Laplace Equation Checklist

u is a real function on a domain $\Omega \subseteq \mathbb{R}^n$ with boundary $\partial \Omega$, $u_n =$ outward normal derivative on $\partial \Omega$, $r = |x| = (x_1^2 + \dots + x_n^2)^{1/2}$.

$n\mathrm{D}$

Laplace equation	$\Delta u = 0$
Harmonic function	A solution of the Laplace equation
Potential theory	The study of the Laplace equation
Classical applications	Heat or diffusion equilibria, electrostatics, ideal fluid flow, membranes
Separation of variables	In a box, you get trigonometric in some directions, exponential in others
Fundamental solution	$u = r^{2-n} \cdot \Gamma(n/2) \pi^{-n/2}/(4-2n)$, except $u = \log(r)/2\pi$ for $n = 2$
Method of fundamental solns	Numerical method based on approx by linear combs. of fundamental solns
Green function	Like a fundamental solution, but for bounded Ω with $u = 0$ on $\partial \Omega$
Maximum principle	$\max u$ is always attained on $\partial \Omega$ (min u too)
Mean-value principle	u harmonic \Leftrightarrow u (center of any sphere) = mean(u (values on the sphere))
Real-analyticity	A harmonic function is real-analytic (Taylor series in x_1, \ldots, x_n)
Liouville's theorem	A bounded harmonic function on \mathbb{R}^n is constant
Schwarz reflection principle	If $u = 0$ on a portion of a (hyper)plane or sphere, it can be reflected across
Dirichlet problem	u specified on $\partial\Omega \Rightarrow \exists$ unique solution to $\Delta u = 0$
Dirichlet principle	This solution is the minimizer of $\int_{\Omega} \nabla u \cdot \nabla u = \int_{\Omega} u_{x_1}^2 + \ldots + u_{x_n}^2$
Neumann problem	u_n specified on $\partial \Omega$ with $\int_{\partial \Omega} u_n = 0$, Ω connected $\Rightarrow \exists !$ soln up to a const
Poisson equation	$\Delta u = f$

3D

Spherical coordinates Cylindrical coordinates Solid harmonics Spherical harmonics

$$\begin{split} \Delta u &= u_{rr} + 2r^{-1}u_r + (r^2\sin\varphi)^{-1}(u_\varphi\sin\varphi)_\varphi + (r^2\sin^2\varphi)^{-1}u_{\theta\theta}\\ \Delta u &= u_{rr} + r^{-1}u_r + r^{-2}u_{\theta\theta} + u_{zz}\\ \text{Harmonic functions on a ball}\\ \text{Their restrictions to a sphere} \end{split}$$

2D

Polar coordinates Poisson kernel Poisson formula Complex analytic functions Conjugate harmonic function Domains with holes Conformal mapping $\begin{aligned} \Delta u &= u_{rr} + r^{-1}u_r + r^{-2}u_{\theta\theta} \\ P(x,y) &= (1-|x|^2)/|y-x|^2 \\ \text{Solution of Dirichlet problem in unit disk: } u(x) &= \int_{|y|=1} P(x,y)u(y)d\theta \\ u \text{ harmonic in simply-connected } \Omega \iff u = \operatorname{Re}(f) \text{ for some analytic } f \\ v &= \operatorname{Im}(f), \text{ unique up to a constant} \\ \text{Above becomes } u &= \operatorname{Re}(f) + \sum_k c_k \log |x-x_k|, \text{ one log term for each hole} \\ \text{Laplace probes are invariant, so simply-conn. ones can be reduced to a disk} \end{aligned}$

1D

Not much to say, since $u_{xx} = 0$ is just an ODE, with general solution ax + b.