Lecture 4. Exponential integrators for stiff PDEs

1. Stiff PDEs $u_t = Lu + N(u)$

linear, higher order + nonlinear, lower order

viscous Burgers	shock waves	$u_t = u_{xx} + uu_x$
Korteweg-de Vries	solitons, water waves	$u_t = u_{xxx} + uu_x$
Fisher-KPP	travelling waves	$u_t = u_{xx} + u - u^2$
Allen-Cahn	structure in materials	$u_t = u_{xx} + u - u^3$
Cahn-Hilliard	structure in materials	$u_t = -u_{xx} - u_{xxxx} + (u^3)_{xx}$
Kuramoto-Sivashinsky	flames, turbulence, chaos	$u_t = -u_{xx} - u_{xxxx} + uu_x$
nonlinear Schrödinger	optics, water waves	$u_t = iu_{xx} + i u ^2 u$

complex Ginzburg-Landau fluids, superconductivity $u_t = (1 + iA)u_{xx} + u - (1 + iB)u|u|^3$

Gray-Scott pattern formation $u_t = \epsilon_1 u_{xx} - u + u^2 v, \quad v_t = \epsilon_2 v_{xx} + a(1-v) - u^2 v$ Schnakenberg chemical reactions $u_t = \epsilon_1 u_{xx} + a - u + u^2 v, \quad v_t = \epsilon_2 v_{xx} + b - u^2 v$

After discretization in space, this becomes a large stiff system of ODEs.

Spectral discretizations in space are common, since high order is needed to resolve structures. For efficiency, important to treat the linear and nonlinear terms differently (\approx implicit, explicit). Order 1 wrt t: easy. Order 2: can use e.g. Strang splitting. Order >2: this is the challenge. Many higher order methods have stiffness problems (i.e. they need excessively small time steps).

3 most important methods: exponential integrators, IMEX = implicit-explicit, spectral deferred correction.

2. Exponential integrators

An integrating factor gives this exact formula: $u(t_n+k)=e^{kL}u(t_n)+\int_0^k e^{(k-s)L}\,N\big(u(t_n+s)\big)ds$ Exponential integrators come from ODE-style discretization of the integral. Here's the simplest, ETD1: $u(t_n+k)=e^{kL}u(t_n)+\int_0^k e^{(k-s)L}\,N\big(u(t_n+s)\big)ds$

The most standard higher-order formula is ETDRK4 (Cox and Matthews 2002).

3. 1D, 2D, and 3D examples

Flexible and powerful for periodic geometries: the spin/spin2/spin3 codes by Montanelli in Chebfun. Try e.g. spin('ac'), spin('ch'), spin('kdv'), spin('ks'), spin2('gl'), spin2('gs'), spin2('gsspots'), spin3('gl').

4. Comparison of methods

Comparisons by Kassam-T (2002), Buvoli (2015), Montanelli-Bootland (2017). For periodic problems and accuracy <5 digits, no method consistently outperforms ETDRK4. For >5 digits, Buvoli gets better performance with spectral deferred correction up to order 32.

5. Fine points

Non-periodic geometry and order reduction. Hochbruck & Ostermann have highlighted a phenomenon of order reduction. For nonperiodic problems, this makes other methods better than ETDRK4.

Phi functions and rounding errors. Exponential integrators require evaluation of $\varphi_1(z) = \frac{e^z - 1}{z}$, $\varphi_2(z) = \frac{e^z - 1 - z}{z^2}$, etc. The removable singularity at z = 0 leads to rounding error trouble for $\varphi_k(z \approx 0)$. One solution (Kassam & T): evaluate $\varphi_k(z_j)$ for points z_i on a circle about z; $\varphi_k(z)$ then comes from a trapezoidal rule approximation to a Cauchy integral.

Non-diagonalizable problems and IMEX methods. Montanelli and Nakatsukasa have looked at exp. integrators on a sphere. Here one cannot diagonalize: the linear algebra is nontrivial. They find that IMEX methods are better. In Chebfun, spinsphere.

