Lewy-Hörmander nonexistence and pseudospectra

Nick Trefethen Oxford University

From sec. 13 of T. & Embree, Spectra and Pseudospectra, Princeton, 2005. 1957 Lewy shows $\exists C^{\infty}$ linear PDE with no solutions

1960 General theory by Hörmander

1960-2005 Major generalizations (including ΨDE) leading to characterization by "Ψ condition": Beals, Dencker, Fefferman, Garabedian, Lerner, Nirenberg, Treves, ...

2001 Zworski points out connection with pseudospectra

Hörmander: Fields Medal '62 Fefferman: Fields Medal '78 Nirenberg: Crafoord Prize '82, Nat. Medal of Science '95 Dencker: Gårding Prize '03, Clay Research Prize '05

Simplest Example

Mizohata eq.: $Lu = u_X + ixu_y = f$ (*)

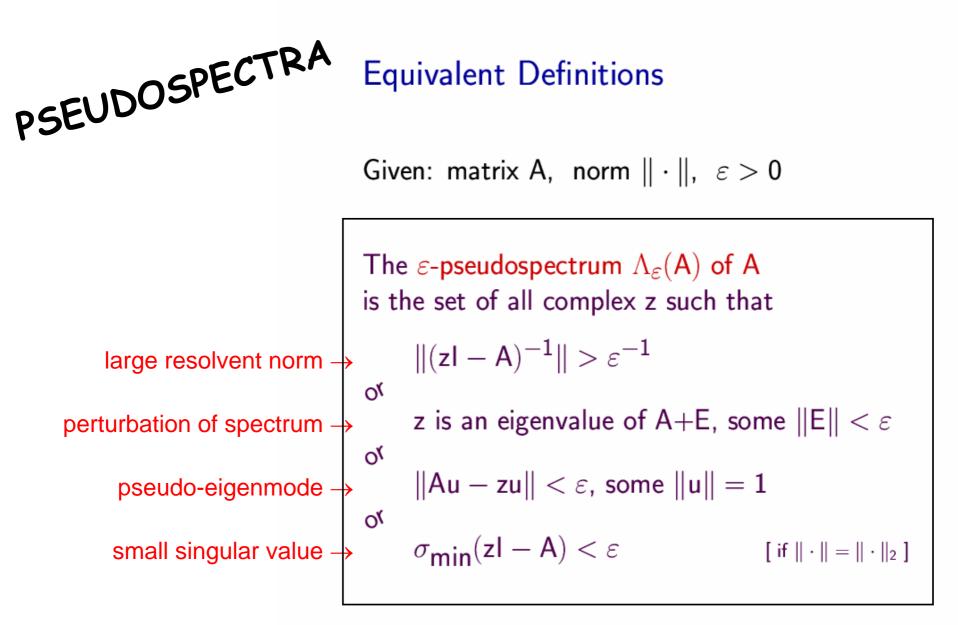
Cauchy-Kowaleski \Rightarrow (*) is locally solvable if f is analytic.

THEOREM. $\exists f \in C^{\infty}$ s.t. (*) has no soln in any nbhd of (0,0).

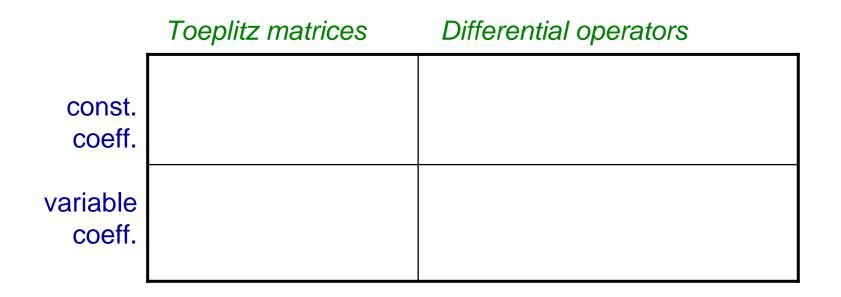
Why? The idea is that nonexistence for (*) is related to nonuniqueness for the adjoint equation

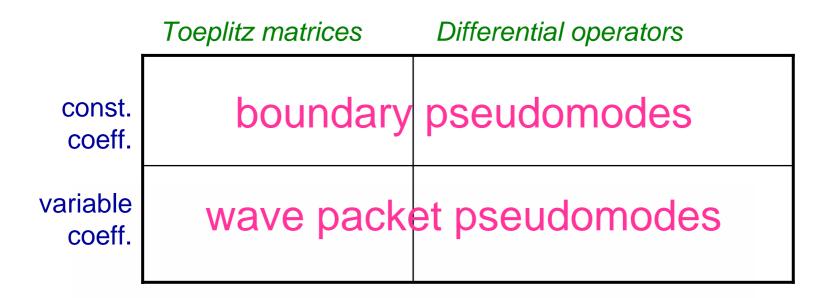
$$L^*v = -v_X + ixv_y = g$$
 (**)

This nonuniqueness stems from the existence of *wave packet pseudomodes* of L^* . Such pseudomodes exist when a certain twist or commutator or Ψ or Poisson bracket condition is satisfied.



