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1. VANDERMONDE

T

p(x) = Z et

k=0

Interpolation or least-squares: Ac = f

(1 Teoeee ([ fi \ ) .
1 zy - b Co £ c = polyfit(x,f,n)
L : S o I function ¢ = polyfit(x,f,n)
. . . Cn . A =x.7(0:n);

\:1 v e ltgl) \lfnzj c = A\f;

Evaluation: y = Bc

(yl \ (1 s1 o ST y = polyval(c,s)
Yo 1 52 33 Cp
function y = polyval(c,s)
. = . ) . n = length(c)-1;
. . c B=s.7(0:n);
n y = Bxc;
\yM) \1 SM vt S'}Lr)

These days the rectangular case is particularly interesting. Redundant bases, frames,...
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2. MONOMIALS

1, x, ..., x™ is exponentially ill-conditioned on [—1,1]  (on any domain except a disk)

x = chebfun('x");

cond(x.”(0:10)) ... 20,40
plot(x.”~(0:40))

xx = chebpts(1000);
cond(xx.”(0:10)) ... 20,40

k~(1++v2)" (Gautschi 1975)

Computational consequence: n > 30 never works.

x™ has numerical degree O(+/n ) on [—1,1]
Newman & Rivlin 1976

length(x”10) ... 20, 40, 80, 1000, 4000, 16000
length(chebpoly(16000))

MUntz-Szasz theorem
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3. ARNOLDI

Problem: {1, x,x2, ... } is ill-conditioned, so computations fail.
Solution: {1,x,x2, ... } = {qq,Aqo, A*qy, ... } where A = diag(x). So do Arnoldi!
|dea of Arnoldi: instead of forming A™ then orthogonalizing, orthogonalize at each step.

Applied to {1, x,x2, ... }, this is Stieltjes orthogonalization. A very old idea.

Austin et al., Betcke, Bjorck & Pereyra, Forsythe, Gautschi, Gragg, Hochman,
Reichel, Saad, Stylianopoulos, undoubtedly many others.

This is a technique we should use routinely.
Not just “when we want to construct orthogonal polynomials.”
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3. ARNOLDI, cont.

Arnoldi/Stieltjes applied to {1, x, x2, ... } constructs discrete orthogonal polynomials
related to the monomials by a Hessenberg matrix H.

We now pass around H as well as a coefficient vector.

[d,H] = polyfitA(x,f,n) y = polyvalA(d,H,s)
function [d,H] = polyfitA(x,f,n) function y = polyvalA(d,H,s)
m = length(x); M = length(s);
Q = ones(m,1); W = ones(M,1);
H = zeros(n+1,n); n = size(H,2);
for k = 1:n for k = 1:n
q = x.*Q(: ,k); w = s.*W(:,k);
for j = 1:k for j = 1:k
H(j,k) = Q(:,j) ' *q/m; w=uw-HG,K*W(,5);
q=q - HG,k*Q(:,j); end
end W= [Ww/Hk+1,k)];
H(k+1,k) = norm(q)/sqrt(m); end
Q = [Q q/H(k+1,K)]; y = Wxd;
end
d = Q\f;
0 (mn?) flops, same as polyfit. 0(Mn?) flops; polyval is O(Mn).

n = degree, m = no. of sample pts, M = no. of evaluation points

(O(mn) and O(Mn) possible when x is real via Arnoldi = Lanczos, though we don’t do this.)
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4. EIGHT EXAMPLES

. Degree n interpolation of 1/(1 + 25x2) in Chebyshev pts

Degree n least-squares fit to sign(x) on l—l, — %] U E, 1]

Degree 30 Chebyshev polynomial on a triangle in C

Degree n Fourier extension fit of 1/(10 —9x) on [—1,1]

Bivariate polynomial fit on a starfish domain

Conformal mapping via polynomial approximation of Green’s function
Lightning Laplace solver

Stokes flow
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Example 1: Degree n interpolation of 1/(1 + 25x2) in Chebyshev points

Vandermonde

interpolant —

If =pll

error — 00|

10-15

0 50 100 150 200
n

FIG. 2.1. On the left, the degree n Chebyshev interpolant to f(z) = 1/(1 + 2522) computed
unstably by direct application of (1.2) and (1.3) via the codes polyfit and polyval for n = 80
(above) and its error for even values of n from 2 to 200 (below). (The results computed by the
MATLAB versions of polyval and polyfit would be worse.) On the right, the same computations
with the Arnoldi-based codes polyfitA and polyvalA.
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(above) and its error for even values of n from 2 to 200 (below). (The results computed by the
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Example 2: Degree n least-squares fit to sign(x) on [—1, — %] U E, 1]

Vandermonde
1+
05F
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~
error > =100}
10—15 L
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n
FiG. 3.1. Images as in Fig. 2.1 but now for a least-squares problem: polynomial fitting to sign(x)

on 500 equispaced points each in the two intervals [—1,—1/3] and [1/3,1]. The unstable algorithm
stagnates at 5 digits of accuracy, which is enough that to the eye, the computation appears successful.
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Example 3: Degree 30 Chebyshev polynomial on a triangle in C

Vandermonde

log10( [p(2)])

0 1 2 3
Re(2)

-10

Minimal monic polynomial with p(0) = 1.

