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Stability of Finite-Difference Models 

Containing Two Boundaries or Interfaces 


By Lloyd N. Trefethen* 

Abstract. It is known that the stability of finite-difference models of hyperbolic initial-boundaq 
value problems is connected with the propagation and reflection of parasitic waves. Here the 
waves point of view is applied to models containing two boundaries or interfaces, where 
repeated reflection of trapped wave packets is a potential new source of instability. Our 
analysis accounts for various known instability phenomena in a unified way and leads to 
several new results, three of which are as follows. (1) Dissipativity does not ensure stability 
when three or more formulas are concatenated at a boundary or internal interface. (2) 
Algebraic "GKS instabilities" can be converted by a second boundary to exponential 
instabilities only when an infinite numerical reflection coefficient is present. (3) "GKS-stabil- 
ity" and "P-stability" can be established in certain problems by showing that the numerical 
reflection coefficient matrices have norm less than one. 

0. Introduction. Hyperbolic systems of partial differential equations admit solu- 
tions which behave locally like waves moving along characteristics. When such a 
system is modeled numerically by finite differences or finite elements, the result is a 
dispersive medium that may admit additional parasitic wave modes with wave-lengths 
on the scale of the discretization. Energy associated with these parasitic waves travels 
at a group velocity that is unrelated to the characteristics of the original system [25], 
[30]. However, the behavior of such waves has a decisive effect on stability. 

For finite-difference models of linear hyperbolic problems with a single spatial 
boundary, a stability theory was developed around 1970 by Kreiss, Osher, and 
others [lo], [18]. In earlier papers we have shown that this theory can be naturally 
stated in terms of dispersive wave propagation [26], [27]. To summarize: if a 
boundary with homogeneous boundary conditions can emit a radiated wave in the 
absence of any incident waves, i.e., a wave with group velocity pointing into the 
interior of the domain, then it is unstable. If it has an infinite reflection coefficient 
for waves at some frequency, a stronger condition, then it is more severely unstable. 

This paper applies wave propagation ideas to investigate stability for one-dimen- 
sional linear finite-difference models with two or more boundaries or internal 
interfaces. The most basic example of such a model is a discrete approximation to an 
equation whose spatial domain is an interval such as [O,l]. Another example is a 
model of a problem featuring discontinuous coefficients, e.g., wave propagation in a 
discontinuously stratified medium [4]. A third is a numerical scheme employing local 
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mesh refinement to improve accuracy, in which various interfaces between fine and 
coarse grids will be present [2], [5]. A fourth is any model with a composite 
numerical boundary or interface, such as a fourth-order difference model on [0, m )  
that has a five-point stencil, and whch therefore requires one numerical boundary 
condition at j = 0 and another at j = 1 [15]. Such a model can be viewed as 
containing two interfaces separated by a single grid point, and we will show that this 
view may be useful for stability analysis. 

Any multi-interface model potentially admits trapped numerical waves that reflect 
back and forth repeatedly from one interface to another. If the reflections cause 
amplification, this can lead to unbounded growth of numerical solutions. The factors 
that control this are: magnitude of the reflection coefficients, which is the source of 
growth; dissipation of waves as they travel between interfaces, which is a source of 
attenuation; and travel time between interfaces, whch determines how frequently 
any reflection circuit that causes growth is repeated. All of the arguments of this 
paper consist of worlung out consequences of various combinations of these factors 
that may be of practical interest. 

In particular, we investigate two kinds of stability. First, "stability" or "Lax-
Richtmyer stability" refers to the usual Lax-Richtmyer definition for time-depen- 
dent finite-difference models, or to variants thereof such as "GKS-stability" (Defini- 
tion 3.3 in the well-known paper by Gustafsson, Kreiss, and Sundstrom [lo]). A 
difference model that is stable in this sense may admit solutions that grow with time, 
provided that the growth does not get worse as the mesh is refined. This is what is 
needed to ensure convergence as the mesh size approaches zero to the correct 
solution of the time-dependent differential equation, for each fixed time t .  On the 
other hand, to be "P-stable" [I], a model must admit no growing solutions at all. 
(See Section 3 for the precise definition. Such a model is also sometimes called 
"time-stable" [29].) Although the theory here is not as well developed, such a 
condition is needed if a time-dependent difference model is to be used to obtain 
steady-state solutions, as is common in computational aerodynamics. As a rule of 
thumb, we will show that P-instability is very often associated with reflection 
coefficients greater than 1 in magnitude, and Lax-Richtmyer instability with reflec- 
tion coefficients that are infinite. 

