Laplace Equation Checklist

u is a real function on a domain $\Omega \subseteq \mathbb{R}^{n}$ with boundary $\partial \Omega$,
$u_{n}=$ outward normal derivative on $\partial \Omega, r=|x|=\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2}$.

$n \mathrm{D}$

Laplace equation
Harmonic function
Potential theory
Classical applications
Separation of variables
Fundamental solution
Method of fundamental solns
Green function
Maximum principle
Mean-value principle
Real-analyticity
Liouville's theorem
Schwarz reflection principle
Dirichlet problem
Dirichlet principle
Neumann problem
Poisson equation
3D
Spherical coordinates
Cylindrical coordinates
Solid harmonics
Spherical harmonics

2D

Polar coordinates
Poisson kernel
Poisson formula
Complex analytic functions
Conjugate harmonic function
Domains with holes
Conformal mapping
$\Delta u=0$
A solution of the Laplace equation
The study of the Laplace equation
Heat or diffusion equilibria, electrostatics, ideal fluid flow, membranes
In a box, you get trigonometric in some directions, exponential in others $u=r^{2-n} \cdot \Gamma(n / 2) \pi^{-n / 2} /(4-2 n)$, except $u=\log (r) / 2 \pi$ for $n=2$
Numerical method based on approx by linear combs. of fundamental solns Like a fundamental solution, but for bounded Ω with $u=0$ on $\partial \Omega$ $\max u$ is always attained on $\partial \Omega(\min u$ too $)$ u harmonic $\Leftrightarrow u($ center of any sphere $)=\operatorname{mean}(u($ values on the sphere $))$
A harmonic function is real-analytic (Taylor series in x_{1}, \ldots, x_{n})
A bounded harmonic function on \mathbb{R}^{n} is constant
If $u=0$ on a portion of a (hyper)plane or sphere, it can be reflected across u specified on $\partial \Omega \Rightarrow \exists$ unique solution to $\Delta u=0$
This solution is the minimizer of $\int_{\Omega} \nabla u \cdot \nabla u=\int_{\Omega} u_{x_{1}}^{2}+\ldots+u_{x_{n}}^{2}$ u_{n} specified on $\partial \Omega$ with $\int_{\partial \Omega} u_{n}=0, \Omega$ connected $\Rightarrow \exists!$ soln up to a const $\Delta u=f$

$$
\Delta u=u_{r r}+2 r^{-1} u_{r}+\left(r^{2} \sin \varphi\right)^{-1}\left(u_{\varphi} \sin \varphi\right)_{\varphi}+\left(r^{2} \sin ^{2} \varphi\right)^{-1} u_{\theta \theta}
$$

$$
\Delta u=u_{r r}+r^{-1} u_{r}+r^{-2} u_{\theta \theta}+u_{z z}
$$

Harmonic functions on a ball
Their restrictions to a sphere

$$
\begin{aligned}
& \Delta u=u_{r r}+r^{-1} u_{r}+r^{-2} u_{\theta \theta} \\
& P(x, y)=\left(1-|x|^{2}\right) /|y-x|^{2}
\end{aligned}
$$

Solution of Dirichlet problem in unit disk: $u(x)=\int_{|y|=1} P(x, y) u(y) d \theta$ u harmonic in simply-connected $\Omega \Leftrightarrow u=\operatorname{Re}(f)$ for some analytic f $v=\operatorname{Im}(f)$, unique up to a constant
Above becomes $u=\operatorname{Re}(f)+\sum_{k} c_{k} \log \left|x-x_{k}\right|$, one log term for each hole Laplace probs are invariant, so simply-conn. ones can be reduced to a disk

1D

Not much to say, since $u_{x x}=0$ is just an ODE, with general solution $a x+b$.