We use the Lawson algorithm
(iteratively reweighted least-squares).
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Example 3: Degree 30 Chebyshev polynomial on a triangle in C

Vandermonde
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log10( [p(2)])
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Re(2)

%10 p(z) on boundary

Minimal monic polynomial with p(0) = 1.

) | winding NO- = 31
We use the Lawson algorithm

(iteratively reweighted least-squares).
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Example 4: Degree n Fourier extension fit of 1/(10 — 9x) on [—1,1]

Example from
Adcock + Huybrechs,
SIAM Review 2019

Key observation:

Fourier series on

subinterval of [—2,2]
()

Laurent polynomial on

subarc of unit circle

Vandermonde

n = 40
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I
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n

Fic. 5.1. A Fourier extension example from (1], with f(z) = 1/(10 — 9z) approzimated over
[—1,1] by Fourier series scaled to the larger interval [—2,2]. This is equivalent to approzimation by
k over just half of the unit circle, leading to exponential ill-conditioning of the Vandermonde

powers z
matriz.
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Fic. 5.1. A Fourier extension example from (1], with f(z) = 1/(10 — 9z) approzimated over
[—1,1] by Fourier series scaled to the larger interval [—2,2]. This is equivalent to approzimation by

matriz.

k over just half of the unit circle, leading to exponential ill-conditioning of the Vandermonde
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Example 5: Bivariate polynomial fit on a starfish domain

Hokanson, Nakatsukasa, T. + Webb, work in progress 1
See also Austin et al., arXiv, 2019.

0.5

It would be interesting to try Lawson iteration here too.

=

Vandermonde
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Example 5: Bivariate polynomial fit on a starfish domain

0.4
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Example 6: Conformal mapping via polynomial approx of Green’s function

Q Vandermonde

=

100¢
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0 500 1000
n

FiGc. 6.1. Conformal mapping of a blob onto the unit disk by the polynomial expansion method
of (6.1)—(6.4). The two upper-right images correspond to n = 200.

T., Computational Methods and Function Theory, to appear
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Example 6: Conformal mapping via polynomial approx of Green’s function
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FiGc. 6.1. Conformal mapping of a blob onto the unit disk by the polynomial expansion method
of (6.1)—(6.4). The two upper-right images correspond to n = 200.

T., Computational Methods and Function Theory, to appear
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Example 7: Lightning Laplace solver !

Gopal + T., SINUM 2019

Solution is approximated by real part of ne | | | |
polynomial + rational function with exponentially -4 2 0 2 4
clustered poles via least-squares on boundary.

without Arnoldi

10':} L
-4
e
©
108
10-'12
0 10 20 30

sqrt(DoF)

P=1[-33 3+42i 1i -3+2i];
laplace(P, 'tol', 1le-12, 'noarnoldi');

Demonstration of laplace.m and confmap.m
Codes available at Trefethen home page
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Example 8: Stokes flow

Brubeck + T., in preparation

Biharmonic equation is reduced to Laplace
problem using Goursat representation.

without Arnoldi
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Example 8: Stokes flow

Brubeck + T., in preparation

Biharmonic equation is reduced to Laplace
problem using Goursat representation.
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DISCUSSION

Numerical analysts tend to be expert at linear algebra
but relatively uninquisitive when it comes to basic issues of approximation.

For example we’ve seen this unfortunate message for decades:

>> X = 1:50;
>> ¥ = -0.3*x + 2*randn(1,50);
>> p = polyfit(x,y,6);

warning: Polynomial 1is badly conditioned. Add points with
distinct X values, reduce the degree of the polynomial, or try
centering and scaling as described in HELP POLYFIT.

> Ip polyfit (line 79)

In fact, this polynomial is not badly conditioned — only the basis {1, x, x?, ..., x6}.

A sociological and historical accident:

LINEAR ALGEBRA APPROXIMATION
Dominated by numerical people  Dominated by theoretical people
Yet they are equally fundamental for numerical computation. L,o',d,,,;,",f,,h,,;
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