Section 1 reviews stability theory for one-boundary difference models (Proposition 
1). Section 2 investigates interfaces separated by a fixed number of grid points A j as 
the mesh is refined, as in the fourth-order boundary condition mentioned above. 
Here the travel times go to zero with the mesh spacing, with the effect that finite 
reflection coefficients greater than 1 can cause catastrophic unstable growth (Pro- 
positions 3, 4, 4'). Conversely, reflection coefficients smaller than 1ensure stability 
(Proposition 5). Section 3 considers interfaces separated by a fixed distance Ax as 
the mesh is refined, as in the problem on [O,l] mentioned above. Here, the travel 
times are independent of mesh spacing, so large finite reflection coefficients can 
cause P-instability (Proposition 7), but not Lax-Richtmyer instability (Proposition 
6). In this context multiple reflections may convert the weak instability of a single 
interface to a catastrophic instability (Proposition 8), but only if the unstable 
interface is of the sort with an infinite reflection coefficient (Proposition 9). Once 
again, reflection coefficients smaller than 1in norm ensure stability (Proposition lo), 
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and if the model is dissipative, it suffices to look at the reflection coefficients for the 
partial differential equation rather than its numerical approximation (Proposition 
11). 

For convenience of reference, here is a list of the explicit examples presented here 
to illustrate various points. The symbol A indicates the modulus of a reflection 
coefficient, and S, the solution norm at time step n. These quantities will be made 
more precise later on. 

1. Algebraically unstable one-boundary model (one boundary, A = co, S, -
const n). 

2. Exponentially unstable concatenation of three stable dissipative formulas 
(fixed-Aj, A > 1,Sn- constn). 

3. P-stability guaranteed by reflection coefficients less than 1 (fixed-Aj or Ax, A 
G 1, Sn- const). 

4. P-instability caused by reflection coefficients greater than 1 (fixed-Ax, A > 
1,S, - const'). 

5 .  Exponential instability caused by interaction of two algebraically unstable 
boundaries (fixed-Ax, A = co,Sn- (A j)co"St'). 

The reader may be disappointed at the artificiality of some of these examples, 
especially (2) and (3), and he may wonder how helpful wave reflection ideas can be 
in practice for the design of difference schemes. A full answer to this question will 
have to await further experience. Nevertheless, there is no doubt that the instability 
mechanisms described here are real and deserve to be understood. At present, 
virtually no difference models containing multiple interfaces have been shown to be 
stable. Perhaps the ideas here, such as Proposition 5 ,  can help bring about a change 
in this situation. 

Much of the material in thls paper can be found in Section 6 of the author's 
Ph. D. dissertation [24]. For some numerical illustrations, see [28]. For a different 
analysis of stability for two-boundary problems that is closely related to the present 
one, see the report [8] by Giles and Thompkins, which is mainly concerned with 
P-stability. Giles and Thompluns consider parasitic wave propagation for models 
with variable as well as constant coefficients. 

The phenomenon of instability caused by trapped wave packets can also occur in 
two-dimensional problems when the domain contains a corner. Osher has given 
examples of hyperbolic systems (not difference models) in corners that are ill-posed 
because of trapped waves [19], while Sarason and Smoller have shown that for a 
2 x 2 strictly hyperbolic system such as the second-order wave equation, this cannot 
happen [21]. But trapped numerical waves may render a finite-difference model of 
even the latter sort unstable. The principles involved are precisely those of this 
paper, but we will discuss corners elsewhere. 

The reader interested in getting to the main ideas quickly may find it possible to 
turn directly to Section 2. 

