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The  Caratheodory-Fejer Method  for  Recursive, 
Digital  Filter  Design 

MARTIN H. GUTKNECHT, JULIUS 0. SMITH, 

Abstract-A new technique for  rational digital filter design is pre- 
sented which is based on results in complex  function  theory  due  to 
Takagi, Krein, and others. Starting  from a truncated  or windowed 
impulse response, the  method  computes  the unique optimum rational 
Chebyshev  approxittlation  with a prescribed number of stable poles. 
Both phase and magnitude are matched.  Deleting the noncausal  (un- 
stable) part of the Chebyshev approximation yields  a  stable  approxima- 
tion of specified order (M, N) which is close to optimal  in  the Chebyshev 
sense. No iteration  is involved except  in  the  determination of  an eigen- 
value and eigenvector of the Hankel matrix of impulse response coef- 
ficients. In this  paper the algorithm is specified and practical  examples 
are discussed. 

N 
I. INTRODUCTION 

0 FAST  and reliable  algorithm  exists for  the  optimal 
Chebyshev approximation  of  an  arbitrary  magnitude 

characteristic IH(eiW)I or  frequency response H(eiw) by a 
stable  infinite-impulse-response (IIR) filter. In principle, onc 
must solve a real nonlinear approximation  problem  with respect 
to a  weighted  Chebyshev norm  (when  approximating IH(eiW)I) 
or a complex  one [when approximating  H(eiw)],  but these 
tasks are  very difficult.  Although versions of  the Remez 
algorithm [ 131 , nonlinear programming techniques  [4] , [23], 
and  the  differential  correction algorithm [5] , [ 151 have been 
used in the real case, and a  descent  algorithm [ 191 and  the 
Lawson algorithm [3],  [16] have been tried in the  complex 
case, none  of  these  methods can claim to be fast. In the  com- 
plex case, no  method is known  to be globally convergent to 
an optimum  solution  from  an  arbitrary  starting  point [20] , and 
optimal  solutions are  in general not  unique [47],  [48]. 

Although there exist numerous  techniques  for near-best 
approximation  [6],  [7], [lo], [12],  [31]'?  [41], resulting 
designs are  not always stable;  hence  it is often necessary to 
find  and  modify  the  unstable poles of the  filter, which is 
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typically  much  more  work  than  the filter design algorithm  it- 
self [12],  [13], 1311, [41]. 

We present  a  new  filter design method  that allows one  to 
compute a stable, near-optimal, uniformly weighted approxi- 
mation to the  complex  function H(eiW). The  method is 
based on  an  extension  due primariiy to Takagi [21],  [40], 
of a classical theorem in complex analysis of  Carathkodory 
and Fejkr [9].  Consequently, we refer to  this  technique as the 
Carathkodory-Fejir (CF) algorithm.  The  CF  method is most 
powerful  for  approximating  smooth  functions,  but it is also 
competitive  for  any filter design problem  in which  minimiza- 
tion  of some norm  of  the  complex  frequency-response  error is 
desired. 

The  CF  method requires that  the  Fourier  coefficients  of 
H(ei"), i.e., its impulse  response,  be given. We assume the 
given impulse  response is causal and  finite.  Although  the  CF 
method works in the time domain,  it delivers an approxima- 
tion  of  the  frequency response H(ejw) which is close to  op- 
timal  in  the Chebyshev sense. 

An important case in practice is the  situation  in  which  only 
the magnitude of the  frequency response IH(eiW)l is pre- 
scribed,  For problems of  this  type we normally  generate a 
complex  spectrum having the same magnitude and minimum 
phase, using homomorphic signal processing techniques [ 141, 
[29]. Alternatively, we may compute a  high-order finite- 
impulse-response (FIR) filter to use as a basis of the  IIR filter 
design [ 3 0 ] ,  [33],  and in this case, recursive filters with  ap- 
proximately linear phase may be designed. 

