SLAC VM NOTEBOOK

Module 19: Numerical Analysis Program Library User's Guide

— NAPLUSG —

J. H. Bolstad E. H. Grosse
T. F. Chan . M. T. Heath
W. M. Coughran, Jr. F. T. Luk
M. J. Berger R. J. LeVeque
W. D. Gropp S. G. Nash
L. N. Trefethen
Revision 0
November 17, 1981
Module 19: This guide describes the
numerical subroutine library supported by
SLAC Computing Services for solving
mathematical ©problens numerically. The

“"core" library described herein consists of
about 150 routines, most written in FORTRAN.
Overviews of various problem areas are given
to facilitate code selection.

SLAC Computing Services (SCS)
Stanford Linear Accelerator Center (SLAC)
Menlo Park, California 94025

DISCLAIMER NOTICE

— e S S S 2 S e S0

herewith, was developed wunder sponsorship of the U.S.
Government. Neither the U.S. nor the U.8S.D.0.E., nor the Leland
Stanford Junior University, nor their employees, makes any
warranty, express or implied, or assumes any liability or
responsibility for accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or
represents that its wuse will not infringe privately-owned
rights. Mention of any product, its manufacturer, or suppliers
shall not, nor is it intended to, imply approval, disapproval,
or fitness for any particular use. The U.S. and the University

at all times retain the right to use and disseminate same for
any purpose whatsoever.

Publishing History for Module 19

Revision 0.........4v+.v+v+....November 17, 1981

Revision

0 SLAC VM NOTEBOOK

November 17, 1981 Module 19: NAPL User's Guide Page 1
CONTENTS FOR MODULE 19

page

i. INTRODUCTION . ¢ =« o o o o o s o 5 o o o s s o o o o i
Purpose of the NAPL o « . ¢ o « o o o o« =« o o 2

Origin of NAPL Routines « .« . . « o « =« & 2

How to Use the NAPL e e e e e e e e e e 3

Sample Programs and Source Code e e e e e e e e e e e 3
References for Chapter 1t« . . 4

2. SYSTEMS OF LINEAR EQUATIONS . . « . « « o o + o « o « o = 5
Introduction C e e e e e e e e e e s e s e e e e e e 5

LINPRACK . . o ¢« ¢« o « o o o o 5o o« o o o s s 2 o o« o« = . 6

Over— and Underdetermined Systems 6
¥EMatrix Inverses . .« ¢ ¢« o o s e e e e e s e e e e s 7

Large Sparse Matrices . . e e e e e e e 7

MATLAB — Interactive Matrlx Laboratory o s e e e e s 7
References For Chapter 2 . . .+ « o « « o « « « « =& 7

3. MATRIX EIGENVALUE PROBLEMS AND SVD 9
Introduction C e e e e e e e e e e e e e e e e e e e 9

EISPACK . « « v & « « « « . e e e e e e e e 10
Generalized Eigenvalue Problem e v v e e e e e e e 10
Singular Value Decomposition e R ¢

Large Sparse Eigenvalue Problems e e e e e e i1

MATLAB — Interactive Matrix Laboratory 11
References for Chapter 3 e e e e e e e e e e e 11

u. NONLINEAR EQUATIONS AND OPTIMIZATION+ .« « .« « + . 13
Introduction N e e e e e e e e e e e e 13

‘Local vs Global Solutlons e e e s e s e e e e e s 14
Derivative Information e 14
Zerofinding ¢ ¢+ e e s e e e e e e e e e e 14
Optimization N e e e e e e e e e e e e 15
Constrained Optlmlzatlon .o e e e e e e 15

Large Sparse Optimization Problems e f e e e e e e e 16
References for Chapter 4 S

5. APPROXIMATION AND DATA FITTING . . .« .« ¢« ¢ o o « « « o i8
Introduction e 18
Interpolation and Least-Squares Fitting by Cubic Splines 18

General Linear and Nonlinear Least-Squares e 19
Polynomial Interpolation SN e e e . 19
Trigonometric Interpolation and Least Squares Fats . 20

Revision O SLAC VM NOTEBOOK
November 17, 19381 Module 19: NAPL User's Guide

ii

Rational Minimax Approximation 20
References for Chapter 5 . e 20

6. FAST FOURIER TRANSFORM e e 21
Introduct1on 21
Swarztraul r FFT Package . e e e e e e e e e e 22
Trlgonometrlc Interpolation and Least-Squares Fitting 22
References for Chapter 6 e e e e e e e e e e e 23

7. NUMERICAL INTEGRATION e s e e e e e o . . 24
Adaptive Quadrature e v e e e e e 24
Gaussian Quadrature e e e e e e 2y
Multiple Integrals c e e e e e e e e e e e e e e e 25
Singularities and Discontinuities 25
Infinite Intervals e . . e e « e 25
Integration of Tabulated Data . . . e 26
References for Chapter 7 e e s e e e e e . e 26

8. ORDINARY DIFFERENTIAL EQUATIONS . o . R . . 27
Introduction e e e e e e e 27
Initial-Value Problens e 27

Stiff 1vP's e e e e . . 28
Boundary-Value Problems . 28
References for Chapter 8 . . e v e e e e e 28

9. PARTIAL DIFFERENTIAL EQUATIONS N . . 30
Introduction e e e e e e e e e 30
Elliptic Problems . . v e e e 31

Special Elliptic Problems 31
Parabolic Problems e e e e . . 31
Hyperbolic Problems e e e . 31
References for Chapter 9 32

10. SPECIAL FUNCTIONS 33
Introduction . . 33

Bessel Functions and PUNPACK . . e e e . 34

FUNPACK Routines with Multiple Entries . 34
References for Chapter 10 . . c v e e e . . 3y

11. RANDOM NUMBER GENERATION N . e . 36
Introduction e e e e e e e e e e . e . 36

RAN11! Series . . e e e . e . . 37
Non-Uniform Dlstrlbutlons © e e “ e 37
References for Chapter 11 . 37

INDEX TO MODULE 19 e e e e e e

39

Revision O SLAC VM NOTEBOOK
November 17, 1981 Module 19: NAPL User's Guide Page 1

N A P L U S A G E S U MM ARY

Online assistance:
HELP NAPL

To choos a routine:
read- the appropriate section of this guide

To get documentation for a routine:
HELP NAPL <routine> (ALL
HELPRINT NAPL <routine> (ALL

To det a usage example:
NATEST <routine>

To call the routine: .
GLOBAL TXTLIB NAPL FORTSLAC FORTMODZ2

To generate this guide:
PRINTDOC NOTEBOOK MODI9

To retrieve source code (usually unnecessary):
NASQURCE <routine>

Questions? See a Numerical Analysis Consultant

1. INTRODUCTION

The Numerical Analysis Program Library is SLAC's central collection
of subroutines for solving mathematical problems numerically. The
library is maintained by the Numerical Analysis group of the Stan-
ford University Computer Science Department, and was established by
John Bolstad, William Coughran, Eric Grosse, and others in 1975-77.
It consists oi roughly 1500 routines, of which some 150 make up the
"core" library described here. These routines are all in Fortran
(except for the random number generators, which are written in as-
sembly language) and almost all are in double precision. This guide
describes the contents of the NAPL and also gives references to fur-
ther information.

Revision 0 SLAC VM NOTEBOOK
November 17, 1981 Module 19: NAPL User's Guide Page 2

1.1 PURPOSE OF THE NAPL

The aim of the NAPL is to provide state-of-the-art routines for com-
monly occurring numerical problems that are .as efficient and relia-

ble as any available. Rather than give many routines for each prob-
lenm, which can face the user with a bewildering choice, our policy
is to select one ¢ two routines that should handle most needs. For
more on the philosophy and implementation of the NAPL, see
{2,3,5,71].

We strongly recommend use of this library whenever possible. The

time is long past when the applications programmer could write nu-
merical routines as efficient and reliable as those that have been
developed by the numerical analysis community over the past two dec-
ades. If you do not believe this, test your favorite homemade prod-
uct against QAGS (integration), ODE (ordinary differential equa-

tions), RG (eigenvalues of a matrix), or PWSCRT (Poisson/Helmholtz
egs.)!?

1.2 ORIGIN OF NAPL ROUTINES

NAPL routines come from a variety of . sources. Most are heavily
tested programs that are in wide use around the world. The most im-
portant sources are these:

Argonne National Laboratory

IMSL (Internat'l Math. and Stat. Libraries, Inc.) [9]
National Center for Atmospheric Research

National Physical Laboratory, England

Sandia National Laboratories

Stanford University Computer Science Department

The entire IMSL library, a large collection o0f numerical analysis
routines for various purposes, is installed as part of the NAPL in
(with a few exceptions) double precision [9]. Also part of the NAPL
are the FUNPACK, EISPACK, LINPACK, and MINPACK libraries from Argon-
ne National Laboratory, and the NPL Optimization Library from the
National Physical Laboratory in England. The following numerical
software libraries are NOT available at SLAC: NAG, HARWELL, SsS°P.
However, information on some of these may be obtained from a Numeri-
cal Analysis Constultant. Certain routines from the CERN library
(European Center for Nuclear Research, Geneva) are also available;
see an NA Consultant. For statistical computations beyond those
covered by the linear systems, data fitting, and random numbers
chapters here, see documentation for IMSL or SAS.

Numerical analysis is a rapidly changing field. Good introductions
may be found in [1,4,6,8,10]. Those who wish to examine the current
literature should be aware of the following journals:

ACM Transactions on Mathematical Software
Journal of Computational Physics

Revision 0 SLAC VM NOTEBOOK
November 17, 1981 Module 19: NAPL User's Guide Page 3

Mathematics 9f Computation

Numerische Mathematilk

SIAM Journal on Numerical Analysis

SIAM Revieu

SIAM Journal on Scientific and Statistical Computing

1.3 HOW TO USE THE MNAPL

This guide is Module 19 of the SLAC VM Notebook, and can be printed
Wwith the command

PRINTDOC NOTEBOOK MODI19

To find out what routine to use, read the appropriate section here.
For complete documentation on the routine selected, enter

HELP NAPL <routine> [t FORM | DESc | pARM | ALL
or to print the same HELP file on the line printer,

HELPRINT NAPL <routine>
NAPL routines are stored in the TXTLIBs FORTSLAC and NAPL. Before
running a program that calls one of them, therefore, ocne must enter
a command such as

GLOBAL TXTLIB NAPL FORTSLAC FORTMODZ2

All NAPL routines will then be accessed automatically without fur-
ther effort.

1.4 SAMPLE PROGRAMS AND SOURCE CODE

For most NAPL routines, one or more sample driver programs are
available. To print or run them, enter

NATEST <routine>

Usually there should be no need to obtain the original Fortran
source code for a routine. However, source code can be obtained
with the command

NASOURCE <routine>

Most NAPL routines are in the public domain, so their source can be
freely moved to other computers. However, some are proprietary and
subject to restrictions. An IMSL routine may be taken {from SLAC
only if it constitutes a necessary part of a working program. NPL

Revision O SLAC VM NOTEBOOK
November 17, 1981 Module 19: NAPL User's Guide Page 4

routines may not be taken under any circumstances, and NASOURCE will
not provide source for them.