1. Review of Wave Propagation and Stability for One-Boundary Difference Mod- 
els. Consider a linear first-order hyperbolic system of partial differential equations 

(1. I )  U,  = Au, 
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with initial data 

Here u ( x ,  t )  and f ( x )  are N-vectors, A is a constant N x N matrix, and the spatial 
domain is R.  The statement that (1.1) is hyperbolic means that A has real eigenvalues 
{ p,, ), 1 G v G N, and a complete set of associated eigenvectors {Up). It follows that 
if ( E R is an arbitrary wave number, then (1.1) admits N linearly independent 
solutions of the form u ( x ,  t )  = U e x p ( i ( o t  + (x)), namely the waves 

with a, , ( ( )  = p,(. a,,is called thefrequency of (1.3),and the N-valued linear function 
w = o ( ( )  is the dispersion relation for (1.1). Each wave (1.3) propagates uniformly 
with no change in shape at the velocity -p,, hence leftward or rightward depending 
on whether p, is positive or negative, respectively. 

Since the vectors U,,span R", any f E L ~ ( R " )can be written as a Fourier integral 
with respect to ( of waves (1.3). It follows, by Parseval's theorem, that Ilu(., t)ll is 
constant with respect to t ;  a fortiori, for any fixed t one has 

(1 .4)  114. 3 t)ll constllf I I ,  

which is to say, (1.1)-(1.2) is well-posed in L ~ .Related well-posedness bounds 

continue to hold under reasonable assumptions if (1.1) is given a zeroth-order term 

Bu,  an inhomogeneous term F ( x ,  t ) ,  or variable coefficients, although in these 

circumstances some growth at a bounded rate in t must be permitted. For simplicity, 

we will ignore these possibilities. 


Let u be approximated by a vector grid function u," = v ( j h ,  n k )  = u ( j h ,  n k ) ,  
where k is the time step and h is the space step. { 0,") will be determined iteratively as 
the solution of an s + 2-level finite-difference formula 

5 

(1 .5)  Q-,unil = Q , u ~ - ~ ,  
o = o  

where each Q, is a spatial finite-difference operator with constant matrix coefficients 
of dimension N x N. Let Q be a name for (1.5). As with the differential equation, 
one can show that Q admits solutions 

(1 .6)  ",n = v e i ( w r + E x )  , x = j h , t  = n k ,  V E  RN.  

For each ( E R ,  in fact it permits in general not N but ( s  + l ) N  distinct values of 
o, whose relation to ( constitutes the dispersion relation for (1.5). These values 
depend nonlinearly on (, and they are not necessarily real. A solution with ( E R 
and Im o > 0 decays with t ,  but a solution with ( E R and Im o < 0 grows at the 
rate el1""lr = constn, and if Q admits a solution of this kind, it is unstable. On the 
other hand, if there are no such growing modes, and if any modes with (, o E R are 
nondefective in a sense we will not go into, then Q is stable. Thus, stability for a 
constant coefficient finite-difference model on an unbounded domain can be in- 
vestigated by a fairly straightforward process of Fourier analysis. For details, see 

P O I .  
Let Q be stable and admit a solution (1.6) with (,o E R.  It can be shown that the 

dispersion relation for (1.5) determines a function 3 = 3($)for t ,3 in a neighbor- 
hood of (, o [27, Lemma 3.21, and that the energy associated with the wave (1.6) 
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propagates at the group velocity 
dij

C ( ( ,0 )  = --d* ( ( 3  4 .  

The precise meaning of this statement is asymptotic: if Q is given initial data 

fia = + ( x  - C t ) ~ e ~ ( ~ ' + ~ ~ ) ,0 < o < s, t = o k ,  x = jh,  

for some smooth function +, then the solution at a later time will be 

with the approximation becoming better as + is made smoother. See, for example, 
Lemma 5.1 of [27]. 

Example 1. As an example, consider the leap frog (LF) model 

of U' = u,. By inserting u ( x ,  t )  = ei("'+tX),one finds that the dispersion relation is 

(1.9) sin o k  = h sin ( h .  