Techniques  related to  the  CF  method are currently  attract- 
ing attention in the field of linear  systems theory,  particu- 
larly regarding the model  order  reduction problem. While the 
CF  method is nearly optimal in the Chebyshev norm,  it is in 
fact  optimal in the so-called Hankel norm when M 2 N - 1, 
where M is the  number of zeros and N is the  number  of poles. 
(The  Hankel norm is defined as the  spectral  norm  of  the 
Hankel matrix  of  the impulse  response  error.) Presentations 
of some of  the  work  on model order  reduction in the Hankel 
norm may  be found in [17], [18], [ 2 6 ] ,  [27], [39]. How- 
ever, there seems to be no previous work  applying  Hankel 
norm minimization to  the filter design problem. 

In the  model  order  reduction  problem,  the  starting  point is 
a rational digital filter  which is to be approximated by a  lower 
order  rational filter. This  problem may  be adapted  to digital 
filter design by taking an FIR filter as the  starting  point. How- 
ever, the  CF  method is not equivalent to an existing  model 
order  reduction  method applied to  FIR filters. First, we 
eliminate the usual restriction M = N - 1. Second,  the above 
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references propose  methods which  include a partial fraction 
expansion. Our  experience  has shown  that this  can limit  the 
length of the original impulse  response  which  can  be  used, 
since this length is the size of the  polynomial which  must be 
factored.  The  CF  method circumvents partial  fraction  ex- 
pansion by means of an FFT-based  spectral factorization  tech- 
nique, applicable whenever the  numbers  of poles and zeros in- 
side the  unit circle are known a priori. 

11. THEORETICAL BASIS OF THE CF METHOD 
Assume an ideal causal impulse response h(n)(n = 0 ,  1, . * e) 

is given, corresponding to an ideal  transfer function 

H ( z )  A h(n)z+. 
m 

n=o 

If this series converges uniformly  on  the  unit circle, H ( z )  can 
be approximated  arbitrarily closely by  taking a partial  sum of 
sufficiently  high order.  In  practice?  it  may be preferable to 
apply  a band-limited  window [33]  rather  than  truncate,  and 
we denote  the possibly modified  impulse-response values by 
{hK(n)}f  and  the corresponding transfer  function  by HK(z )  

We address the  problem of approximating H K ( z )  on  the  unit 
circle I‘ A {z E C: Iz I = l} by a rational transfer function 

with all poles inside I?, and  normalized  by a. = 1. We denote 
by kt~~~(M, N > 0) the set of all such  functions. 

An optimal  (complex)  rational  approximation  to HK on r 
under  the Chebyshev norm is any RGN E ktMN which  satisfies 

llR&N - H ~ l l -  G IIRMN - H ~ l l -  for allRMN E 6 1 ~ ~  

where l l f l l m  emax{lf(z)l: z EI’}. As we have stated,  it is 
in general very difficult to  compute  such a function R&N. 
It happens, however, that  it is easy to  determine  the best 
Chebyshev approximation E&N out of the larger class @wN 
of  functions which  are of  the  form 

k=O 

(with a, = 1), where the zeros of zNA(z) still lie inside I‘ and 
the series in the  numerator converges there.  The class ~ M N  

may be regarded as an  extension of the filters  in ktlMN to in- 
clude  noncausal impulse response conponents.  The  CF meJhod 
consists of  computing  this  extended best approximation R I G ~ ,  
and  truncating  it to obtain  the CF approximant RE:’ E ktMN. 

One way to  perform this truncation is to express R&N in the 
parametric  form (2.3) and  delete the  terms  with negative k in 
the  numerator  [22].  A  better  method, which we employ  here, 

is to  start  with  the impulse response (Laurent series) for (2.3). 
If M > N -  1, then  one simply truncates all noncausal terms, 
and what remains is the impulse  response for a function in 
QMN. For M < N - 1, a slight modification of this procedure 
is necessary, as described  in the  next  section. 

