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MATLAB PROGRAMS FOR CF APPROXIMATION
Lloyd N. Trefethen

Programs for real and complex rational CF (Carathéodory-Fejér)

approximation are presented for the interactive matrix calculatar MATLAR.
. 1. Introduction

CF approximation (= AAK approximation [1]) is an analytical procedure
for near-best rational approximation of real or compiex functions in the
supremum norm. Its distinguishing feature is the use of a singular value
decomposition of a Hankel matrix of Taylor coefficients (complex case) or
Chebyshev coefficients (real case). CF approximants offer‘a practical
alternative to Chebyshev approximants, which are offen difficult to com-
pute, especially in complex domains, where they are not even unigue.

This paper offers a pair of MATLAB programs for the computation of CF
approximants. MATLAB is an advanced interactive matrix calculator, de-
signed by Cleve Moler and others in the last decade, that provides conven-
ient access to most of the capabilities of EISPACK and LINPACK, together
with many additional features. (For information, contact The MathWorkE,
Inc., 158 Woodland St., Sherborn, MA 01770, tel. (617) 653-1415.) MATLAB's
power, simplicity, and e1egancé.make it a joy to use— an irresistible
tool for a mathematician with an experimental bent.

CF approximation requires a sequence of linear algebra and Fourier
transform calculations thét appears daunting when written in a standard
programming Tanguage. The higher-level language of MATLAB commands makes
possible a much.more natural specification. These two programs are of-.
fered to communicate the CF idea with brevity and precision, for small-
scale exherimentation, and as benchmarks for the design of faster and more
foolproof CF programs of the usual kind.

. 2. Complex CF approximation on |z|< 1 [2]

Let f(z) be a complex analytic function on |z|< 1, and let fz be a
MATLAB function that calculates it. The MATLAB program CF of Figure 1
computes the complex CF approximant r{z) = pm(z)/qn(z) of type (m,n).
To run CF, one provides a value nfft specifying how long an FFT will be
used in computing Taylor coefficients (e.g. 32 for a smooth function, 1024
for a troublesome one), and an integer K specifying at what Taylor series
index the Hankel matrix will be truncated {e.g. 10 or 50).

For a very-simple example, a run of CF with f{z) = /T.2-z produced
the following results in about 40 seconds on an IBM PC/AT. (The output is
condensed to save space.)
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CF -- COMPLEX RATIONAL CF APPROXIMATION ON THE UNIT DISK

Lloyd N. Trefethen, Dept. of Math., M.I1.T., March 1986
Reference: L.N.T., Numer. Math. 37 (1981), pp. 297-320
(This is "Type 2" approx., slightly different from above.)

fz(z) - function to be approximated by r(z)=p{z)/q(z)
m,n - degree of p,q
nfft - number of points in FFT (power of 2)
K - degree at which Taylor series is truncated
f,p,q,r - functions evaluated on FFT mesh (roots of unity)
pc,qc - coefficients of p and g

If fz is even, take (m,n) = ( odd,even). -
1f fz is odd, take {m,n) = (even,even).

C .

If fz has complex Taylor coefficients, delete the "real"
commands below.

CONTROL PARAMETERS
m o= input(*m? '); n = input('n? ‘)3 mp = m¥l; np = o+l
nfft = input('nfft? ');
K = dnput('K? '); dim = K#n-m;

TAYLOR COEFFICIENTS OF fz

z = exp(2*pi*sqrt(-1)*(0:nfft-1)/nfft);
f = fz(z); fc = real (FFt{f))/nfft;
fo(nfft/2+1:nfft) = zeros(1,nfft/2);

SVD OF HANKEL MATRIX H N
H = toeplitz(fc(T+rem{(dim:-1:1)+nffttm-n,nfft}));
Ho= triu(H); H = H{:,(dim:=1:1));
u,s,v] = svd(H); !
s = s{np,np); u = u{{dim:=1:1),np) "5 v = v{i,np)';
DENCMINATOR POLYNOMIAL q -

zr = roots(v); gout = []; for i = T:dim-1;
if abs(zr(i))>1 qout = [qout, zr(i)]; end; end;
qc = real(poly(qout)); qc = gc/ge(np); g = polyvai{qc,z);

NUMERATOR POLYNOMIAL p ;
b = fft([u zeros{1,nfft-dim)])./Fft([v zeros{1,nfft-dim)]);
rt = f-s*z."K.*b; rtc = real (FFt(rt))/nfft;
nc = conv(qe(np:-1:1),rtc(T:mp)); pe = pelmp:-1:1);
p ='polyval{pc,z}; r = p./q;

