netflix Prize,.... 
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GE for functions rather than matrices 
 
Now suppose f(x,y) is a smooth function on a rectangle in the x-y plane. 

Motivated by Chebfun, we want efficient ways to manipulate such functions 
to 16-digit precision. 

Idea: use GE in continuous mode to compress f to low rank. 

 

        =        +       +       +  

 
Maple co-inventor Keith Geddes and his students have done such things 
for quadrature (cubature), calling the method Geddes-Newton series. 

We like this method because: 

•  The approximations converge surprisingly fast (theory being developed); 

•  It leverages our well-developed 1D Chebfun technology      
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Digression concerning 
 
Chebfun is an open-source software system based on Matlab. 
Idea: overload Matlab's vectors & matrices to functions & operators. 
Computations are based on piecewise Chebyshev interpolants. 
Freely available.  Google chebfun. 
 
 V1  2004 Zachary Battles         

 V2 2008 Ricardo Pachón, Rodrigo Platte, Toby Driscoll 

 V3  2009 Rodrigo Platte, Toby Driscoll, Nick Hale, 
       Ásgeir Birkisson, Mark Richardson 

 V4  2011   Nick Hale, Ásgeir Birkisson, Toby Driscoll, ...  

 V5  2013   (we hope)   

 
... also Anthony Austin, Folkmar Bornemann, Pedro Gonnet, Stefan Güttel, 
    Mohsin Javed, Sheehan Olver, Alex Townsend, Joris Van Deun, 
    Kuan Xu, ... 
 

 

 

 

8/17 

. 

demo . 



Chebfun2 — moving Chebfun to 2D  
 
A project begun last year after much discussion, building 
on related work by the whole Chebfun team, especially Nick Hale. 
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DESIGN PRINCIPLES (in analogy to floating point arithmetic): 

• Represent functions on rectangles to 16 digits by low-rank approxs 

• After each operation like exp(f) or f+g, trim the rank as far as possible 

• Build on Chebfun's powerful 1D capabilities 

. 

. 



Example of low-rank approximation 
 

 
             f(x,y) = exp(−100(x2−xy+2y2−½)2)  on [−1,1]×[−1,1] 
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The final 16-digit approximation is of rank 88. 



Comparison of iterative GE and SVD 

 
 
f(x,y) = exp(−100(x2−xy+2y2−½)2)  again 
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More functions, showing pivot points 
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For efficiency, Chebfun2 doesn't actually do GE in purely "continuous mode" 
but uses an approximation starting from Chebyshev grids of size 9×9, 
17×17, 33×33,....   



Example of algebraic operations in Chebfun2 
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f(x,y) =cos(10x(1+y2) ) g(x,y) =(1+10(x+2y)2) −1  h(x,y) =f(x,y)g(x,y)  

rank 18 rank 85 rank 98 

(not 1530) 

x = 



Chebfun2 methods 
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>> methods chebfun2 

 

Methods for class chebfun2: 

 

abs            del2           integral2      min            quad2d         surfc           

cheb2poly      diag           isempty        min2           rdivide        surfl           

cheb2polyplot  diff           isequal        minandmax2     real           svd             

chebfun2       display        isreal         minus          restrict       tan             

chebpolyplot   eig            laplacian      mldivide       roots          tand            

chol           exp            length         movie          schur          tanh            

complex        feval          log            mrdivide       sign           times           

conj           flipdim        log10          mtimes         sin            trace           

contour        fliplr         lu             norm           sinh           transpose       

contourf       flipud         max            pivotplot      sqrt           uminus          

cos            fred           max2           pivots         squeeze        uplus           

cosh           get            mean           plot           std2           vertcat         

ctranspose     gradient       mean2          plot3          subsref        volt            

cumprod        gsvd           median         plus           sum            waterfall       

cumsum         horzcat        mesh           power          surf           wronskian       

cur            imag           meshc          prod           surface         

dblquad        integral       meshz          qr             surfacearea 



Vector functions (  chebfun2v objects) 
 
f(x,y): scalar field      F(x,y): vector field  
 
Some operations: 

 H = f*G   [scalar-vector product] 

 h = F.*G  [dot product] 

 h = F*G  [cross product] 

 g = div(F) 

 G = grad(f) 

 g = div(grad(f)) = laplacian(f) 

 g = curl(F) 

 plot(f), contour(f) 

 quiver(F) 
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A summary of some Chebfun2 algorithms 
 
Key theme always: exploit the 1D rows and columns and the 
"Chebyshev technology" they inherit from Chebfun 
 

DIFFERENTIATION — from Chebyshev series for 1D interpolants 
diff(f,k,1), diff(f,k,2)  [kth derivative wrt y, x] 

INTEGRATION — Clenshaw-Curtis quadrature 
sum(f,1), sum(f,2); sum2(f) [integral wrt y, x; global integral] 

MINIMA/MAXIMA — initial guess via convhulln, then Newton iteration 
max(f,[],1), max(f,[],2), max2(f)  [maxima along y, x slices; global maximum]  

SCALAR  ZEROFINDING — initial guess via contourc, then Newton iteration 
roots(f)     [curves]  

VECTOR ZEROFINDING — 2D subdivision, regularization, & resultants 
roots(F)     [points]  
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Ahead 
• Theory of convergence of low-rank approximations 

• Partial differential equations 

• Numerical linear algebra of operators (what is chol(f)?) 

• PhD for Alex 
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Maybe later 
• Singularities 

• Non-rectangular domains 

• 3D 

Our style 
Chebfun grew slowly, aiming to do 
numerical calculation with 1D functions 
reliably to 16-digit precision. 
ODES — a big success — came later.  

Chebfun2 too has a general-purpose, 
high-precision aim: numerical 
computation with functions in 2D. 
This is not a CFD package.   

h 