It may appear  that  the filter RE;’ obtained by truncating 
RGlv as above will in general be far from  optimal,  but in fact 
it is exceedingly close to optimal in the Chebyshev sense. One 
can see this to some extent by  considering that if k & ~  fits 
both  the  magnitude  and phase of the causal transfer function 
H K  closely in the Chebyshev norm,  then must  itself be 
approximately causal. In  fact, if llE&N - HKllm = h, then each 
noncausal term of the impulse response of g&N has  magnitude 
at most h, and the noncausal terms  approach zero exponen- 
tially in  the negative time  direction. However, the  truncation 
error is typically a good deal smaller than this. For some  esti- 
mates  on  its size, see [42]  and  [43]. In the case M > N  - 1, as 
we have mentioned,  one can  show that R$:) in fact  approxi- 
mates HK optimally in the Hankel norm. 

It remains to describe the  method  for  computing  The 
answer is  given by a theorem developed by Takagi [40], Ak- 
hieser [2], Clark [ l l ] ,  and Adamjan et al. [ l ] ,  for which an 
elementary  proof is given in  [43].  For  a detailed presentation 
of  the Takagi theory, see also [21].  The polynomial case 
(N  = 0) was settled earlier by CarathCodory and FejCr [9]. 

The  theorem makes use of  the singular  value decomposition 
of  the Hankel matrix formed  from  the windowed  impulse re- 
sponse {hK(n)}ff=,.  The values hK(n)  may be complex. By 
definition,  the Hankel matrix corresponding to  an impulse 
response {kK(n))y=, is the  infinite  matrix having hK(i  t j )  at 
the  intersection of the  ith row and j th column (i, j = 0, 1, 2,  
. . 0 ) .  To obtain general type (M, N )  approximations, we in- 
troduce  the  parameter 

~ g M - N t 1  
and  define the Hankel matrix  entry (i ,  j )  as hK(i  t j + Y ) ,  

where kK(k) 0 for k < 0. 

as 
The singular value decomposition of H ,  may be expressed 

N”,K = U W ”  (2.5) 

where U ,  V are unitary matrices, and Z is a diagonal matrix 
with nonnegative diagonal elements uo, . . * , u ~ - ~  arranged in 
order of decreasing magnitude [38] . These elements ofX are 
called the singular  values of H V , K .  (Note  that it is customary 
to number  the singular values from 1 rather  than 0. Our  choice 
is made to simplify notation. Also, we refer to un as the  nth 
singular value: although it is the (n  t 1)st element of the se- 
quence.) The  left  and right singular  vectors corresponding to 
on are the nth columns of U and V ,  respectively, and we de- 
note them  by 
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v, ii (U,(O), * - , u,(K - v))? 

If u, is not a simple singular value, then U, and V,  are not 
unique,  but  this does not  matter  in  the  theorem below. 

When the impulse  response is real, Hv,K  is a real symmetric 
matrix,  and in this case u, = IX,l, where X, is the  nth eigen- 
value of HV,K by  magnitude ( lhol 2 Ihl I 2 * - 2 I X K - ~ I ) .  
Moreover,  in this case one  may assume 

V,  = U ,  sign (X,). (2 * 6 )  

Thus,  in  the case of a real impulse  response (Le., for real sym- 
metric matrices),  each singular vector is also an eigenvector 
and vice versa. 

We now quote  from [43] the  important result on  which  our 
method is based (see also [2] ,   [21] ,  [40]). 

Theorem: HK has a unique best Chebyshev approximation 
E&N Out O f  &,IN, and the error function (HK - ~ & N ) ( z )  is an 
all-pass filter having constant modulus on IzI = 1. The error 
modulus is equal to the Nth singular  value of  the Hankel ma- 
trix H V , K ,  i.e., 

I~HK - & N I I -  = ON (2.7) 

where uN 0 for  N > K - v. E&N is given by 

where UN ( z )  and VN ( z )  are formed  from  the  Nth singular  vec- 
tors 0 f H ,  K as 

n = 0  

,=0 

The  theorem implies that every stable linear  system  (of  arbi- 
trary  order)  admits a decomposition  into  the sum of a non- 
causal rational filter from  the class plus  an all-pass filter 

