Lecture 3. Block operators and spectral discretizations

Refs: Driscoll and Hale, Rectangular spectral collocation, *IMA J. Numer. Anal.*, 2016

Aurentz and T, "Block operators and spectral discretizations," *SIAM Review*, 2017.

Software: Chebfun commands diffmat, diffrow, gridsample, intmat, introw

Computational science is built on linear algebra. Block matrices are a standard tool for exploiting structure. This structure is usually in the continuous problem too, before discretization. That's the idea of block operators. This was crucial for designing a black box ODE BVP solver for Chebfun. Without block operators, BCs are a mystery.

The mathematical fun comes from the fact that the blocks should be thought of as *rectangular*. A 1st-order differential operator is " $\infty \times (\infty + 1)$ ", a 2nd order operator is " $\infty \times (\infty + 2)$ ", and so on. This is made precise by the *index* of an operator: ind(L) = nullity – deficiency = dim(nullspace) – codim(range). Index of a nonlinear operator = index of its (linear) Fréchet derivatives (assuming this is constant).

Differential or integral operator: rectangular block.

Function: column. Functional: row. Scalar: entry.

Rectangular operators then get discretized by rectangular matrices.

E.G., rectangular differentiation: interpolate on the (n + 1) –point Chebyshev grid; differentiate; sample on the n–point Chebyshev grid. This yields an $n \times (n + 1)$ matrix.

Boundary conditions get added as additional rows, leading eventually to a square structure Ax = b or $Ax = \lambda Bx$ or....

A "rectangular identity" (a dense matrix) makes good sense and in fact is needed for eigenvalue problems.

2. Linear Constant-Coefficient BVP (Example I). As our first example, consider the advection-diffusion boundary-value problem (BVP)

$$(2.1) 0.2u''(x) + u'(x) + u(x) = f(x), u(-1) = \alpha, u'(1) = \beta,$$

L = 0.2*diffmat([n n+2],2) + diffmat([n n+2],1) + diffmat([n n+2],0);

vT = diffrow(n+2,0,-1); wT = diffrow(n+2,1,1);

A = [L; vT; wT];

f = @(x) exp(x); alpha = 2; beta = 0;

rhs = [gridsample(f,n); alpha; beta];

u = A\rhs; plot(chebfun(u),'.-')

Chebfun combines discretizations

like this with automated selection of n

based on rate of decay of Chebyshev series