During most of the year, Numerical Analysis Consultants from the
Stanford Computer Science Department are on duty during posted hours
in the SLAC Computer Building. We will be happy to discuss ques-

tions related to t e NAPL and give advice on numerical problems not
handled by these routines.

1.5. REFERENCES FOR CHAPTER 1

[1]1 K. E. Atkinson, An Introduction to Numerical Analysis, Wiley,
1978.

[2] J. Bolstad, et al., "Numerical Analysis Program Library User's
Guide," SCS User Note 82, 1979%.

(31 T. F. Chan, et al., "A numerical library and its support,” ACHM
Trans. on Math. Software 6 (1980), 135-u45%,

[4])] s. D. Conte and C. de Boor, Elementary Numerical Analysis: An
Algorithmic Approach, 3rd ed., McGraw-Hill, 1980.

[5] W. M. Coughran, Jr., "A note concerning the construction of a
numerical analysis program library," SCS Tech. Memo 107, 1977%,

{6] G. Dahlquist, A. Bjorck, and N. Anderson, Numerical Methods,
Prentice~Hall, 197y%,

{71 J. Ehrman, "Program library maintenance and monitoring,™ SCS
Tech. Memo. 103, 1977%,

[8)] G. Forsythe, M. Malcolm, and C., Moler, Computer Methods for
Mathematical Computations, Prentice~Hall, 1977%.

[9] International Mathematical and Statistical Libraries, Inc., IMSL
8 Reference Manual, 1980%,

{i0] E. Isaacson and H. B. Keller, Analysis of Numerical Methods,
Wiley, 1966.

* Available at the Service Desk in the front lobby area of the
SLAC Computer Building (CGB).

Revision 0 SLAC VM NOTEBOOK :
November 17, 1981 Module 19: NAPL User's Guide Page 5

2. SYSTEMS OF LINEAR EQUATIONS

Type of matrixg Full Band
General real DGEFCS DGBFCS
Symmetric positive definite DPPFCS DPBFCS
Symmetric ind finite DSPFCS

General complex- ZGEFCS

Other special structure... see LINPACK Users' Guide [2]
Inverse or determinant... DGEFDI (see ¥¥ bhelow)

Large and sparse... see a Numerical Analysis Consultant
Interactive matrix laboratory... MATLAB

2.1 INTRODUCTION

A system of linear equations may be written
Ax = b

where A is a knowun n-by-n matrix of coefficients, b is a known n-=

vector, and X is an unknowun vector that is to be determined. Selv-
ing such a system is an extremely common problem in numerical compu-
tation. For general matrices the best method is Gaussian

elimination with partial pivoting, a process that takes approximate-
ly n¥%¥3/3 floating point operations.

" Here are some basic matrix properties that are relevant to the solu-
tion of Ax = b:

(1) Size - The matrix is small if it can be stored 1in main
storage (at SLAC, say., n<=400) . Otherwise A 1is large
and auxiliary storage may be needed.

(2) Sparseness - If the percentage of non-zero elements in A
is relatively large (>5-10%) then A is dense. Other-
wise A is sparse.

(3) Real or Complex - If all the elements of AR are real then A
is real. Otherwise A is complex.

(4) Symmetry - R is symmetric if it is real and A(i,3J)=AC(j,1)

tor all 1,3 . A is hermitian if AC(i,]J) equals the com-
plex conjugate of A(j,i) for all i,3.
{5) Banded = A is banded 1if there exists m<<n such that

ACi,3)=0 for |i-j|>m; the band width is 2¥m+1. 1If m=1,
then A is tridiagonal.
{(6) Positive definite - A is symmetric positive definite if it
is symmetric and all of its eigenvalues are positive.
{7) Condition number - The condition number of A is defined by
-1
cond(A) = IIAII * ||a ll

Revision 0 SLAC VM NOTEBOOK

November 17, 1981 Module 1%: NAPL User's Guide Page 6
where IIAII is some norm of A. Nearly singular matrices have
large condition numbers. The solution ¥ will normally have

relative accuracy approximately equal to machine - precision
times cond(Ra).

2.2 LINPACK .

At SLAC the basic package for numerical linear algebra is LINPACK,
an advanced and widely-distributed collection of routines from the
Argonne National Laboratory [2]. The routines listed above are all
drivers written at SLAC that call LINPARCK routines. In cases where
A has special structure, such as symmetry, the use of the corre-
sponding special driver will increase both speed and accuracy. Ad-
ditional routines for specialized computations other than those
listed above are described in [2]. LINPACK also contains routines
for computing QR decompositions.

LINPACK routines do not use the method o0f° iterative improvement to
attempt to achieve higher accuracy in solving linear systems. It is
now felt that in general the advantages of iterative improvement do
not outweigh the disadvantages. See [2] for a discussion of this.

2.3 OVER—- AND UNDERDETERMINED SYSTEMS

In all cases it is assumed that A is square and nonsingular. If the
problem is overdetermined (i.e., if A has more rows than columns),
then a linear least squares solution is probably what is needed; see
the data fitting chapter of this guide or the discussion of QR and

singular value decompositions in [2] and [5]. 1If the problem is un-
derdetermined (A has more columns than rows), then there is serious
question as to what one might mean by a solution. A pseudoinverse

or linear programming solution might make sense, but the user should
rethink his problem and make sure he has used all the information at
hand. Even if the matrix is square it may still be singular. In this
case a solution is not uniquely determined and may not exist at all.
Even if the matrix is theoretically nonsingular, it may be nearly
singular computationally so that for practical purposes only limited
accuracy can be obtained. The routines listed above return an esti-
mate of cond(A), if the user requests it, and this can be used to
detect near-singularity.

Revision 0 SLAC VM NOTEBROOK
November 17, 1981 Module 19: NAPL User's Guide Page 7

2.4 ¥*MATRIX INVERSES

Explicit calculation of the inverse of a matrix 1is almost never
needed and should generally be aveoided for reasons of efficiency and
accuracy. In solving linear equations, the triangular (LU) decompo-
sition resulting from Gaussian elimination 1is all that 1is needed.
Computing this d-compositon requires roughly three times fewer
floating—-point operations than computing the inverse (n¥%®3/3 vs.

n¥%3) Furthermore, the LU decomposition is more accurate, and it
is just as easy to use as the inverse, even if numerous right hand
sides b are to be used with the matrix A. The documentation for

the routines above should make these details clear.

2.5 LARGE SPARSE MATRICES

For large;, sparse linear systems (as arise for example in the dis-
cretization oif partial differential equations), straightforward
Gaussian elimination may be impossible. An experimental code called
YALEPACK is available for such problems that takes advantage of the
sparsity; see a Numerical Analysis Consultant. Like the LINPACK
routines above, YALEPACK is based on so-called direct methods relat-
ed to Gaussian elimination [&]. For some large sparse problems,
houever, it may be advantageous to use iterative methods instead,
such as conjugate gradients [1] or Jacobi, Gauss-Seidel, or SOR [6,
esp. Sec. 3.1; 8].

2.6 MATLAB — INTERACTIVE MATRIX LABORATORY

See the Matrix Eigenvalue Analysis section for a discussion of this
facility.

2.7 REFERENCES FOR CHAPTER 2

An extensive discussion of almost every aspect of solving linear
equations numerically is found in [3]. Both algorithms and theory
are also presented in [5]. For a helpful handbook with many exam-
ples, see [7].

{11 p. Concus, G. Golub, and D. O'Leary, "A generalized conjugate
gradient method for the numerical solution of elliptic partial
differential equations,"™ in J. Bunch and D. Rose (eds.), Sparse
Matrix Computations, Academic Press, 1976.

{21 J. J. Dongarra, et al., LINPACK Users' Guide, SIAM, 1979%,

Revision 0 : SLAC VM NOTEBOOK
November 17, 1981 Module 19: NAPL User's Guide Page 8

(3]

(4]

(51

(6]

(7]

18]

G. E. Forsythe and C. B. Moler, Computer Solution of Linear Al-
gebraic Systems, Prentice-Hall, 1967%.

A. George and J. Liu, Computer Solution of Large Sparse Positive
Definite Systems, Prentice-Hall, 1981.

G. W, Stewa:‘, Introduction to Matrix Computations, Academic
Press, 1973. e

R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, 1962.

J. R. Westlake, A Handbook of Numerical Matrix Inversion and So-

e e S e et B, SRR Y S 2 S 33 I DU

lution of Linear Egquations, Wiley, 1968.

D. M. Young, JIterative Solution of Large Linear Systems, Academ-
ic Press, 1971,

¥ Available at the Service Desk in the front lobby area of the
SLAC Computer Building (CGB).

Revision O SLAC VM NOTEBOOK
November 17, 1981 Module 19: NAPL User's Guide Page 9

3. HMATRIX EIGENVALUE PROBLEMS AND SVD

Type of Matrix Routine

complex general,Hermitian CG,CH
real general,symmetric RG, RS
real tridiagonal RT,RST
real symmetric banded RSH
-real symmetric (packed storage) RSP

generalized problem (Ax=sBx) RGG, RSG

singular value decomposition DSVDDR
interactive matrix laboratory MATLAB
Large and sparse -- see an N. A. Consultant

3.1 INTRODUCTION

In the classical eigenvalue problem, an n-by-n matrix A is given and
one seeks one or more of its eigenvalues s (scalars}) ands/or eigen-
vectors x (n-vectors), satisfying

Ax = sx .

Every n-by-n matrix A has n eigenvalues (counted with multiplicityl,
which may be complex even if A if real. If A has distinct eigenva-
lues then it will have n linearly independent eigenvectors; other=
wise it may not. A matrix with an incomplete set of eigenvectors is
called defective. In the special case in which A is real symmetric
or complex Hermitian (A equals its complex conjugate transpose), A
always has n real eigenvalues and a complete set of orthonormal ei-
genvectors.

The eigenvalue problem for Hermitian matrices is well conditioned.
and the routines above will normally return eigenvalues accurate to
machine precision relative to the norm of RA. In the non—-Hermitian
case some eigenvalues will be ill—-conditioned when A 1is nearly de-
fective. The eigenvector problem is in general ill-conditioned
whether A is Hermitian or not. In particular, eigenvectors associ-
ated with close or multiple eigenvalues will often change radically
if A is perturbed slightly. A process called balancing is applied
in the above routines to improve the condition of the non-Hermitian
eigenvalue problenm.

Revision 0 SLAC VM NOTEBOOK
November 17, 1981 Module 19: NAPL Useéer's Guide Page 10

3.2 EISPACK

All of the recommended routines except DSVDDR and MATLAB come from
EISPACK, an ElgenSystem PACKage from the Argonne National Laboratory
{2,5]. EISPACK is one of the most successful achievements of ap-
plied numerical analysis, and is extremely reliable and efficient.
Each program listed above is a driver that calls a sequence of more
specialized EISPACK routines. The drivers permit computation of ei-
genvalues and eigenvectors or of eigenvalues alone. Various other
specialized problems besides those in the 1list can also be solved
efficiently by EISPACK. For example, routines are available to com-
pute a small number of eigenvalues rather than all or none of them.
See [2,5) for further information.