In  the  proof  of  the  theorem, this equation follows  immedi- 
ately  from taking the  z-transform of the  equation H V , K V N  = 
UNUN, which  follows from (2.5). What is nontrivial to show, 
however, is that  the  number of poles of E%N inside the  unit 
circle is at  most N.  For systems having a real impulse response, 
the  decomposition  can be written 

The CF Algorithm 
1 )  Set  up  the Hankel matrix H , K  of (2.4) and compute its 

eigenvalue AN which is the N + 1 largest in modulus. One way 
to find X N  is to  compute  the N t 1 smallest (possibly negative) 
and the Nt 1 largest eigenvalues of  the  matrix.  'This can  be 
accomplished by tridiagonal reduction followed by  Sturm se- 
quencing,  and  routines are  provided for  this  in EISPACK [35, 
subroutines  TREDl  and  TRIDIB] . 

2 )  Compute the eigenvector VN corresponding to X,. This 
can be done rapidly by inverse iteration [35, subroutines 
TINVIT  and  TRBAKl]. 

3) Evaluate the frequency-response of  the optimal (non- 
causal) Chebysheu approximation (2.9) at L >> M + N f I 
equally spaced points along the  unit circle 

It is preferable to choose L equal to a  power of 2 to allow the 
use of the  fast  Fourier  transform  (FFT)  for this and  the  next 
step.  Note  that since hK(n)  is real, E&N(e'wk> = &N(e-'wk>, 
so that  only L/2 t 1 values need to be  computed. 

4)  Inverse  Fourier transform E&N(ejWk)  to obtain the  im- 
pulse response of  the extended rational Chebyshev approxima- 
tion 

?GN(n) = FFT-' {i&N(ejwk)}  = - i&N(ejWk)eiwkn. 1 =  

k=O 

The first L/2 samples, n = 0,  . . . , L / 2  - 1, correspond to  the 

For v 2 0 (M 2 N - l), we have the following. 
5 )  Window ?&N, selecting the causal part,  to obtain the  im- 

pulse response of the Hankel-norm approximation 

causal part. 

6 )  Convert the nonparametric impulse response rg;)  to 
parame t r i c form{a i ,b i } , i=1;~~ ,N , j=0;~~ ,MbyPronyS  
method [7], [36].  

For v < 0 (M < N - I), we have the following. 
5') Window ?&N as 

6 ' )  Convert the nonparametric impulse response n ( C F )  rN-1,N to 
parametric form  {ai,  cj}, i = 1, . . . , N ,  j = 0,  . . . , N - 1 by 
Prony's method, and set bj = ~ j - ~ , j  = 0,  . * , M.  

where V,(Z) is formed  from  the eigenvector VN as above. 
Discussion 

The  CF  algorithm is defined  on  .the basis of a  prescribed 

111. IMPLEMENTATION OF THE CF METHOD order (M,  N ) ,  and in step 2)  above, an error measure l X N l  as- 
sociated with  this  order is revealed. An alternative is to  pre- 

Given a finite-length impulse response hK(n),  the  CF  method scribe only  the difference between  the  number  of poles and 
consists of the following steps.  For simplicity, we assume in zeros (v), and  then decide on  the  final  order  after  the eigen- 
this  description that hK(n)  is real. values of H , K  have been inspected. This  alternative  can  lead 
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to  the  most cost-effective  filter designs. For many desired 
filters, the sequence {lhkl}f-” drops sharply  in  magnitude 
over some small interval,  and values of N in this  vicinity give 
efficient designs in  terms of order versus error. 