RESULTS .

axis('square'); plot([f-r f(1}-r(1)1); pause;
s, err = norm(f-r,'inf'), pc, qc

Figure 1. MATLAB program for complex CF approximation
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RCF -- REAL RATIONAL CF APPROXIMATION ON THE UNIT INTERVAL

Lloyd N. Trefethen, Dept. of Math., M.I.T., March 1986
Reference: L.N.T. and M.H. Gutknecht,
SIAM J. Numer. Anal. 20 (1983), pp. 420-435

Fx(x) - function to be approximated by R(x)=P(x)/Q(x)
m,n - degree of P,Q
nfft - number of paints in FFT (power of 2)
K - degree at which Chebyshev series is truncated
F,P,Q,R - functions evaluated on FFT mesh (Chebyshev points)
Pc,Qc - Chebyshev coefficients of P and Q

( odd,even).
(even,even).

If Fx is even, take (m,n)
If Fx is odd, take (m,n)

o

CONTROL PARAMETERS '
m = input('m? '); n = input('n? '); np = nt+l;
nfft = input('nfft? '); nfft2 = nfft/2;
K = input('K? ')y dim = K#n-m;

CHEBYSHEV COEFFICIENTS OF Fx -
z exp(Z*pi*sqrt(-])*(O:nfft-])/nfft);
x = real(z); F = Fx(x); Fc = real (fft(F))/nfft2;

noa

SVD OF HANKEL MATRIX H )
H= toep]itz(Fc(]+rem((dim:—T:1)+nfft+m-n,nfft)));
Ho= triu(H); H = H(:,(dim:-T:1));
[uss,v] = svd(H);
s = s(np,np)s u = u((dim:=1:1),0p) "5 v = v(:,np)';

DENOMINATOR POLYNOMIAL Q
zr = roots(v); qout = [I; for i = 1:dim-1;
f abs(zr{1))>1 qout = [qout, zr(i)]; end; end;
qc = real(poly(qout)); qc = qc/qe(np); q = polyval(qc,z);
Q = g.*conj(q); Qc = real(fft(Q)}/nfft2;
Qe(1) = Qe(1)/25 @ = @/Qc(1)3 Q¢ = Qe(1:np)/0c(1):

NUMERATOR POLYNOMIAL P ‘
= fft([u zeros(1,nfft-dim)])./frt(lv zeros(1,nfft-dim)]);
Rt = F-real(s*z."K.*b); Rtc = real(fft(Rt))/nffL2;
gam. = real(fft((1)./Q))/nfft2; gam = toeplitz(gam(1:2*m+1));
if m==0 Pc = 2*Rtc(1)/gam; '
else Pc = 2*[Rtc(m+1:-1:2) Rtc(1:m#1)]/gam; end;
Pc = Pe(mt1:2#m+1); Pc(1) = Pc(1)/2;
P = real(polyval(Pc(m+1:-1:1),2)}; R = P./Q;

o

RESULTS
plot{x,F-R,'-", x>[5305-s]*ones(1,nfft)," :'); pause;
s, err = norm(F-R,’'inf'), Pc, Qc

Figure 2. RMATLAB program for real CF approximation
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m? 1 n? 1 nfft? 128 K? 20
s = .03252 err = .03320
r(z) = (1.09497 - .74277z)/ (1 - .26688z)

The singular value s _is a lower bound for the error in best Chebyshev
approximation, and err 1is the error of the near-best CF approximant. Thus
in this case the CF result is within 3% of optimal. The penultimate line
of the program CF generates a plot of the error curve (f-r)(]z|=1), which
comes out within a few percent of a circle of winding number 3.

3. Real CF approximation on -1 <x<1 [3] -

Now let F(x) be a real function on 1<xg¢1 calculated by a MATLAB
function Fx . The MATLAB program RCF of Figure 2 computes the correspond-
ing. real CF approximant R{x} = Pm(x)/Qn(x) of type (m,n). Its operation
is just 1ike that of CF.

A run of RCF with the same function as before yields these results:

m? 1 n? 1 nfft? 128 K? 20
s = 0100706 err = .0100751
R(x) = (1.10817 - .77197x) / (1 - .27354x)

The error is smaller than before, since the same function is being approx-.
imated on a smaller domain. In real CF approximation, the singular value
is no Tonger necessarily a Tower bound for the error, but the plot gener-
ated by RCF reveals an error curve (F-r)([-1,1]) that equioscillates to
within 0.1%, showing that the CF result is within this distance of optimal.
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