3.3 GENERALIZED EIGENVALUE PROBLEM

In the standard generalized eigenvalue problem, a matrix appears on
both sides of the equation,

Ax = sBx .,

If B is nonsingular one might reduce this to a simple eigenvalue
problem by multiplying both sides by B-inverse, but this is usually
not a good idea. The routines RGG and RSG above treat the cases of
general or symmetric A and B, respectively. Additional EISPACK rou-

tines for other kinds of generalized eigenvalue problems are also
available [2].

3.4 SINGULAR VALUE DECOMPOSITION

The singular value decomposition (SVD) of a real m-by-n matrix A is
a tactorization A = UDV', where U and V are orthogonal matrices, V°
denotes the transpose of V, and D is a diagonal matrix with positive
real entries, which are called the singular values of A. The singu-
lar values are equal to the non-negative square roots of the eigen-
values of A'A. The SVD is important in numerical analysis in many
applications. The largest singular value of A equals the Euclidean
2-norm of A, and the ratio of the largest to the smallest singular
values is the condition number of A in that norm. If m=n, then A is
singular if and only if at least one singular value is zero, and in
general the number of nonzero singular values equals the rank of A.
The SVD is also useful in computing the pseudo-inverse of a matrix
[{3] and in solving ill-conditioned least squares problems [1,2].
The recommended routine DSVDDR is a driver written at SLAC for rou-
tines from LINPACK [11].

Revision 0 SLAC VM NOTEBOOK
November 17, 1981 Module 19: NAPL User's Guide Page 11

3.5 LARGE SPARSE EIGENVALUE PROBLEMS

If A is large and sparse, and only a few of its eigenvalues are
needed, the direct methods employed by EISPACK may not be appropri-
ate. For information on software for alternative methods, particu-
larly the Lanczos algorithm [4], see a Numerical Analysis Consult-
ant.

3.6 MATLAB — INTERACTIVE MATRIX LABORATORY

A facility called MATLAB is available for interactive matrix compu-
tations under VI, written by Cleve Moler at the University of New
Mexico. MATLAB is based on routines from EISPACK and LINPACK, and
is extremely easy to use. It provides a full range of linear alge-
bra computations, including eigenvalue and singular value decomposi-
tions, LU and QR and Cholesky decompositions, ranks, norms, solution
of systems of equations, determinants, and inverses. For informa-
tion enter HELP NAPL MATLAB or see a Numerical Analysis Consultant.

3.7 REFERENCES FOR CHAPTER 3

The EISPACK library is well documented in [2] and [5]. A comprehen-
sive treatise on both the theoretical and computational aspects of
solving eigenvalue problems is found in [71]. For a very readable
treatment of the symmetric eigenvalue problem, see [4].

[1] J. J. Dongarra, et al., LINPACK User's Guide, SIAM, 1979%,
[2] B. S. Garbow, et al., Matrix Eigensystem Routines ~ EISPACK

Guide Extension, Springer—Verlag Lecture Notes in Computer Sci-
ence 51, 1977%,

[3] G. H. Golub and W. Kahan, "Calculating the $ingular Values and
Pseudoinverse of a Matrix," SIAM J. Numer. Anal. 2 -(1965), pp.

205-224.

[u] B. N. Parlett, The Symmetric Eigenvalue Problem, Prentice-—=Hall,
1980%,

{5] B. T. Smith, et al., Matrix Eigensystem Routines - EISPACK

Guide, 2nd ed., Springer-Verlag Lecture Notes in Computer Sci-
ence 6, 1876%,

¥ Available at the Service Desk in the front lobby area of the
SLAC Computer Building (CGB).

Revision O SLAC VM NOTEBOOK

November 17, 1981 Module 19: NAPL User's Guide Page 12

[6] 6. W. Stewart, Introduction to Matrix Computations, Academic
Press, 1973. ‘

{71 9. H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford Uni-
versity Press, 1965.

Revision 0 SLAC VM NOTEBOOK
Nevember 17, 1981 Module 19: NAPL User's Guide Page 13

4. NONLINEAR EQUATIONS AND OPTIMIZATION

Zerofinding
one variable real ZEROIN [7,2]
one variahle complex analytic ZANLYT [5]
real, complex polynomial PAO7AD, PARAOGAD [7]
re 1l system (fast) ZSYSTM [5]
real system (robust) HYBRD/HYBRDI1[8] or NSOi1A[12]
real system (analytic Jacobian) HYBRJ/HYBRJI1 [8]

Optimization requires requires requires
Flx) Flg),g(x) Flxl),glg),6(xnl
one variable FMIN [2] UNIGRD [10]
system QNMDIF/UBNDQY1 QNMDER/UBFDQ2 MNA/UBSDNZ2 [10]
least-squares system LMDIF/LMDIF' LMDER/LMDERI [81]
linearly constrained LCQNDF LCQNDR LCMNA (101
nonlin. constrained SALQDF SALQDR SALMNA [10]
linear programming LP [10]
{ ®xr/yyy - yyy is an easy—-to-use version of xxx)
/

k.1 INTRODUCTION

We are concerned here with the <closely related problems of locating
points where functions take on zero values or extreme (minimal or
maximal) values. These problems are related in a theoretical sense
in that extrema of functions correspond to zeros of their deriva-
tives; conversely, a zero of a function F might be found by locating
a minimum of F¥¥*2, Only minimization will be discussed here, since
a maximum of F is a minimum of -F. Optimization is also closely re-
lated to questions of approximation and data fitting, which are dis~-
cussed in a separate section.

Algorithms for either problem are based on iteratively approximating
the given function locally by another simpler function whose zeros
or extrema can be calculated more easily. All of them, however, are
subject to a variety of pitfalls, and some of the most rapidly con-
vergent methods in theory can also get into the most trouble if care
is not taken in their application. Among the problems which may be
encountered are slow convergence to multiple or close roots, loss of
accuracy in using deflation to find more than one root, oscillation
due to almost horizontal tangents, and convergence to the wrong zero
or to the wrong local minimum.

Revision 0 SLAC VM NOTEBOOK
November 17, 1981 Module 19: NAPL Useéer's Guide Page 14

4.2 LOCAL VS GLOBAL SOLUTIONS

In general it is impossible to determine whether a set of zeros
found numerically includes all the zeros of the function, or whether

a minimum found numerically is a global minimum or only local. One
way to check this 1is to try several different (widely separated)
starting estimates and see if the same solution results. The compu-

tational problem becomes much more difficult in several dimensions
than in one, and more difficult again if constraints are present.

4.3 DERIVATIVE INFORMATION

Many methods for multivariate problems are based on Newton's method
or generalizations thereoif, and so usually require derivative infor-
mation about the function. In solving nonlinear equations the Jaco-
bian matrix (first partials) of the system may be required. For non-
linear function minimization the gradient wvector g (first partials)
or Hessian matrix G (second partials) of the objective function may
be needed. In general, the more derivative information a method re-
quires the faster its potential convergence rate, but at the same
time such a method is more trouble to the user, may be less robust,
and may require a better initial estimate than a method which uses
less information about derivatives. .

by ZEROFINDING

The table above 1lists recommended routines for finding zeros of
tunctions of one variable -- real, complex, or (a special case)
polynomial., Polynomials have the advantage that one knous exactly
how many zeros to look for. For finding a zero of a system of non-
linear equations several routines are available. For very rapid con-
vergence from good initial estimates we recommend ZSYSTHM. If some
of the equations in the system are linear, then ZSYSTM can take spe-
cial advantage of this. The remaining routines are more robust pro-
grams capable of handling much poorer initial estimates.
HYBRD/HYBRD! and HYBRJ/HYBRJ! come from the MINPACK-1 library re-
leased in 1980 by the Argonne National Laboratory [8]. If it is is
possible to compute a Jacobian matrix analytically, use HYBRJ/HYBRJ!
in preference to HYBRD/HYBRD! or NSO1A. In each case of two rou-
tines separated by a slash, the second routine listed is an easy-to-
use but less flexible version of the first.

Revision 0 SLAC VM NOTEBOOK
November 17, 1981 Module 19: NAPL User's Guide Page 15

4.5 OPTIMIZATION

Many optimization problems, especially those involving minimizing a
sum of squares, come from data fitting problems. See the Approxima-
tion and Data Fitting section for more information on these. For
general optimization problems of all kinds, our main source o0f rou-
tines is the Nume "ical Optimization Software Library recently re-
leased by the National Physical Laboratory (NPL) in Teddington, Eng-
land. This library is the most comprehensive and sophisticated
collection of optimization routines currently available, and it
should handle most optimization problems effectively. Unfortunate—
ly, these routines are for the most part quite difficult to use. We
recommend that the user with a reasonably straightforward problem
begin with an easy-to-use routine, then move to a standard routine
if he has trouble finding a solution, if efficiency is a problem, or

if he intends to solve a similar ©problem over and over again. The
three columns in the table show what function information must be
supplied to each routine: F(x) = function; g{x) = gradient vector;
G({x) = Hessian matrix.

u.6 CONSTRAINED OPTIMIZATION

The NPL library contains powerful routines for constrained optimiza-

tion problems, both linear and nonlinear. Both equality and ine-
quality constraints are permitted, and they may be mixed. The spe-
cial case of a linear objective function subject to linear

constraints is called a linear programming problem and should be
solved by a routine such as LP, which is specifically designed for
this problen. :

The table above is far from a complete list of routines in the NPL
optimization library. Additional NPL routines perform the following
functions, among others:

- Check user-supplied first or second derivatives numerical-
ly for consistency with the given function (highly recom-
mended!) -

- Solve problems efficiently which involve simple bound
(rather than general linear) constraints

- Solve minimization ©problems involving wunsmooth (possibly
discontinuous) objective functions

The user with a special problem should refer to [19,10] or see a Nu-
merical Analysis Consultant for further iniformation.

Revision 0 SLAC VM NOTEBOOK
November 17, 1981 Module 19: NAPL User's Guide Page 16

4.7 LARGE SPARSE QOPTIMIZATION PROBLEMS

A poweriful system called MINOS is available to deal with large opti-
mization problems, linear or nonlinear, unconstrained or c¢con-
strained. See a Numerical Analysis Consultant for information.

k.8 REFERENCES FOR CHAPTER 4

For a linear least-squares minimization problem, see the chapter on
data fitting for further recommendations. See [13] and [11], re-
spectively, for solution of nonlinear equations in one and seversal
variables. The booklet [8] gives a simple guide to the MINPACK col-

lection o0f routines. There are many books on constrained optimiza-
tion, of which [4] and [6] are particularly useful for applied prob-
lems. Users of the NPL routines should refer to [9] and {10] for

much more advice on code use and selection; further information on

the NPL routines as well as on other topics in optimization is given
in [3].

[1] R. Brent, Algorithms for Minimization without Derivatives, Pren-
tice-Hall, 1973%,

l2} G. Forsythe, M. Malcolm, and C. Moler, Computer Methods for
Mathematical Computations Prentice-Hall, 1977%. -

[3]1 P. Gill, W. Murray, and M. Wright, Practical Optimization, Aca-
. demic Press, 1981%.

{4] Himmelblau, D. M., Applied Nonlinear Proqramming, McGraw-Hill ,
1972.

{5] International Mathematical and Statistical Libraries, IMSL 8
Reference Manual, 1980%,

[6] D. G. Luenberger, Introduction to Linear and Nonlinear Program-
ming, Addison-Wesley, 1973

(7] K. Madsen and J. Reid, "Fortran Subroutines for Finding Polyno-
mial Zeros," Report R.7986, AERE, Harwell, England, 1975.