A related consideration is that  one should  ensure < 
lhN-ll, since otherwise a degeneracy will occur in which 2GN 
has fewer than N stable  poles  (in the  quotient  of  (2.8), some 
poles and zeros coalesce). This problem  often comes up 
when H K ( z )  is an even function ( h ~ ( n )  = 0 for n odd)  or is 
an  odd  function ( h ~ ( n )  = 0 for n even). It is easily circum- 
vented  by taking (M, N )  of the  form (odd, even) if HK is 
even, and (even,  even) if HK is odd. There  are also instances 
in which g&N has  reduced order due to  the  extreme  elements 
of  the eigenvector being zero ( u N ( 0 )  = vN(K - v) = 0). For  a 
complete  treatment of possible degeneracies, see E211 . 

In  steps  3)  and 4), it is necessary that  the  FFT size L be suf- 
ficiently large that time-aliasing is negligible. Due to  the sam- 
pling of  the  frequency axis inherent in the  FFT,  the  nonpara- 
metric impulse response obtained  from l?&N(e’w) is really 
proportional  to z,=- ?,&N(n + ZL). Since the poles of E&N 
do  not lie on  the  unit circle, increasing L sufficiently will re- 
duce the  error due to time-aliasing to  any desired level. If d 
is the smallest distance from  a pole of RGN to the  unit circle, 
then we desire (1 - dlL/’ x 0. 

Since the pole radii are not  known in  advance, it is useful 
to estimate  the  amount  of time-aliasing after  the fact  by  means 
of  the  formula 

ca 

n = 0  

where m is a positive integer less than L/2.  (We use the value 
m = L/16.) This is a normalized ratio  of  the energy  where  zero 
is expected  and  the  total energy. We have 0 <y ta  < 1. When 
,uta 0, the  amount of time aliasing is negligible. 

In step 6), if the eigenvector is numerically accurate, and if 
y, is small, then Y-E;) is by construction  the impulse response 
of an  N-pole M-zero rational  filter  [and similarly for ?K:,)v in 
step ti‘)]. In this situation,  it does not  matter very much what 
norm is minimized  in obtaining  the  parametric  form  of  the fil- 
ter.  For this  purpose we have chosen  Prony’s method [ 7 ] ,  
[28],  [34],  [36], in which the A and B coefficients are ob- 
tained  separately by solving two systems of Toeplitz  equations 
of order N and M t 1, respectively.  Code  for the  solution of 
Toeplitz linear equations can be found in [46]. 

Note  that  steps  3)-6) perform the spectral factorization 
needed to select the causal part  of 2&N(z).  This approach can 
be  applied to any  spectral factorization  problem where the 
number  of poles and zeros of the causal part is known in ad- 
vance. An alternative method  for fast  spectral factorization 
(based on  the  FFT and properties of the  ramp  cepstrum) has 
been proposed by Henrici [24]  and was used in [22];  how- 
ever, Henrici’s method suffers from time-aliasing generated  by 
zeros  near the  unit circle in addition  to  that due to poles.  Our 
method is only sensitive to poles near  the unit  circle. 

1 

0 0 . 2 5  
FREQUENCY (HZ1 

Fig. 1. Ideal low-pass filter  magnitude  frequency response. 

IV. COMPUTED EXAMPLES 
As has been mentioned earlier, we believe that  the  CF  method 

may potentially be most  competitive  in  the design of filters 
with  frequency responses that are fairly  smooth-at  least con- 
tinuous.  Two examples of this can be found in a preliminary 
version of this  report  [22]. However, in this  section we  will 
consider three relatively standard examples involving discon- 
tinuous  frequency responses. We do this, first,  to show that 
the CF method is generally applicable,  and  second, because 
the familiarity of  such applications  facilitates  comparison with 
other  methods.  The design problems  selected are 

1) minimum-phase recursive low-pass 
2) linear-phase recursive low-pass 
3) wide-band recursive differentiator. 

Example 1: Minimum-Phase Recursive Low-Puss Filter Design 
We will use this  example to illustrate  in  detail the various 

steps  of  the CF algorithm. In Fig. 1 is shown  the ideal low- 
pass filter  magnitude  frequency response for a  cutoff fre- 
quency  of  one-fourth  the sampling rate f ,  & 1. 