Differentiation leads to the group velocity formula 
cos ( h

C ( ( ,0 )  = --
cos o k  

Thus a well-resolved wave, i.e., one with ( h ,  o k  = 0,  propagates under LF with 
group velocity C - -1. On the other hand,LF also admits many waves with ( h  or o k  
not small. The extreme cases are the "parasitic" solutions (5, o )= (m/h ,0) ,(0,m/k) ,  
and ( n / h ,  m /k ) ,  whch by (1.10) have group velocities + 1, +1, and -1, respec-
tively. For the first two of these, the sign of C reveals that energy propagates in the 
physically wrong direction. In fact, for each sufficiently small frequency o E R, (1.9) 
gives two distinct wave numbers ( in the fundamental range [-m/h, m/h], and by 
(1.10), one of the corresponding waves propagates leftwards and the other propa-
gates rightwards. See [25]or [30]for illustrations. 

Returning to the general model Q of (1.5), let us change the notation and rewrite 
(1.6) in the more convenient form 

(1.11) uJI = VK'Z", K ,  z E C - { 0 ) ,  

where K = eichand z = eiWk.(For full generality one must permit a further multi-
plicative factor j s  to represent certain defective modes. Such modes are rarely 
important in practice, however, so in all of what follows we assume 6 = 0, although 
the results remain valid in the general situation. The reader is referred to [27]for 
more complete details.) A solution (1.11) with I K I = IzI = 1 and C < 0 (resp. 2 0 )  
will be called leftgoing (resp. rightgoing). For obvious geometric reasons it also 
makes sense to say that a solution with lzl >, 1 is leftgoing if I K I > 1 and rightgoing if 
I K I < 1. It can be shown under reasonable assumptions (see [ lo] )that for any z with 
IzI 1, Q admits a family of R = Nl linearly independent rightgoing and L = Nr 
linearly independent leftgoing solutions (1.11),where 1 and r denote the numbers of 
grid points to the left and right of center, respectively, covered by the stencil of Q 
[27, Section 31. Therefore, the general solution to (1.5) of the form u,? = z"+~is a 
linear combination 

R + I. 
u,? = Z" arnvrnK;. 

m = 1  
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If we relabel a ,  V ,and K by ,8, W,and p for leftgoing components, this becomes 

We emphasize that the leftgoing and rightgoing waves in this sum have very little to 
do with the waves admitted by the original equation (1.1). 

Let a left-hand boundary be introduced at x = 0,  so that the spatial domain 
becomes Ri and j is restricted to j >, 0. Now (1.1)must be supplemented by as many 
additional scalar boundary conditions as there are inflowing characteristics at x = 0 ,  
and if this is done in the natural way, well-posedness is guaranteed [13].But we pass 
over these details and consider the finite-difference model. Regardless of the 
characteristics of (1.1), (1.5) will have to be supplemented by R = NI additional 
boundary conditions, one for each rightgoing numerical solution component. For 
simplicity, we take these to be homogeneous and of the form 

for some integers M ,  and M, and N x N matrices y,,. Let e be a name for the 
initial-boundary value problem model (l .5),  (1.13). 

In practice, it can easily happen that e is unstable. A theory of such instability 
was developed a decade ago by Kreiss, Osher, and others, and described at length in 
the well-known paper [lo] by Gustafsson, Kreiss, and Sundstrom-henceforth 
"GKS". In [26] and [27] the Kreiss/Osher theory has been given the following 
interpretation. If IzI > 1 is fixed, then the general superposition (1.12) of leftgoing 
and rightgoing waves does not satisfy (1.13), and hence is not a solution to Q. 
Instead, (1.13) can be thought of as a set of R = NI reflection conditions relat i~g 
rightgoing to leftgoing waves at the boundary. These conditions are obtained by 

so that one gets 

for some R x R matrix E ( i )  and R x L matrix D ( i ) .  For most z ,  E ( i )  will be 
nonsingular, and (1.14) determines the reflected wave coefficients as a bounded 
function of the incident ones. If we write A = E-'D, so that A ( i )  is the R x L 
reflection matrix for the given boundary conditions, then this function has the form 

,8,, anda,,and then collecting terms in (1.13)in(1.12)substituting 

(This A ( z )  has nothing to do with the coefficient matrix of (1.1).) However, it may 
happen that for some liol>, 1, E ( i o )  is singular, and in this case (1.14) permits a 
solution consisting of rightgoing waves in the absence of leftgoing waves. This will 
cause instability. If in this situation A ( i )  is unbounded as i -,i,, then an infinite-
reflection coefficient exists at i , ,  and the instability will be particularly severe [27]. 
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Thus the Kreiss/Osher theory leads to the following "GKS stability theorem": 

PROPOSITION1[lo] ,  [27]. The initial-boundary value problem model is GKS-unsta-
ble if and only i f  E (z)  is singular for some IzI >, 1.Equivalently, it is GKS-unstable i f  
and onlv i f  for some J z J>, 1 it admits a nonzero solution vy = zn+, (1.12) consisting 
entirely of rightgoing wave components. 