(8] J. More, B. Garbow, and K. Hillstrom, User Guide for MINPACK-1,
Argonne National Laboratory Report ANL-80-74, 1880 %,

[9] National Physical Laboratory, "A Brief Guide to the NPL Numeri-
cal Optimization Software Library," 1978%,

¥ Available at the Service Desk in the front lobby area of the SLAC
Computer Building (CGB).

Revision 0 SLAC VM NOTEBOOK
November 17, 1981 Module 19: NAPL User's Guide Page 17

{10}

t11]

[12]

1131

National Physical Laboratory, Introduction to the NPL Numerigal
Optimization Software Library, Vols. I & II, 1978%,

J. Ortega and W. Rheinboldt, iterative Solution of Nonlinear
Equations in Several Variables, Academic Press, 1970.

M. J. Powel , "A FORTRAN Subroutine for Solving Systems of
Nonlinear Eguations:"™ Report R.5947, AERE, Harwell, England,
1968.

J. F. Traub, Iterative Methods for the Solution of Eguations.
Prentice-Hall, 196u.

Revision 0 SLAC VM NOTEBOOK
November 17, 1981 Module 19: NAPL User's Guide Page 18

5. APPROXIMATION AND DATA FITTING

Cubic spline interpolation CSPLIN/CSEVAL

Least-squares cubic spline ICSFKU/ICSEVU
General linear least-squares LINLSQ
General nonlinear least-squares VARPRO
Rational "hebyshev approximation IRATCU

5.1 INTRODUCTION

When fitting a model to observed data or approximating a complicated
function with a simpler one, there are two major choices to make:
the functional form of the approximation, and the method or norm
used to define it. Common approximation functions include polynomi-
als, rational functions, sums of exponentials, and splines. The
simplest approximation method is interpolation, and the other main
possibility is to minimize or nearly minimize some norm of the error
between the data and the approximation. The Euclidean 2-norm meas-
ures the sum or the integral of the squares of the error at each
data point. The maximum (also called supremum, minimax, or Chebysh-
ev) norm gives the maximum pointwise error.

In general least-squares fits are easier to compute than minimax

tits, and for most purposes they are nearly as good. They are par-
ticularly appropriate for fitting data points that show overall
trends but may contain random noise. Interpolatory approximations

are also easy to compute, but are more hazardous (see belou).

5.2 INTERPOLATION AND LEAST-SQUARES FITTING BY CUBIC SPLINES

A cubic spline is a piecewise cubic polynomial with continuous first
and second derivatives at the breakpoints, or knots. This is the
most reliable general-purpose form of approximation. For —cubic
spline interpolation, use CSPLIN and CSEVAL. For a least-squares
spline fit, which is usually preferable, use the IMSL routines
ICSFKU and ICSEVU. For this it will be necessary to choose break-
points for the spline. The general idea is to put more breakpoints
where the function varies rapidly, but some experimentation may be
necessary. (The IMSL library also offers a variable-knot spline
routine to select breakpoints automatically, but this is an expen-
sive and unreliable process, and we do not recommend it for most ap-
plications.)

The IMSL library further offers a smoothing spline routine, and bi-

cubic splines for two-dimensional data fitting; see [2]. A collec-
tion of the subroutines from the excellent text by de Boor [1] is
also available from a Numerical Analysis Consultant. These programs

permit a wide variety of spline computations not handled by the rou-
tines above, including manipulation of splines of arbitrary order.

Revision O SLAC VM NOTEBOOK
November 172 1981 Module 19: NAPL User's Guide Page 19

5.3 GENERAL LINEAR AND NONLINFAR LEAST-SQUARES

A linear least sguares problem is one that is linear in the unknoun
. parameters even though it is usually nonlinear in the independent

variable. For example, gquadratic regression uses
f(t) = a + a ¥t + a ¥t #¥2,
i 6w 1 i 2 i

For regression problems of small degree, say n < 5 , it is common to
solve this problem by means of the so-called normal equations [3].
This procedure is in general ill-conditioned, and we recommend the
routine LINLSQ instead even if n 1is small and especially if n is
at all large. LINLSQ is based on a QR decomposition {3]. For non-
linear least squares problems, use the routine VARPRO. This routine
takes advantage of the common occurrence that some of the parameters
enter linearly, such as the a's in the exponential sum

§C(t) = a + a #*exp(=b ¥t) + a ¥exp(-b *t) ,
i 0 i : 1 i 2 2 1

making it much faster than more general nonlinear routines in these
cases.

Both LINLSQ and VARPRO make it easy to perform fits by much more
complicated sets of functions than polynomials or exponential sums.
For example, in some problem it might be appropriate to fit a set of
data on [0,infinity) by a continuous function made up of a polynomi-
al on [0,1)] connected to a decaying exponential on [1,infinity).
Try to %ind a functional form that is physically and graphically
reasonable.

For constrained least squares, see a Numerical Analysis Consultant
about the availability of experimental codes. In general, approxi-
mation in least squares or other norms is closely related to opti-
mization problems, which are discussed in the Nonlinear Equations
and Optimization section of this guide.

5.4 POLYNOMIAL INTERPOLATION

Interpolation by polynomials (as opposed to piecewise polynomials)
is a dangerous practice, particularly at high degree, because it can
lead to large wunwanted oscillations (the "Runge phenomenon"). To
alleviate this problem one should interpolate not at equally spaced
points but at Chebyshev points, that is,

X(3j) = cos ((23+1) pirs(2n+2)), 3J = 0,...:n

for the interval [-1,1). One should also use a well-conditioned ba-
sis 0of orthogonal polynomials, rather than the monomials x¥*¥pn .

Revision 0 SLAC VM NOTEBOOK
November 17, 1981 Module 19: NAPL User's Guide Page 20

5.5 TRIGONOMETRIC INTERPOLATION AND LEAST-SQUARES FITS

These are appropriate for periodic functions or data. See the sec-
tion on the Fast Fourier Transforn.

5.6 RATIONAL MINIMAX APPROXIMATION

The routine IRATCU applies the Remes algorithm to find the high-ac-
curacy rational minimax approximation to a known function [2]. That
is, it finds the quotient of Polynomials of specitied degree that
minimizes the maximum absolute error over an interval.

5.7 REFERENCES FOR CHAPTER 5

The book by de Boor [1] is a comprehensive and readable reference on

splines. For an introduction to regression analysis see [4]. See
[5] for a short but thorough discussion of modern methods for solv-
ing least squares problems. Lawson and Hanson [3] is the best gen-

eral reference on least squares and constrained least squares prob-
lems.

[1] €. de Boor, A Practical Guide Io Splines, Springer-Verlag,
1978%,

[2] International Mathematical and Statistical Libraries, IMSL 8
Reference Manual, 1981%,

[3] C. L. Lawson and R. J. Hanson, Solving Least Sqguares Problems,
Prentice~Hall, 1974%,

[4] G. A. F. Seber, Linear Reqression Analysis, Wiley, 1977.

[5] C. Van Loan, "Lectures in Least Squares," TR 76-279, Department
of Computer Science, Cornell University, 1976%.

* Available at the Service Desk in the front lobby area of the
SLAC Computer Building (CGB).

Revision 0 SLAC VM NOTEBOOK
November 17, 1981 Module 19: NAPL User's Guide Page 21

6. FAST FOURIER TRANSFORHM

Real transiform RFFTI,RFFTF,RFFTB

Complex transform CFFTI,CFFTF,CFFTB all

Sine transform SINTI,SINT routines

Cosine transform COSTI,COST single
{s4-wave si e transform SINQI,SINQF,SINGB precision

{s74-wave cosine-.transform C€O0SQI,COSQF,C0OSQB

6.1 INTRODUCTION

The usual continuous Fourier integral transform (FT) is well known
and used throughout physics and engineering wherever phenomena may
be broken down into irequency components. Discrete Fourier trans-
forms (DFTs) arise both as approximations to FTs and in their oun
right in a wide variety of applications. For a comparison of the FT
and the DFT, see [2] and the remarks on trigonometric least-sgquares
fitting, below. The Fast Fourier Transform (FFT) is the name of a
class of extremely rapid algorithms for computing DFTs. To compute
an FFT of length N requires on the order of N¥log(N) floating-
point operations.

Let X(3) be a complexr vector of length N. The unnormalized for-

ward complex DFT of X(3) is another complex N-vector defined by
the formula

N
Y(k) = SUM X(j) ¥ EXP(-2i%3XKRk¥PI/N)
j=1
where i = SQRT(-1) . Y(R) may be interpreted as N times the compo-
nent of the vector X in the "direction"™ of the exponential

EXP(2i%#k*¥PI/N). The inverse complex DFT is defined by

N
Z(3) = SUM Y(k) * EXP(+2i¥j¥k¥PI/N)
k=1
This pair of formulas is unnormalized in the sense that if X is

transformed to Y and then Y is inverse transformed to Z, then Z
will be equal to X multiplied by the factor N.

Revision 0 "SLAC VM NOTEBOOK :
November 17, 1981 Module 19: NAPL User's Guide Page 22

6.2 SWARZTRAUBER FFT PACKAGE

The routines above make up a package for FFT computations recently
released by Paul Swarztrauber of the National Center for Atmospheric

Research in Boulder, Colorado. These programs are efficient and
very easy to use, and are all in single precision (computing the FFT
is numerically a v ry stable process). For a general complex DFT,

the appropriate routines are

CFFTI -- initialization
CFFTF -- {forward transform
CFFTB ~- unnormalized inverse transform

These routines can handle arbitrary dimensions N, but are much more
eificient if N is a product of small prime numbers such as 2, 3, 5.
(However, padding a sequence of data with zeros to make N a round
number is not recommended, because it can lead to unwanted oscilla-
tions; this is known as the Gibbs phenomenon.) The remaining rou-
tines are designed for special cases of complex DFTs, where the
speed can be increased and the storage requirement reduced by taking
advantage of the special structure. If X is real, use RFFTI,
RFFTF, RFFTB. If X is real and even, use COSTI and COST. If it
is real and odd, use SINTI and SINT. (Sine and cosine transform
routines come in pairs rather than triplets because the forward
-transform turns out to be its own unnormalized inverse.) If it is
real and even and contains only odd wave numbers (e.g. COS(T)Y +
COS(3T)), use COSQI, COSQF, COSQB. I{ it is real and odd and con- .
tains only odd wave numbers, use SINQI, SINQF, SINQB.

6.3 TRIGONOMETRIC INTERPOLATION AND LEAST-SQUARES FITTING

Suppose X(Jj) above represents the values at x = J of a continuous
function X(x) defined tor all x and having period N . Then
Z(3) also extends to a continuous function Z(x), and this equals N
times the +trigonometric sum of degree N that interpolates X(x)
at the integers j . If the sum defining Z(x) is truncated at
some M < N , then one obtains N times the trigonometric polynomi-
al which is the best least-squares approximation to X(x) of degree
M with respect to the integers x = o I{f N 1is large relative
to the smoothness of X(x) ’ this will be very close to the best
least-squares fit on the continuum of all x values, which 1is the
partial sum of degree M of the continuous FT of X(xJ).