In order  to  obtain  a practical  “ideal”  minimum-phase  im- 
pulse response corresponding to Fig. 1, we begin with  the 
function 

OdB, O < c 3 < 7 ~ / 2  

-30 dB, w = n / 2  

-60 dB, n/2 < o < 7~ 

as the desired magnitude  frequency response. Thus, we re- 
place the ideal transfer characteristic by one which  steps down 
60 dB in the  frequency  domain. This function is then sampled 
at  equally  spaced  frequencies. For  our example,  129 points 
are used, corresponding to an FFT of length  256.  Next,  the real- 
cepstrum  method [ 141, [29] is used to create the  minimum- 
phase complex  spectrum exhibiting  this  magnitude curve. The 
use of two samples rather  than  one in  the discontinuity serves 
to reduce time-aliasing. The inverse FFT of the  spectrum so 
obtained yields the initial desired impulse response, and this is 
shown in Fig. 2(a). The magnitude spectrum of Fig. 2(a) is 
shown in Fig. 2(b), illustrating the fact that  little  distortion is 
incurred  at  the sample points during the conversion from zero- 
phase to minimum-phase. 
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(a) 

I 
8 0.25 

FREQUENCY (HZ)  

Fig. 2. Minimum-phase ideal low-pass filter obtained  by windowing the 
real cepstrum of the impulse response. (a) Impulse response. (b) Mag- 
nitude  frequency response. 

The  next  step is to window the "ideal" impulse response to 
the  length K desired for use in the  CF algorithm. In this case, 
we choose K = 79.  The  method selected for  this windowing 
consists of multiplying the  function  of Fig. 2(a) by half of a 
Hamming window.  The resulting  impulse  response and  the  cor- 
responding magnitude  spectrum are shown in Fig. 3(a) and (b). 

We now use the  CF  method  to  obtain a 7-pole,  6-zero digital 
filter which  approximates  the filter of Fig. 3. First,  the 80 X 
80 Hankel matrix is formed,  and  its  16  extreme eigenvalues are 
computed.  The magnitudes of all 80 eigenvalues are plotted in 
Fig. 4. The seventh eigenvalue modulus is lh71 = 0.019. This 
number provides the  magnitude  of  the all-pass error in the 
optimum noncausal  Chebyshev filter,  and equals the Hankel 
norm  of  the final approximation  error.  Thus, we expect  about 
two  percent  error in the  magnitude  of  the passband. The in- 
ternal  FFT size was chosen to be L = 5 12. 

Fig.  5(a) shows the  magnitude  error 

IHK(e'"k)l - IE&N(ejwk)I 

in the  optimum  extended  rational Chebyshev approximation. 
When the noncausal part  of ?&N is dropped  to  obtain yMN (CF) , 
the magnitude error becomes that shown  in Fig. 5(b). Note 
how slightly the magnitude error  for  the  optimum Hankel  ap- 
proximation  extends past the  bounds  for  the  optimum Che- 
byshev error. 

The causal impulse  response Y&$~) of the  optimal Hankel 
approximation is finally converted  to a  set of recursive filter 
coefficients, via Prony's method applied to  the first 80 samples 

1 I 
8 0 . 2 5  

FREQUENCY ( H Z )  

Fig. 3. Hamming-windowed minimum-phase low-pass filter. (a) Im- 
pulse response. (b) Magnitude frequency response. 