Proof. See [27] for a precise statement and proof. 
The notion of "GKS-stability" employed in this result is a fairly complicated one 

given as Definition 3.3 in [ lo]. See [27] for a discussion of its meaning. For the 
remainder of this paper "stable" means "GKS-stable", except where otherwise 
stated. 

Example 1, continued. To return to the previous example, suppose LF is applied 
on x >, 0 with the numerical boundary condition 

In K, z notation, the dispersion relation (1.9) and group velocity (1.10) for LF are 

and (1.16) imposes the additional condition K = 1. One sees immediately that the 
wave (K,  z)  = (1,-I),i.e., vy = (-I)",satisfies both the interior formula and the 
boundary condition and has C > 0. Therefore, by Proposition 1, the model (1.8), 
(1.16) is unstable. By contrast, the condition v,"" = v; is satisfied by no rightgoing 
solutions to LF, so with this boundary condition LF would be stable. 

This example is one of those with an infinite reflection coefficient. To see this, 
note that for each lzl >, 1, (1.17) gives two values of K related by K, = -1/~,. Let 
these be denoted by K and p ,  where K is the "rightgoing" value with Re K Re z g 0 
and IKI g 1,for whlch C >, 0 if IKI = 1,and pis the "leftgoing" one with Re K Re z > 0 
and IKI >, 1.Then for this problem the superposition (1.12) takes the form vy = ~ K J  

+ PpJ. TO calculate the reflection coefficient we substitute this in (1.16) and obtain 
a + p = a~ + Pp,  that is, a = AP with 

This quotient becomes infinite when z = -1, K = 1,p = -1. 
The unstable behavior of this difference model is illustrated in Figures 4.1-4.2 

and Figures 5.1-5.4 of [24] and in Figures 3,4 of [27]. 

2. Two Interfaces Separated By a Fixed Number of Grid Points A j. The stability 
result of Proposition 1is illustrated in Figure 1. If a set of numerical waves reflects 
at a boundary with a gain in amplitude, as in Figure la, this does not constitute 
instability. It may force the constant in a discrete estimate analogous to (1.4) to be 
large, but it does not preclude the existence of such an estimate. On the other hand, 
if the boundary can produce radiated energy in the presence of no incident energy at 
all, as in Figure lb ,  then it is unstable. 
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(a) stable (b) unstable 

FIGURE1 

Stable and unstable solutions z *+, at a left-hand boundary 

(a) stable (b) unstable 

FIGURE2 

Stable and unstable solutions zn+, at an internal interface 

Suppose now that is a model containing not a boundary but an internal 
interface of some kind separating two difference schemes Q- and Q+ (possibly 
identical). The interface might be a complicated structure extending over several grid 
points, or it might be simply an abrupt change of coefficient, of difference formula, 
or of mesh size. It is plausible that the picture should change to that of Figure 2: a is 
unstable if and only if it permits a solution zn+, that is outgoing from the interface 
on both sides. This conclusion can be derived rigorously from Proposition 1 by 
folding the interface problem into an initial-boundary value problem for a system of 
equations of twice the original size [3], [5], [6], [16], [24]. 