Revision 0 SLAC VM NOTEBOOK
November 17, 1981 Module 19: NAPL User's Guide Page 23

6.4 REFERENCES FOR CHAPTER §

Hamming [3] provides a comprehensive treatment of the underlying
theory of Fourier analysis, both continuous and discrete. Almost one
third of the book deals with Fourier approximation. Chapter 9 of [1]
also discusses Fourier methods and on page 552 there is a list of
algorithms for the FFT published during the period 1960-70. For
other presentations of the FFT together with interesting applica-
tions, see [4] and [5].

{11 6. Dahlquist, A. Bjorck, and N. Anderson, MNumerical Methods:
Prentice—-Hall, 1974%#*,

[2] W. Gentleman and G. Sande, “FFT for Fun and Profit," Proceedings
of the Fall Joint Computer Conference, 1966, 563-578.

[3) R. W. Hamming, Numerical Methods for Scientists and Engineers.
2nd ed., McGraw=Hill, 1973.

[4) P. Henrici, "Fast Fourier methods in complex analysis,”™ SIAM Re-
view 21 (1979), 481-527.

[5] L. R. Rabiner and B. Gold, Theory and Application of Digital
Signal Processing, Prentice-Hall, 1975.

¥ Available at the Service Desk in the front lobby area of the
SLAC Computer Building (CGB).

Revision O SLAC VM NOTEBOOK
November 17, 1981 Module 19: NAPL User's Guide Page 24

7. NUMERICAL INTEGRATION

Rdaptive QAGS [3] or DCADRE [6]
Gaussian GAUSSQ/QUADS3 [5]
tabulated data DCsSQDU [6]
multiple integrals DBLINT [6] or GAUSSQ/QUADS3 [5]

7.1 ADAPTIVE QUADRATURE

Evaluating a single one-dimensional integral has become an easy task
through the invention of powerful adaptive quadrature routines such
as QAGS and DCADRE. {("Quadrature®" = 1D numerical integration.)
Rather than applying a fixed formula, these routines examine the be-
havior of the integrand as they proceed, calling for. few function
evaluations where the integrand is smooth and many where it is ill-
behaved. This enables them to treat irregular integrands success-
tully and efficiently, and more important, to return a result that
is accurate (almost always) to within a tolerance specified by the

user. For one-shot’ integration, even of very ill-behaved functions,
they are completely satisfactory. We recommend QAGS, which is some-
what faster than DCADRE and also in the public domain. For large

numbers of integrals, on the other hand, adaptive quadrature may be

much too time-consuming, and one should consider Gaussian quadrature
or another method.

7.2 GAUSSTAN QUADRATURE ' :

Gaussian quadrature, by contrast, consists of applying a fixed rule
of the form

K
I(f) = sSuM w *f(x) ,

i=1 i i
to estimate the integral. Here the values x(i) are an optimally
chosen set of K "nodes"™ and the coefficients w(i) are K
"weights",. Rather than choosing an error tolerance, the user must
now choose K. This calls for some experimentation (try, for exam-
ple, K = 4,8,16). The advantage of Gaussian rules is that they are
extraordinarily accurate if the integrand is smooth. (The K-point

Gaussian rule integrates all polynomials of degree 2¥%¥K-1 exactly.)
Often a Gaussian formula will achieve as high accuracy as an adap-
tive program with an order of magnitude fewer integrand evaluations.
Use routines GAUSSQ (for computing nodes and weights) and QUADS3
(for summing the formula once the nodes and weights are knoun).

Revision 0 SLAC VM NOTEBOOK
November 17, 1981 Module 19: NAPL User's Guide Page 25

7.3 MULTIPLE INTEGRALS

As the dimension N of an integral increases from 1 to 2, 3, or more,
numerical integration rapidly becomes difficult, then almost intrac-—
table. on top oif this, the penalty for using adaptive rather than
Gaussian routines may increase geometrically. For N = 2 one may try
the IMSL routine DBLINT, an adaptive program based on DCADRE. But
for evaluating many double integrals, or integrals in three or more
dimensions, DBLINT may be extremely expensive. First, make certain
that is is not possible to eliminate one or more of the dimensions
of integration analytically. If it 1is not, use nested Gaussian
quadrature if the integrand is reasonably smooth. Since Fortran
does not permit recursion, this will necessitate acquiring N-1 cop-
ies of the source for QUADS3 and renaming them. Alternately. as
QUADS3 does nothing more that evaluate a sum of K products, the sum
can be coded in a few lines by the user.

For truly ill-behaved integrands with N = 3 or more, an experimental
adaptive code can be obtained from a Numerical Analysis Consultant.
Many users may also be familiar with Monte-Carlo integration, but
this is an extremely time-consuming process and should only be con-
sidered as a last resort.

7.4 SINGULARITIES AND DISCONTINUITIES

Special Gaussian formulas are available to handle singularities at
endpoints of type x¥#%#a (a > -1); see the documentation for GAUSSQ on
Gauss—~Jacobi and Gauss-Chebyshev quadrature. For singularities at
endpoints of unknown type, QAGS is usually effective. I1f the integ-
rand has singularities or discontinuities at known points in the in-
terior, it is best to split the integral into subintervals so that
these occur only at endpoints. This advice holds even for disconti-
nuities in a higher derivative == for example, in integrating a cu-
bic spline. It there are internal singularities at unknown loca-
tions, use QAGS. See also [1]}, chapters 4 and 15.

7.5 INFINITE INTERVALS

For infinite intervals wuith exponential decay factors exp(-x) or
exp(—-x¥*¥¥2), Gauss—-Hermite or Gauss-lLaguerre quadrature may be appli-
cable; see the documentation for GAUSSQ. Otherwise, if the integ-
rand decays tooc slouly for the interval to be truncated at a finite
point, it is probably best to change variables so as to reduce the
problem to a finite interval with a singularity at one or both end-
points, and then use QAGS.

Revision 0 SLAC VM NOTEBOOK
November 17, 1981 Module 19: NAPL User's Guide Page 26

7.6 INTEGRATION OF TABULATED DATA

If the function to be integrated is defined by a set o0f tabulated
values rather than analytically, there are two main approaches to
consider. I{ the data is located at equally spaced points, one can
apply a simple quadrature rule directly, such as the trapezoid rule
or Simpson's rule [1,2]. For noisy data or irregular abscissae, one
can fit the data by a cubic spline, then integrate the spline exact-
ly. This is done by routine DCSQDU. See also [4], chapter 5§,

7.7 REFERENCES FOR CHAPTER 7

For a general discussion of most aspects of numerical integra-
tion Davis and Rabinowitz [2] is a good reference. For more de-
tail on Gaussian quadrature see [7) or [9]. For a discussion of the

multidimensional case see [8].

[1] F. S. Acton, Numerical Methods that Work, Harper and Row, 1970.

(2] P. J. Davis and P. Rabinowitz, Methods of Numerical Inteqration,
Academic Press, 1975%,

[3] E. de Doncker, (reference not yet available)

(4] 6. Forsythe, M. Malcolm, and C. Moler, Combputer Methods for
Mathematical Computations, Prentice-Hall, 1977%,

[5] G. H. Golub and J. H. Welsch, "Calculation of Gaussian Quadra-
ture Rules," Mathematics of Computation 23 (1969), 221-230,.

[6] International Mathematical and Statistical Libraries, Inc., IMSL
8 Reference Manual, 1980.

(71 v. I. Krylov, 3pproximate Calculation of Inteqrals, Macmillan,
1962.

[8] A. H. sStroud, Approximate Calculation of Multiple Integrals,
Prentice-Hall, 1971,

[9] A. H. Stroud and D. Secrest, Gaussian Quadrature Formulas, Pren-
tice-Hall, 1966.

*¥ Available at the Service Desk in the front lobby area of the
SLAC Computer Building (CGB).

Revision O SLAC VM NOTEBOOK
November 17, 19281 Module 19: NAPL User's Guide Page 27

8. ORDINARY DIFFERENTIAL EQUATIONS

General ODE [i11
General, easier problenms RKFU5 [3]
Implicit end condition DEROOT [3,5]
Stiff EPSODE [4,7]
Stiff, easier problems GEAR [4,8]
Boundary-value problems coLsys [1]

8.1 INTRODUCTION

A first-order system of ordinary differential equations has the form
y*(t) = $£Ct,y(t)) ,

where vy and {f are n-vectors and y! denotes dysdt . Most
theory and software for ODEs (including all routines above except
COLSYS) begins by eliminating higher-order derivatives, if present,
so as to bring the system into this form. This is done by the addi-
tion of auxgiliary variables. For example, the single second~order
equation y'' = f is egquivalent to the system of +tuo first-order
equations u' = v, v' = § | See [11] for further examples.

To completely speciiy the problem boundary conditions are required.
In an initial-value problem (IVP) all n conditions are imposed at
one point, ’

y(a) = y0 ,

where y0 is an n-vector and one wishes to solve for y(t) on an
interval a<x<=)b . Software for IVPs is highly advanced, and most
of them «can be solved rapidly to high accuracy. Boundarv=-value
problems (BVPs) involve boundary conditions at two or more points
and are more difficult.

8.2 INITIAL-VALUE PROBLEMS

For most IVPs we recommend the routine ODE [11]. This program is
reliable and extremely easy to use. It is based on a variable-step,
variable—-order Adams method (explicit linear multistep method). For
non—-stiff problems (see below) with expensive derivative evaluations
or a tight accuracy requirement, ODE is almost certainly the best
routine. For easier problems in which evaluating the derivatives
f(t,y(t)) is cheap, however, RKFY45 may be faster. This routine 1is
based on Runge—-Kutta-Fehlberg formulas [31].

Sometimes it is desired to integrate an IVP {from t=a to t=z ,
where 2 is defined implicitly as the =zero o0f a {function
g(t,y,y'). The routine DEROOT is an augmented version of ODE de-

signed to do this eftficiently.

Revision 0 SLAC VM NOTEBOOK
November 17, 1981 Module 19: NAPL Useéer's Guide Page 28

8.3 STIFF IVP'S

A stiff ODE, roughly speaking, is one whose general solution in-
volves both slowly varying components and rapidly varying components
of a decaying nature. Stiff problems are numerically difficult be-
cuase very small step sizes may be required in the solution process
to avoid numerical instability. For discussions see [4,9,10]. Rou-
tines ODE and RKF45 are designed for non-stiff systems, and will
work very inefiiciently on a stiff problem. However, ODE can usual-
ly detect stifiness, and will return an error code when it does.
For stiff problems the user should try EPSODE or GEAR, above. Both
of these are adaptive codes based on so-called backward differentia-
tion formulas. EPSODE is slower than GEAR, but can handle more dif-
ficult problems. An experimental code designed to efficiently han-
dle IVPs arising from a method of lines semidiscretization of a PDE
is also available; see a Numerical Analysis Consultant.

8.4 BOUNDARY-VALUE PROBLEMS

Users with boundary-value problems are encouraged to take a look at
the brief monograph by Keller [8]. For simple problems, a shooting
method may work -- see [8] or many other numerical analysis texts.
In general more sophisticated methods are called for, such as those
~based on finite differences. The program COLSYS is based on a col-
location method [1]. It is somewhat difficult to get started, but
poweriful, and users who will be solving many BVPs or difficult ones
should try it. The article [2] describes many tricks to make COLSYS

or a similar routine handle special problems: infinite intervals,
eigenvalue boundary-value problems, nonstandard boundary conditions,
singularities, " etc. A special code 1is also available for solving

Sturm-Liouville eigenvalue problems; see a Numerical Analysis Con-
sultant.