For operators, same defns. modulo technicalities.





	Toeplitz matrices	Differential operators
const. coeff.	Landau 75 Reichel + T. 92 Böttcher et al. \ge 94	
variable coeff.		

	Toeplitz matrices	Differential operators
	Landau 75 Reichel + T. 92 Böttcher et al. \ge 94	Reddy 93 Davies 00
variable coeff.		

	Toeplitz matrices	Differential operators
	Landau 75 Reichel + T. 92 Böttcher et al. \ge 94	Reddy 93 Davies 00
variable coeff.	T. + Chapman 04 Borthwick + Uribe 04	

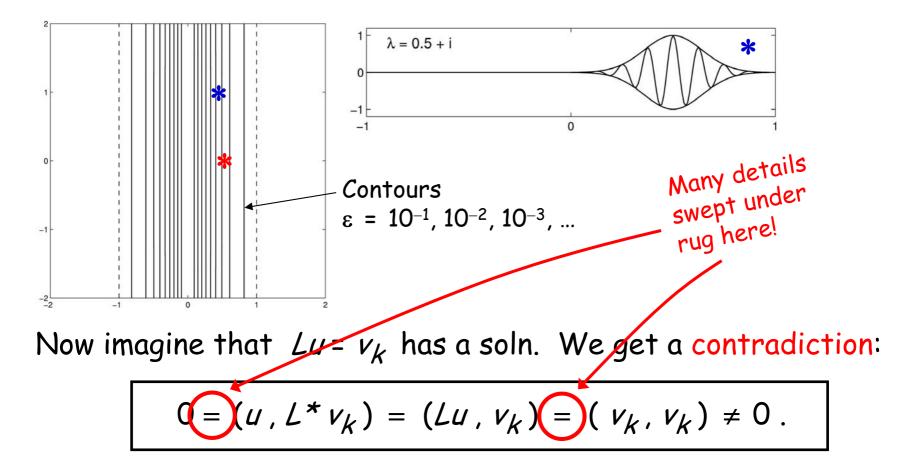
	Toeplitz matrices	Differential operators
const. coeff.	Landau 75 Reichel + T. 92 Böttcher et al. \ge 94	Reddy 93 Davies 00
variable coeff.	T. + Chapman 04 Borthwick + Uribe 04	Davies 99 Dencker-Sjöstrand-Zworski 04 T. 04

	Toeplitz matrices	Differential operators
	Landau 75 Reichel + T. 92 Böttcher et al. ≥ 94	Reddy 93 Davies 00
variable coeff.	T. + Chapman 04 Borthwick + Uribe 04	Davies 99 Dencker-Sjöstrand-Zworski 04 T. 04

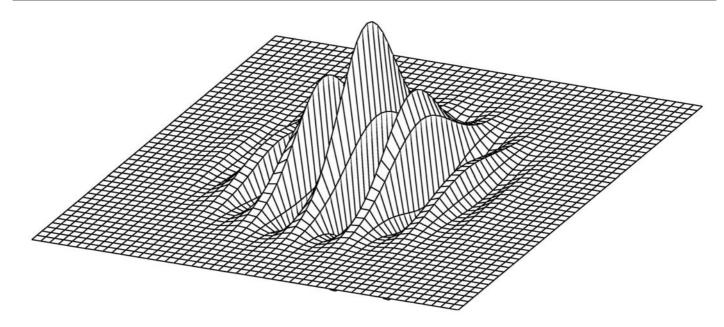
Nonhermitian quantum mechanics "ghost" solutions of ODEs exponential dichotomy theory Orr-Sommerfeld eq., hydrodynamic stability Lewy/Hörmander nonexistence Back to adjoint-Mizohata operator: $L^* v = -v_x + ixv_y$.

For any
$$k > 0$$
, $v_k(x,y) = \exp(k(iy - x^2/2))$ satisfies $L^* v_k = 0$.

On $x \in [-1,1]$ with zero b.c.'s, for example, it is an ϵ -pseudoeigenfunction for $\lambda = 0$ for an exponentially small ϵ .



The same argument works generally for partial- or pseudodifferential operators. The key point is that the adjoint equation has a wave packet pseudosolution...



...implying nonexistence of solutions to the primal equation.

Handout.

Demonstration of EigTool (by Tom Wright) for Davies' complex harmonic Schrödinger operator

$$L u = -u_{XX} + i x^2 u$$