SINGULAR  VALUE  INDEX 

A 

m e 
w 
A 
3 

-1 0 q  \ 
8 25 58 76 

SINGULAR  VALUE  INDEX 

Fig. 4. Singular values of Hankel matrix H0,80 of  windowed  minimum- 
phase filter. (a) Linear scale. (b) dB scale. 
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1 I 
0 E .  2 5  

CHEBYSHEV  HAGNITUDE  ERROR 

1 I 
0 a. 2 5  

HANKEL  MAGNITUDE  ERROR 

Fig. 5. Magnitude frequency response error. (a) Optimum Chebyshev 
approximation.  (b)  CF  approximation  (optimum Hankel  norm). 

of YE:). The  error  due  to this  conversion is [lr$$) - $$$)112 = 
0.00012, where r$$) denotes  the impulse  response obtained 
nonparametrically,  and ?E$) denotes  the impulse response of 
the filter computed by Prony’s method.  (The  norm is mea- 
sured over the first 512 samples of each impulse response.) 
The good match by  Prony’s method indicates  numerical  suc- 
cess of the preceding steps, and that L is sufficiently large. 

The final frequency  response, overlaid with  the desired fre- 
quency response, is shown in Fig. 6(a). Notice that  the  error 
is nearly  equal ripple at about  two  percent in the passband, as 
expected. 

The filter design obtained using equation-error minimization 
on  the same target spectrum HK(eiw j as for  the  CF  method is 
shown in Fig. 6(b). We chose the  equation-error  method as a 
standard  for comparison because algorithms  in this class (such 
as Prony’s method) seem to be the only other way to  obtain 
unique  rational  approximations which  fit both phase and mag- 
nitude  and which do  not  suffer  from  the possibility of conver- 
gence to suboptimal  solutions  [36].  The  equation-error algo- 
rithm used is a fast version of the  one  outlined in [45], and  it 
is described  in [36].  Note  that there is more  error near the 
passband edge with  equation-error minimization, due  to  the 
presence of poles nearby. [The equation  error is defined as 
A(eiW)(RMN(ejW j - B(eiW)/A(ejW)) ,  which  gets  weighted 
toward  zero near roots  of A(z).] On a  Foonly  F2  computer, 
in single precision floating point,  the  equation-error  solution 
required  approximately 2.5 s of CPU time, while the  CF algo- 
rithm  took  approximately 70 s (with 60 s spent in the tridia- 
gonalization of  the 80 X 80 Hankel  matrix). 

i 

0 E .  2 5  
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0 0. 25 
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Fig. 6 .  Magnitude frequency response fit for Example 1. (a) CF. (b) 
Equation error. 

Although  the  CF  method does not  attempt  to minimize any 
kind  of log-spectral error,  it is often  the case in  filter design 
that  such  an  error is most  appropriate.  For completeness we 
show the  CF  and  equation-error magnitude  fits on a dB ver- 
tical scale in Fig. 7. On a log vertical scale, the  equation-error 
method may be preferable to  the  CF  method due to  better 
stopband  rejection. 

Fig. 8 compares  the pole-zero plots  for  the  CF and equation- 
error  methods.  The large difference between  the  two plots 
suggests that use of the  equation-error  solution as an initial 
guess for  a gradie2t-descent  algorithm,  which  explicitly mini- 
mizes IIH(e’”) - H(eiW)II with respect to pole positions,  may 
not be effective  in general. 

Example 2: Linear-Phase Recursive Low-Pass Filter Design 
In this example,  the goal is t o  design a linear  phase recursive 

low-pass filter. Since the  CF  method requires a finite impulse 
response as a  starting  point,  it is good to have an initial  target 
impulse  response  which is optimal in  some sense. The Parks- 
McClellan-Rabiner (PMR) algorithm [30],  [33 ] provides opti- 
mal FIR filters in the sense that  the Chebyshev norm  of  the 
spectral magnitude  error is minimized over filters with  ex- 
actly linear  phase.  Since the  CF  method takes an FIR filter 
into an IIR  filter, preserving the  spectrum in a nearly optimal 
Chebyshev sense, the PMR algorithm provides a  good initial 
condition  for this  problem. Furthermore,  our experience indi- 
cates  that  the  amount of computational  effort in the  two 
methods is comparable,  with  the CF algorithm being some- 
what  more expensive. Thus  the PMR algorithm is a well- 
matched  supplement  to  the  CF algorithm. 
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Fig. 8. Poles and zeros  for  Example 1 ( X  = pole, 0 = zero).  (a) CF. 
(b) Equation error. 