8.5 REFERENCES FOR CHAPTER 8

Most numerical analysis books, including [3], contain a chapter on
the solution of ODEs. A well-uritten survey of methods for the IVP
is given in [10]. For a more substantial introduction see [9]) for
IVP's and [8] for BVP's,

{1] U. Ascher, J. Christiansen, and R. D. Russell, "Collocation
software for boundary-value ODEs,"™ ACM Trans. Math. Software 7

(1981), 209-222%,

[2] u. Ascher and R. D. Russell, "Reformulation of boundary value
problems into .'standard’' form," SIAM Review 23 (1981), 238-25u%*,

Revision O ' SLAC VM NOTEBOOK ’
November 17, 1981 Module 19: NAPL User's Guide Page 29

{3) G. Forsythe, M. Malcolm, and C. Moler, Computer Methods for
Mathematical Computations, Prentice=Hall, 1977.

[4] €. W. Gear, Numerical Initial Value Problems in Ordinary Differ-
ential Equations, Prentice-Hall, 1971%,

5] M. K. Gordon, "Using DEROOT/STEP,INTRP to Solve Ordinary Differ-
. ential Equations,™ SAND-75=0211, Sandia Laboratories, §975. %

{61 A. C. Hindmarsh, "“GEAR: Ordinary Differential Equation Systenm
Solver," UCID=30001, Rev. 3, Lawrence Livermore Laboratory, De-
cember 1974%,

{71 A. C. Hindmarsh and G. D. Bryne, "EPISODE: An Experimental
Package for the Integration of Systems of Ordinary Differential

Equations,' UCID-30112, Lawrence Livermore Laboratory, May
1975%,

{81 H. B. Keller, Numerical Solution of Two-Point Boundary Value
Problems, Society for Industrial and Applied Mathematics 24,
1976.

{91 J. D. Lambert, Computational Methods in Ordinary Differential
Equations, Wiley, 1973.

[10) J. D. Lambert, "The Initial Value Problem for Ordinary Differ-
ential Equations: A Survey," Report No. 15, University of Dun-=
dee, Department of Mathematics, 1976%.

{11) L. F. Shampine and M. K. Gordon, Computer Solution of Ordinary
Differential Equations: The Initial Value Problem Freeman,
1975%,

% Available at the Service Desk in the front lobby area of the
SLAC Computer Building (CGB).

Revision O SLAC VM NOTEBOOK
November 17, 1981 Module 19: NAPL Useéer's Guide Page 30

9. PARTIAL DIFFERENTIAL EQUATIONS

Modifijed Helmholtz equation U +u +su = g
in various coordinate systems XX yy

Cartesian - x and y PWSCRT

polar - r and theta PWSPLR

cylindrical - r and =z PUSCYL

surface sperical - theta and phi PWSSSP
interior spherical - r and theta PWSCSP

General separable elliptic problems

au +bu +cut+u = g POIS
XX bl yy
au +bu +cu+du +eu +fu = g BLKTRI
XX R yy y
U = unknown function of x,y s = scalar
a,b,c = functions of x d,e,f = functions of y
g = function of x,y

9.1 INTRODUCTION

Partial differential equations (PDEs) come in three broad classes:
elliptic, parabolic, and hyperbolic. Generally, elliptic problems
correspond to time-independent phenonema (e.qg. Poisson's equation),
parabolic problems to diffusion processes (e.g. the heat equation),
and hyperbolic problems to translational phenonema (e.g. the wave
equation). Both the behavior of the solutions and the methods of
solution for each class are different. Even more difficult are the
problems of mixed type; these are problems with features of two or
three of the above classes. Courant and Hilbert [2) presents much
of the theory behind PDEs with many phsycial examples.

There are various numerical methods available for PDEs, such as fi-
nite differences, finite elements, and the method of lines. Never-
theless, the numerical solution of PDEs is difficult because of the
wide variety of boundary conditions, geometries, and physical phe-
nomena involved and the large number of unknowns required in any
discretization. As a result general-purpose software is far less
developed for the solution of PDEs than for the other problems dis-
cussed in this guide.

Revision 0 SLAC VM NOTEBOOK
November 17, 1981 Module 19: NAPL User's Guide Pagx: 31

9.2 ELLIPTIC PROBLEMS

The routines above come from the "FISHPACK"™ collection of "Fast
Poisson solvers"™ for solving Laplace, Poisson, Helmholtz and related
equations by finite differences on simple geometries. These rou-
tines are extremely fast and allow for a variety of boundary condi-
tions; see their HELP file documentation and [10] for further infor-
mation. It is also shown in [10] how these routines can be adapted
to three-dimensional problems by using them in conjunction with the
Fast Fourier Transiorm. Where possible, one should use one of the
PWSuxx routines above in preference to the more general routines
POIS and BLKTRI.

9.3 SPECIAL ELLIPTIC PROBLEMS

Several experimental codes are available from a Numerical Analysis
Consultant for special elliptic problems. One package soclves La-
place's equation on bounded or unbounded polygonal regions by means
0of the Schwarz-Christoffel conformal map. Another solves Helmholtz
equations on arbitrary regions by capacitance matrix techniques. A
third solves the biharmonic equation rapidly on a rectangle. The
NAPL does not currently include any of the various large finite-ele-
ment packages that are on the market.

9.4 PARABOLIC PROBLEMS

Currently we have no routines for solving parabolic PDEs. Fdr sim-
ple problems (e.g., the heat equation on a slab), [6] and {1] are
good references. Richtmyer and Morton [7] gives a more detailed and

technical discussion of finite difference approximations; in partic-
ular, the second half of the book discusses some practical applica-
tions. For more complicated problems, see a Numerical Analysis Con-
sultant.

9.5 HYPERBOLIC PROBLEMS

Hyperbolic problems are more difficult to solve numerically than el-
liptic or parabolic problems, and there are currently no routines in

the NAPL for themn. There is no good reference that <covers all
aspects of solving hyperbolic equations numerically; houwever, [11,
(5], [6], and [7]) discuss various parts of the problem. An experi-

mental code called MRID is available for solving nonlinear hyperbol-
ic problems in one dimension by a {finite-difierence scheme with
adaptive mesh refinement. For further information see a Numerical
Analysis Consultant.

Revision 0 o SLAC VM NOTEBOOK
November 17, 1981 vfodule 19: NAPL User's Guide Page 32

9.6 REFERENCES FOR CHAPTER 9

For a wealth of non-numerical information, as mentioned above, see
(21. A good introductory description the numerical solution of all
three classes of PDEs is found in [8]. The books [3] and [11] con-
tain fairly advanced treatments of finite difference methods for el-
liptic problems. For general elliptic problems, the finite element
method is often the best choice; see [9] for theory and [U4] for
practice. For recent developments it may be worthwhile to consult
some of the technical journals listed in the Introduction.

(1] W. F. Ames, Numerical Methods for Partial Differential Egqua-
- tions, 2nd ed., Academic Press, 1977.
\

(2] R. Courant and D. Hilbert, Methods of Mathematical Physics, v.
2, Wiley~-Interscience 1962.

(3] 6. E. Forsythe and W. R. Wasow, Finite Difference Methods for
Partial Differential Equations, Wiley, 19680.

[4) K. H. Huebner, The Finite Element Method for Engdineers, Wiley,
1975.

[5] H.-0. Kreiss and J. Oliger, Methods for the Approximate Solution
of Time-Dependent Problems, Global Atmospheric Research Program-
me Publication No. 10, 1973.

[6] Mitchell and D. F. Griffiths, The Finite Difference Method

A. R.
in Partial Differential Equations, Wiley, 1980.

[7] R. D. Richtmyer and K. W. Morton, Difference Methods for Initial

Value Problems, 2nd ed., Wiley-Interscience, 1967.

(8] G. D. Smith, Numerical Solution of Partial Differential Equa-
tions: Finite Difference Methods, 2nd ed., Clarendon Press,
1978.

(9] 6. Strang and 6. Fix, An Analysis of the Finjite Element Method,
Prentice-Hall, 1973.

f10] p. Swarztrauber and R. Sweet, "Efficient FORTRAN Programs for
the Solution of Elliptic Partial Differential Equations, "

NCAR-TNs/IA-109, National Center for Atmospheric Research,
1975%,

[11] R. Varga, Matriw Iterative Analysis, Préntice-Hall, 1962.

¥ Available at the Service Desk in the front lobby area of the
SLAC Computer Building (CGB).

Revision 0 SLAC Vi1 NOTEBOOK
November 17, 1981 Module 19: NAPL User's Guide Page 33

i10. SPECIAL FUNCTIONS
Name Function Source

Trigonometric, hyperbolic, logarithmic,

and exponential functions: IBM FORTRAN
Exponential integral and related functions:
DPEONE E 1 FUNPACK
DEI, DEXPEI Ei, exp(=x)¥*Ei(w) FUNPACK
SICIEIL Si, Ci, Ei, Shi, Chi NBS
Gamma function and related functions:
DGAMMA, DLGAMA Gamma, log Gamma IBM FORTRAN
DPSI Psi FUNPACK
Error function and related functions:
DERF, DERFC » eri, erifc IBM FORTRAN
MERFI, MERFCI inverse erf,inverse eric IMSL
DDAW Dawson'’s integral FUNPACK
Bessel functions and related functions:
BESI0, BESEIO I0, exp(=%x3*ID FUNPACK
BESI{, BESEII 11, exp(-=r)*¥I1 FUNPACK
BESJOD Jo FUNPACK
BESJ 1 J i FUNPACK
RESKO, BESEKSO KO0, exp(x)*K0 FUNPACK
BESK1, BESEKI1 K1, exp(x)¥K] FUNPACK
DMQBFS zdn'(z)7Jdn(2),z=sqrt(x) Bell Labs
DYNU,DBESY,MMKEL 1 Y nu FUNPACK, IMSL
BESSEL Jn(z),¥Yn(z2),In(2),Kn(z) BRL

_ (complex argument)
Elliptic integrals and related functions:

DELIPK, DELIK?, K FUNPACK
DELIKM

DELIPE, DELIEY, E FUNPACK
DELIEM

10.1 INTRODUCTION

Special functions have long played an important role in appllied
mathematics and mathematical physics. When applicable they give not
only an inexpensive numerical solution, but also analytic properties
that often prov{de deeper insight. Use them with good numerical
sense, however. ¢ you find yourself summing 10,000 alternating
terms in a series of Bessel functions, for example, the chances are
good that there's a better way to solve the problem.

The primary special function routines available in the NAPL are
listed above, following the organization and notation ot the Hand-
book of Mathematical Functions by Abramowitz and Stegun [1]. This
book contains a tremendous amount of information on special func-
tions, and anyone making use of them should be familiar with it.

Revision 0 SLAC VM NOTEBOOK
November 17, 1981 Module 19: NAPL Useéer's Guide Page 34

For guidance 1in computing functions not listed in the table, see
13,4,5]. The Collected Algorithms of the ACM Index may also be use-
ful. Unfortunately, there are a vast number of special functions
and the list above covers only a few of them. Certain additional
routines, particularly for computing Bessel functions, may be avail-
able from a Numerical Analysis Consultant.