Reflection equations for an internal interface analogous to (1.14)-(1.15) for a 
boundary can be obtained by the same folding idea. For each lzl >, 1, there are 
R-+ L+ linearly independent waves that may be incident at the interface from both 
sides, and L-+ Ri  that may be radiated. The full reflection equation is the linear 
system describing how the coefficients of these wave components are related, 

where E and D are matrix functions of dimensions (L-+ Ri)  x (L-+ Rt) and 
(L-+ R') x (R-+  L') (cf. (1.14)). However, in this paper we will only need the 
response of an interface on one side to a wave incident on that side. The corre- 
sponding reflection equation is the projection of (2.1) onto a one-sided domain and 
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range. In the case of incidence on the right, for example. it has the form 

where E is R t x  R+ and D is R'X L'. When E(z)  is nonsingular, (2.2) can be 
solved to yield and equation analogous to (1.15). 

where A is R ' x  L'. Note that although wave modes on the left of the interface do 
not appear in (2.3). the projection process by which this equation is obtained 
imposes the condition that the wave energy on the left is nonzero in the leftgoing 
components only. In other words (2.2)-(2.3) describes the response of the interface 
to energy incident on the right. 

Now consider a finite-difference model with p interfaces located at grid points 
j = j,.. . . ,j,, and write A j = j, -j,. (To be precise, each j, is a half-integer, with one 
difference formula applied on j,-, < j < j, and another on j, < j < j,,,, j E 2.)In 
this section, the indices j, are to be kept fixed as h ,  k -+ 0,  and we recognize this 
assumption by calling Q a model of "fixed-Aj" type. As mentioned in the 
Introduction, a fixedd j problem might come up in the analysis of adaptive 
mesh-refinement procedures, or with any boundary or interface discretization that 
involves more than two distinct difference formulas. We obtain the following 
stability criterion: 

PROPOSITION model is unstable if and2. A fixed-A j multi-interface finite-difference 
on& i f for  some IzI 2 1 it admits a nonzero solution :"$, containing oni) leftgoing waves 
to the left and rightgoing waves to the right of all interfaces. 

Proof. The situation is illustrated in Figure 3. For a proof, one can relabel the grid 
points so that the interval from j ,  to j, becomes one complicated interface separating 
the two regions j < j, and j > j,. Then the folding argument mentioned above for a 
single interface applies. 0 

Remark. In the case of an initial-boundary value problem with a boundary at the 
left. say, the region to the left of the interfaces in Proposition 2 becomes finite in 
extent (or possibly empty, depending on labeling), so in principle one should not 
restrict the search for unstable modes to solutions that are leftgoing there. But in this 
region the difference formula is necessarily one-sided, which implies. under the usual 
assumptions, that it admits leftgoing waves only for 121 2 1. Therefore the change is 
vacuous. 

From the wave propagation point of view the following result should now be 
unsurprising. 

PROPOSITION3. For the stability of a fixed-Aj multi-interface model. it 1s not 
sufficient that the rndivldual interfaces be stable. 

Remark. Stability of the individual interfaces is presumably not necessary. either 
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(a) interior (b) boundary 

FIGURE3 

Unstable multi-interface solutions zt'$, at 

an interior interface and at a boundary 

FIGURE4 
The concatenation of stable interfaces may be unstable 

Proof. The proof consists of exhbiting Example 2, below, but the idea behnd it is 
indicated in Figure 4. Imagine two interfaces at which waves can reflect with a 
reflection coefficient greater than 1. When these are placed together, it might happen 
that the reflected wave from each interface serves to stimulate the reflected wave 
from the other. A process of reflection back and forth will then ensue in whlch at 
each circuit, the amplitude grows by a factor const > 1. Since one circuit takes only 
a fixed number of time steps, this process will cause growth at a rate livnli = constn, 
which is an explosive instability. 

Example 2. Let u ,  = u ,  on x 3 0 be modeled by an "interior" formula for j 3 2 
combined with additional boundary formulas at j = 0 and j = 1. The interior 
formula is an upstream difference with some added dissipation: 

The formula at j = 0 is a linear combination of upstream differences: 

At j = 1we use a leapfrog formula with some added dissipation: 