We begin with an optimal FIR low-pass filter of  length K = 
21.  The passband ranges from f = 0 to  one-tenth  the sampling 
rate f = f,/lO, and  the  stopband is defined from f =&/5 to f =  
fJ2. The singular values of the Hankel matrix  for this prob- 
lem are plotted  in Fig. 9. In Fig. 10,  a  comparison  between 
the  CF  method and the  equation-error  method is given for  the 
case of  a  7-pole, 6-zero approximation  to  the  optimum  order 
20  FIR  filter.  The  FFT size used is L = 256. Fig. 11 gives the 
same comparison on a dB  vertical scale. The impulse  response 
fits for  the  two  methods are shown  in Fig. 12,  and pole-zero 
diagrams are shown in Fig. 13. In this example, the CF method 
clearly outperforms  the  equation-error  method. 

Example 3: Wide-Band Differentiator Design 
The ideal differentiator  has  the  frequency response 

H(eiw) = jw,  -71 < o < 71. 
The design of recursive approximations  to H ( e i w )  has  been 
addressed by  Rabiner and Steiglitz [32],  [37], where a  method 
for  computing recursive approximations minimizing 11 ]HI - 

/ I 2  is proposed.  The CF method  obtains slightly better 
approximations  of  type  (2,  2)  and  (4, 4) with less computa- 
tional effort. (In the following computations, we used the 
Henrici spectral  factorization and the  parametric  truncation of 
i?&N mentioned  above; see [22]  for details.  But  these varia- 
tions have small effect for this  problem.) 

We begin by dividing the  magnitude  characteristic by 

JHo(e'W)I leiW - 11. 

The resulting quotient is nonzero, so its logarithm  exists  and 
we can calculate a minimum-phase  transfer function by the 
real cepstrum  method as in Example  1. We approximate  this 
by CF  approximations  of  type  (1,  2) and (3,4)  and  then mul- 
tiply these approximations by e lw - l .  The result  should be 
recursive differentiators of type  (2,  2) and (4,4) that are near 
optimal in maximum  error weighted by leiW - 11-l. Since 
leiw - 11 1 0 1  for small o, the filters  should not be far from 
optimal in the physically more  appropriate sense of minimiz- 
ing the maximum relative error. 

The magnitude characteristic in  this problem changes  slope 
abruptly  at LJ = 71, so H has zero  continuous derivatives and 
the impulse response dies out slowly. We have taken K = 60  
for the (2,  2)  approximation and K = 120  for  the  (4, 4) ap- 
proximation,  and  1024  points in all FFT's. Even these values 
are not  quite enough to make H -  HK negligible. The  approxi- 
mations are still good, however, and  the resulting computa- 
tion times (using double precision on  an IBM 370/168)  of ap- 
proximately 0.8 s and 3 s, respectively, suggest that  the  CF 
computation is roughly  ten  times faster  than  that of Rabiner 
and  Steiglitz [37]. 

Figs. 14(a) and 15(a) show the  errors in amp1itude.a  a func- 
tion  of w for  the  two  differentiators. Figs. 14(b) and 15(b) 
show the  corresponding excess phase. These curves show 
roughly the same behavior as those  computed by  Rabiner 
and Steiglitz [32].  The  zeros  for  the  (2, 2) approximation 
are at 1.00000 and -0.67570,  the poles are at -0.13841  and 
-0.72021, and the multiplicative constant is 0.36773. These 
numbers are each  within 1 percent  of  those  in  [37]  except  for 
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Fig. 9. Singular values of the Hankel matrix H,,,, corresponding to 
the  optimum  FIR linear-phase impulse response. (a) Linear scale. 
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Fig. 11. Magnitude frequency  response fit for Example 2 (dB scale). 
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Fig. 12. Impulse response fit for  Example 2. (a) CF. (b) Equation - 
(b)-Equation error.  error. 
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