10.2 BESSEL FUNCTIONS AND FUNPACK

For computing Bessel functions, the table lists both a general rou-
tine BESSEL and a number of specialized FUNPACK routines. FUNPACK
is a carefully constructed package of routines developed at the Ar-
gonne National Laboratory. It is designed to give accurate function
values as rapidly as possible. Where applicable, therefore, it will
be much ifaster than BESSEL. The disadvantages are that each FUNPACK
routine is very narrow in function, and that they are highly tuned
to a particular machine (hence not easily portable). A survey of
the history and structure of FUNPACK may be found in [2].

10.3 FUNPACK ROUTINES WITH MULTIPLE ENTRIES

R e L A S U UL LA NE SR - KA N R A XA

In the case of the elliptic integral functions K and E there are

three routines for each that differ only in their arguments: DELIK!
and DELIE?1 use x, DELIPK and DELIPE use x*x, and DELIKM and DELIEM
use 1-w¥yx. For general arguments one may call DELIK) and DELIE!,

but to achieve maximum accuracy when |x| is near 0 or 1, one.should
use DELIPK and DELIPE or DELIKM and DELIEM (see [2] or a Numerical
Analysis Consultant for details). A similar situation holds with
the secondary entries DEXPEI, BESEIO, BESEI!, BESEKO, BESEK!1 listed
above, which provide superior accuracy for large ¥

10.4 REFERENCES FOR CHAPTER 10

(1] M. Abramowitz and I. Stegun, Handbook of Mathematical Functions,
Dover, 1965%,

[2] W. J. Cody, "The FUNPACK Package of Special Function Subrou-
tines,”™ ACM Transactions on Mathematical Software 1 (1975},
13-25%,

[3]1 C. T. Fike, Computer Evaluation oi Mathematical Functions, Pren-
tice-Hall, 1968.

¥ Available at the Service Desk in the front lobby area of the
SLAC Computer Building (CGB).

Revision 0 SLAC VM NOTEBOOK
November 17, 1981 Module 19: NAPL User®s Guide Page 35

[yl w. Gautschi, “Computational Methods 1in Special Functions,®

Theory and Application of Special Functions, Academic Press,
1975, 1-=98.

_[5] J. Hart, et al., Computer Approximations, Wiley, 1968.

[6] NATS. "FUNPACK 2 User’'s Guide," 1976%,

Revision 0 SLAC VM NOTEBOOK .
November 17, 1981 Module 19: NAPL User's Guide Page 36

1. RANDOM NUMBER GENERATION

initialize seed of random sequence RAN11IA
one random real number or integer RANVt1Y
array of random real numbers ARANT1
array of random integers IRANI1
random nos. from non-uniform distributions IMSL routines

1.1 INTRODUCTION

It is impossible to generate sequences of truly random numbers, but
methods have been devised to produce pseudo-random sequences uwhich
appear to be random and which exhibit many of the properties of a
random sequence. The randomness properties required will depend
completely on the application, however, and for this reason one
should always be cautious in using a random number generator.

Most generators in common use are of the 1linear congruential type,
constructed in integer arithmetic as follows:

(1) = iﬂitial "seed"™, an integer
X(K+1) = (A*X(K)+C) (MOD M) ' (1

Kth random number: X(K)/M

The randomness properties of the generator, and sometimes its speed,
depend critically on the choices of A, C, and M (C is often taken to
be 0). Even though formula (1) is very simple, a well chosen set of
parameters can produce a generator with very good performance.
Also, the simplicity of the generator allows very rapid generation
of random numbers, especially if M is chosen to correspond to the
machine radix and the programming is done in assembly language. Be-
cause of the care taken in choosing values of A, C, and M, the user
must resist the urge to tamper with the subroutine in order to fur-
ther "randomize" it. Seemingly random manipulations can lead acci-
dentally to very non-random results. Furthermore, the numbers in
the random sequence should be treated as random reals (or integers),
not as random bit patterns to be extracted by masking or shifting.

Revision 0 SLAC VM NOTEBOOK
November 17, 1981 Module 19: NAPL User‘'s Guide Page 37

11.2 RAN11 SERIES

The recommended routines in the RANi1 series are assembler language
programns adapted from a modified version (called SUPER-DUPER) of the
linear congruential method described above [5]. As indicated in the
table, the series contains routines for generating wuniform random
real numbers in (0,1) and uniform random integers in [1,2%%31-1].
It is possible to produce one number at a time, or to fill a vector
uith a sequence of random numbers for greater efficiency.

For the initial seed, use any odd integer. 1If the same seed is used
repeatedly, then the sequence of random numbers obtained will be du-
plicated exactly from one run to the next. If it is desired to have
a different sequence each time the program is run, one can vary the
initial seed according to whim, or use an internal machine clock %o
choose the seed, or store the final seed somewhere at the end of one
run and read it in as input at the beginning of the next.

i1.3 NON-UNIFORM DISTRIBUTIONS

In case random numbers from a distribution other than uniform are
required, the IMSL library provides generators for normal, exponen-
tial, Poisson, and several other types of random deviates. Routines
are also provided there to test 'for randomness in a given distribu-
tion of numbers. For further information see Section G of [2]. It
you require a portable random number generator or a generator with
special properties, speak to a Numerical Analysis Consultant.

11.4 REFERENCES FOR CHAPTER 11

For a very readable overview of random numbers and their use at
SLAC, see [1]. The book by Knuth [4] gives a thorough discussion of
the theoretical aspects of random number generation. Included are
methods for testing random sequences: testing for uniformity, for
filling out of n-space, for "runs™ in the sequence, etc. The survey
by James [3] discusses the common application of pseudorandom num-
bers to Monte-Carlo methods.

[1] J. Ehrman, "The care and feeding of random numbers,"” SLAC VM No-

tebook Module 18 (User Note 81), Stanford Linear Accelerator
Center, 1981%,

{2] International Mathematical and Statistical Libraries, IMSL 8
Reference Manual, 1980%,

¥ Available at the Service Desk in the front iobby area of the
SLAC Computer Building (CGB).

Revision O SLAC VM NOTEBOOK
November 17, 1981 Module 19: NAPL User's Guide Page 38

[3] F. James, "Monte Carlo Theory and Practice,"” CERN Report

CERN-DD/80/6, 1980%, (Submitted to Reports on Progress in Phys-
ics.)

{4] D. Knuth, Seminumerical Aldorithms, Addison Wesley, 1969,

[5] G. Marsaglia, et al., "SUPER-DUPER random number package,®
McGill University School of Computer Science, 1978.

Revision 0

SLAC

VM NOTEBOOK

November 17, 1981 Module 19: NAPL User's Guide Page 39
INDEX TO MODULE 19
Abramowitz, M. ... 33=34 Chan, T. ... &

accessing NAPL routines ..

Acton. F. ... 26

Ames, W. ... 32

Anderson, N. ... U4, 23

approximation ... 18
Chebyshev ... 20

ARANTY ... 36

Argonne National Lab ... 2
10, 14, 34

Argonne National
Laboratory ... 2

Ascher, U. ... 28

Atkinson, K. ... U

balancing see nmatrix
eigenvalue problenm
Bell Laboratories ... 33
BESIO0,BESEIOQ 33-34
BESIi1,BESEI1 ... 33-34
BESJO0,BESJY ... 33
BESKO0,BESEKO ... 33-34
BESK1,BESEK1 33-34
BESSEL ... 33-34
Bessel functions 33-34
biharmonic equation ... 31
Bjorck, A. ... 4, 23
BLKTRI 30-31
Bolstad, J. ... 1, 4
boundary-value problems ..

see also ordinary diff'l eqs

collocation ... 28
eigenvalues ... 28
finite differences ...
infinite intervals ...
shooting ... 28
Sturm-Liouville ... 28

Brent, R. ... 16

Bryne, 6. ... 29

BVP see boundary-value
problems

CADRE ... see DCADRE
capacitance matrix ... 31
CERN library ... 2
CFFTI,CFFTF,CFFTB ... 21
c6 ... 9

CH ... 9

28
28

3

Chebyshev approximation .
Chebyshev points ... 19
Cholesky decomposition ..
matrix, 11
Christiansen, J. ... 28
Cody, W.34
collocation
value problems
COLSYS ... 27-28
complementary evror
funection ... 33
complex analysis ... 23
Computer Science
Department ... 2, U
Concus, P. ... 7
condition number ...
conformal mapping ... 31
conjugate gradient
method
of equations
constrained least-
squares ...
constrained optimization
optimization
Conte, S. ... 4
cosine transform
Fourier Transform
C0SQI,COSQF,C0SQB ... 21
COSTI,COST ... 21
Coughran, W. ... 1, 4
Courant, R. ... 30, 32
CSEVAL ... 18
CSPLIN ... 18

e o o

° o e

Dahlquist, 6. ... 4, 23
data fitting ... 6, 15
Davis, P. ... 26
Dawson's integral ... 33
DBESY ... 33

DBLINT ... 24-25
DCADRE ... 24
DCSQDU 24, 26

"DDAUW ... 33
. de Boor spline package ...

de Boor, C. ... 4, 18, 20
de Doncker, E. ... 26
DEI ... 33

.. 20

. See

see boundary-

e o o

see Fast

i8

see matrix

see linear systems

see least—-squares

see

Revision 0 SLAC VM NOTEBOOK

November 17, 1981

Module 19: NAPL User's Guide

Page 490

DELIPE,DELIE1,DELIEM ... 33-34

DELIPK,DELIK1,DELIKM ... 33-34

DERF,DERFC ... 33

DEROOT ... 27

determinant see matrix

DEXPEI 33~-34

DGAMMA,DLGAMA ... 33

DGEFCS,DGBFCS ... 5

DGEFDI ... 5

differential equations ... see
ordinary or partial diff'}l
eqs.

diffusion equation ... 30

digital signal processing ... 23

discrete Fourier
transform ... see Fast
Fourier Transiorm

DMQBFS ... 33

documentation ... 3

Dongarra, J. ... 7, 11

DPEONE ... 33

DPPFCS,DPBFCS ... §

DPSI ... 33

DSPFCS ... 5

DSVDDR ... 9-10

DYNU ... 33

easy-to-use routines ... 13, 15

Ehrman, J. ... 4, 37

eigenvalue ... see matrix
eigenvalue problen, boundary-
value problems

eigenvalues ... 11

EISPACK ... 2, 10-11

eivenvector see matrix
eigenvalue problem

elliptic integral ... 33

elliptic PDE ... see partial
differential equations

EPSODE 27-28

error function ... 33

examples see test routines

exponential ... 33

exponential distribution ... 37

exponential fitting ... 19

exponential integral ... 33

Fast Fourier Transform ... 21
complex ... 22
cosine transform ... 22
Gibbs phenomenon ... 22
quarter-wave

transforms ... 22

real ... 22
sine transform ... 22

Fast Poisson solvers ... 30

FFT- ... see Fast Fourier
Transfornm

F’ike' C. cee 34

finite differences ... see
partial differential
equations

finite element method ... see
partial differential
equations

FISHPACK ... 31

Fix; G. ... 32

floating point operations ... 5,
7, 21

fluids see partial
differential equations

FMIN ... 13

Forsythe, G. ... 4, 8, 16, 26,
29, 32

Fortran ... 1

Fourier transform
Fourier Transform

FUNPACK ... 2, 33-34

see Fast

gamma function ... 33

Garbow, B. ... 11, 16

Gauss-Seidel method ... see
linear systems of equations

Gaussian elimination ... see
linear systems ot equations

GAUSSQ 24-25

Gautschi, W. ... 35

GEAR ... 27-28

Gear, C. W. ... 29

Gentleman, W. ... 23

George, A. ... 8

Gibbs phenomenon ... 22

Gill, P. ... 16

GLOBAL ... 1

Gold, B. ... 23

Golub, 6. ... 7, 11, 26

Gordon, M. ... 29

gradient 14-15

Griffiths, D. ... 32

Grosse, E. ... 1

Revision 0 SLAC VM NOTEBOOK

November 17, 1981 Module 19: NAPL User's Guide Page Uf
Hamming, R. ... 23 IRATCU ... 18, 20
Hanson, R. ... 20 Isaacson, E. ... U
Hart, J. ... 35 iterative improvement ... 6
HARWELL library ... 2 IVP ... see ordinary
heat equation ... 30-31 differential equations
Helmholtz equation ... 31
HELP ... 3 Jacobian ... U4
Henrici, P. ... 23 James, F. ... 38
Hessian ... {4-=15 journals ... 3, 32
Hilbert, D. ... 30, 32
Hillstrom, K. ... 16 Kaban, W. ... 11
Himmelblau, D. ... 16 Keller, H. ... 4, 28-29
Hindmarsh, A. ... 29 Knuth, D. ... 38
Huebner, K. ... 32 Kreiss, H.-0. ee 32
HYBRD,HYBRDY ... 13-1i4 Krylov, V. ... 26
HYBRJ,HYBRJT ... 13-14
hyperbolic functions ... 33 Lambert, J. ... 29
hyperbolic PDE ... see partial Lanczos algorithm ... see matrix
differential equations eigenvalue problem
Laplace equation ... 31
IBM Fortran ... 33 Lawson, €. ... 20
ICSFKU ... 18 , LCMNA ... 13 '
IMSL ... 2-4, 14, 16, 18, 20, LCAQNDF ... 13
26, 37 LCQNDR ... 13
initial-value problem ... see _ least-squares .. 16
ordinary differential constrained ... 19
equations linear ... 19
integration nonlinear ... 19
adaptive ... 24 spline ... 18
discontinuous trigonometric ... 20, 22
integrand ... 25 linear programming ... 6, 13, 15§
Gauss—-Chebyshev ... 25 linear systems of ‘
Gauss—-Hermite ... 25 equations ... 5, see matrix
Gauss-Jacobi ... 25 conjugate gradient
Gauss-Laguerre ... 25 method ... 7
Gaussian ... 24-26 Gauss—Seidel method ... 7
infinite intervals ... 25 Gaussian elimination ... 7
Monte Carlo ... 25 iterative improvement ... 6
multiple ... 25-26 iterative methods ... 7
noisy data ... 26 MATLAB ... 11
Simpson's rule ... 26 overdetermined ... 6
singular integrand ... 25 SOR method ... 7
spline ... 25 underdetermined ... 6
tabulated data ... 26 LINLSQ ... 18-19
trapezoid rule ... 26 LINPACK ... 2, 6, 10-11%
interpolation Liu, J. ... 8
Chebyshev points ... 19 LMDER, LMDERY ... 13
choice of basis ... 19 LMDIF,LMDIFY ... 13
polynomial ... 19 load modules ... 3
Runge phenomenon ... 19 logarithm ... 33
spline ... 18 . - LP ... 13
trigonometric ..., 20, 22 B LU decomposition ... see matrix
inverse matrix ... see matrix Luenberger, D. e 16

IRANIY ... 36

Revision 0 SLAC VM NOTEBOOK

November 17, 1981 Module 19: NAPL User's Guide Page 42

Madsen, K. ... 16

NaICOlm' M. [Q: 16; 26; 29

Marsaglia, 6. ... 38

MATLAB ... 7, 9, 11

matrix ... see also linear
systems of equations
banded ... 5, 9

Cholesky decomposition ... 11

complex ... §

condition number ... 5-6, 10

defective ... 9

dense ... §

determinant ... 5, {1

eigenvalues see matrix
eigenvalue problenm

eigenvector see matrix
eigenvalue problenm

equations ... §

Hermitian ... 9

inverse ... 5, 7, 11

large ... 7

LU decomposition ... 7, 11

norm ... 5, 9-10

packed storage ... 9

positive definite ... 5

pseudoinverse ... 10

QR decomposition ... 6, 11,
19

rank ... 10

real ... 5

rectangular ... 6

singular ... 6, 10

singular value
decomposition ... 6, 9-11

size ... §

sparse ... 5, 7, 9%, 11, 16

symmetric ... 5-6, 9

symmetric positive
definite ... 5

tridiagonal ... 5, 9

matrix eigenvalue problem

balancing ... 9

banded ... 9

conditioning ... 9

eigenvector ... 9

generalized ... 9-10

Lanczos algorithm ... 11

large sparse ... 9

multiple eigenvalues ... 9

symmetric ... 11

tridiagonal ... 9

maximization ... see
optimization

Maxwell equations ... see
partial differential
equations

MERFI,MERFCI ...-33

method of lines see partial
differential equations

minimax approximation ... 20

minimization ... see
optimization

MINOS ... 16

MINPACK s o o 2) 13“1“} 16

Mitchell, A. ... 32

MMKELY ... 33

MNA ... 13

MOlerp C. “ .. q' 8' ‘6) 26, 29

Monte Carlo ... 37
integration ... 25

More, J. ... 16

Morton, K. ... 31-32

Murray, W. ... 16

NAG library ... 2
NAPL ... 1
history ... 2
philosophy ... 2
NAPLUG ... 3
NASOURCE ... 3
NATEST ... 3
National Bureau of
Standards ... 33
National Center for Atmospheric

Research ... 2, 22
National Physical .
Laboratory ... 2, 16

Neuton's method ... 14

nonlinear systems ... see
2erofinding

norm ... see matrix

normal distribution ... 37

normal equations ... 19

NPL Optimization

Library ... 2-3, 13, 15§
NSota ... 13
Numerical Analysis
Consultants ... t1-2, y-5, 7,
9; 11' 15“16; ‘8‘19; 25' 280
31, 34, 37

Numerical Analysis Progranm
Library ... 1

. 0'Leary, D. ... 7

ODE ... see ordinary
differential equations, 27
Oliger, J. ... 32

Revision 0
November 17, 1981

SLAC VM NOTEBOOK
Module 19: NAPL User's Guide

Page 43

optimization ... 13, 15
constrained ... 15-16
local vs. global ... iu
sparse ... 16

ordinary differential
equations ... 27, see also
boundary-value problemns, 27
Adams method ... 27
linear multistep

methed ... 27
Runge-Kutta ... 27
stifs ... 28
Ortega, J. ... 17
orthogonal polynomials ... 19

parabolic PDE ... see partial
dififerential equations
Parlett, B. ... 11§
partial differential
equations ... 30, see also
individual equation
boundary conditions ... 30
elliptic 30-31
finite differences ... 30
finite element
method 30-31%
hyperbolic 30-31
method of lines ... 28, 30
mixed type ... 30
parabolic ... 30-31
PAOG6AD,PACG7AD ... 13
PDE ... see partial differential
equations
periodic functions ... 20
pivoting ... 5
Pols ... 30-31
Poisson distribution ... 37
Poisson equation ... 30
polynomial
interpolation ... 19
least-squares ... 19
zZeros i3-14
Powell, M. ... 17
precision (single vs.
double) ... 2, 21
proprietary software ... 3
pseudoinverse see matrix
pseudorandom numbers ... 36
linear congruential
method ... 36
seed ... 36
psi function ... 33 S
PWSCRT, PWSPLR, PWSCYL, PWSSSP,
PWSCSP ... 30

QAGS ... 24

QNMDER ... 13

QNMDIF ... 13

QR decomposition -...

QUADPACK see QAGS

guadrature see integration

QUADS3 ... 2u4-25%

quasi-Newton methods ... see
optimization

see matrix

Rabiner, P. ... 23

Rabinowitz, P. ... 26

random numbers ... see
pseudorandom numbers

RANYIY ... 36

RANTIA ... 36

rational functions ... 18

regression ... see least-squares

Reid, J. ... 16

RFFTI,RFFTF,RFFTB ... 21

RG ... ©

RGG ... 9=10

Rheinbold, W. ... 17

Richtmyer, R. ... 31=32

RKF4S ... 27

roots see zerofinding
RS ... 9 .

RSG ... 9=10

RSP ... 9

RST ... 9

RT ... 9

Runge phenomenon ... 19
Runge-Kutta ... see ordinary
differential equations

Russel, R. ... 28

SALMNA,SALQDF,SALQDR ... 13
sample programs ... 3
Sande, G. ... 23 \
Sandia National

Laboratories ... 2
Schwarz-Christoffel

transformation ... 31
Seber, 6. ... 20

Secrest, D. ... 26
Shampine, L. ... 29
shooting see boundary-value

problems
SICIEI ... 33
signal processing ... 23

. Simpson's rule ... see

integration
sine transform see Fast
Fourier Transform

Revision 0

November 17, 1981 Module 19:

SLAC VM NOTEBOOK

NAPL User's Guide

Page 44

singular value
decomposition .

SINQI,SINQF,SINQB ... 21

SINTI,SINT ... 21

Smith, B. ... 11

Smith, G. ... 32

SOR method ... see linear
systems of equations

source code ... 3

sparse ... see matrix

special functions ... 33

spectral analysis ... see Fast
Fourier Transform

spline
arbitrary order ... 18
bicubic ... 18
breakpoints ... 18
de Boor package ... 18
interpolation ... 18
knots ... 18
least-squares ... 18
smoothing ... 18

sSSP ... 2
statistics ... 2
Stegun, I. 33-34

Stewart, 6. ... 8, 12
stiffness see ordinary
differential equations
Strang, 6. ... 32
Stroud, A. ... 26
Sturm-Liouville see
boundary-value problems
SUPER-DUPER ... 37
SVD ... see matrix
Swarztrauber, P.
Sweet, R. ... 32
systems of linear
equations see linear
systems of equations

22, 32

test routines ... 3
trapezoid rule ...
integration)
Traub, J. ... 17
trigonometric
functions ..., 33
interpolation 20, 22
least-squares 20, 22
trigonometric functions ... 33

see

UBFDQ2 ... 13
UBNDQT ... 13
UBSDNZ ... 13

UNIGRD ... 13

see matrix

Van Loan, C. ... 20
Varga, R. ... 8, 32
VARPRO 18-19

Wasow, W. ... 32
wave equation ... 30
Welsch, J. ... 26
Westlake, J. ... 8
Wilkinson, J. ... 12
Wright, M. ... 16

YALEPACK ... 7
Young, D. ... 8

ZANLYT ... 13

2erofinding ... 13-14
deflation ... 13
polynomial ... 13-14

ZEROIN ... 13

ZGEFCS ... §

ZSYSTM 13-14