It is verified in Section 6.3 of 1241 that if h = $ and E = 1036/83205, then (2.4)-(2.6) 
is exponentially unstable, admitting a solution u; = zn$, with z = 129/128. The 
eigensolution $ has the form ( i ,  I , + ,i,a,. . .), and can be viewed as the superposi-
tion of leftgoing and rightgoing waves represented in Figure 3b. A numerical 
experiment confirms that (2.4)-(2.6) is hghly unstable and blows up like (129/128)" 
1241. 
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We have chosen such an unwieldy example because it is contrived to have a 
special additional property: all of the formulas (2.4)-(2.6) are dissipative. This is of 
interest because, as a matter of practical experience, dissipativity often ensures 
stability. For the case of a single interface, it has been proved by Ciment [6] (for 
interfaces) and later by Goldberg and Tadmor 191 (for boundaries) that under 
reasonable hypotheses, this is always true. See also Section 6.2 of [24]. Later, it was 
claimed by Oliger 1171 that the same must hold with multiple interfaces. However, 
the example above shows this is not so. We formulate this conclusion as a new 
proposition: 

PROPOSITION4. In a fixed-A j model with two or more interfaces, such as an 
initial-boundary value problem model with distinct boundary conditions at j = 0 and 
j = 1, dissipativity of each individual difference formula is not sufficient to ensure 
stability. 

It would, of course, be more satisfying to find an illustration of this principle that 
was somewhat realistic. 

Example 2 also serves to illustrate another (weaker) stability principle. In some 
circles, where the Kreiss/Osher theory is considered too complicated for practical 
work, the "von Neumann" or "Fourier method" for heuristic stability analysis is 
used instead. T h s  idea, proposed by Trapp and Ramshaw [23] (not by von 
Neumann), is to check the numerical boundary formulas for amplification factors 
greater than 1just as if they were interior formulas, and hope that if there are none 
such, the model will be stable. In general, there is little reason to expect this 
procedure to work, and indeed the heuristic justification of it by Trapp and 
Ramshaw is not really valid. Yet because of the algebraic simplicity of the difference 
formulas usually encountered, the idea is surprisingly reliable in practice 1221. In 
particular, for a dissipative difference model with a solvable boundary condition 
applied at a single point, it can readily be shown that the Fourier condition is 
sufficient for stability 191. 

But Example 2 confirms that the same does not hold when there is more than one 
boundary condition: 

PROPOSITION4'. In an initial-boundary value problem model involving distinct 
boundary conditions at j = 0 and j = 1, the "von Neumann method" of boundary 
condition analysis is not sufficient to ensure stability. 

If the stability of each interface individually is not enough for a general stability 
test, what is? The unfortunate answer is that for a complete analysis one must 
investigate all possible modes zn+, suggested by Propositions 1 or 2 to see if they 
satisfy the boundary conditions. The difficulty with t h s  computation is that its size 
grows with the total width of the interface region: one must study a matrix function 
E ( z )  of dimension approximately Aj in the scalar case, N A j in general. The 
required investigation can be prohibitively difficult. 

However, various sufficient but not necessary conditions for stability can be 
derived that involve the interfaces individually. Consider the two-interface model 

= Q_lQ,lQ + illustrated in Figure 5.  Here Q- ,  Q,, and Q+ are constant-coefficient 
difference formulas with stencil parameters { I - ,  r-}, { I ,  r }, { I , ,  r+) ,and j, and j, are 
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FIGURE5 

Two-interface model 


half-integers with A j =j, -j, > 1.The interface at j, consists simply of an abrupt 
change from Q- applied for j <j, to Q, applied for j > j,, and similarly at j,. We 
assume that each interface Q-1 Q, and Q,l Q +  is individually stable, and seek a 
condition to ensure that no unstable solution zn$, of e with lzl > 1(as in Figure 4b) 
can exist. To ensure decoupling of Q- and Q+,  we assume further r_< r + A j and 
I+< 1 + Aj. 

Let Q, admit R rightgoing and L leftgoing solutions, labeled as in (1.12). Let K( z) 
and M(z)  be the R x R and L X L nonsingular matrices 

K ( z )  = d iag (~ , ,. . . ,K.), M ( z )  = diag(p,,. . . ,p,), 

and let V and W be the N x R and N x L matrices with columns Vm and W,,, 

V(Z)= (v1,. . . ,VR), W(Z)  = (Wl,. . . ,WL). 

Then (1.12) can be rewritten 

By definition of V, K, W, and M, this expression satisfies Q, for all j, regardless of a 
and p .  Conversely, a function v$' = zn$, satisfies Q, for j, <j <j, only if it has a 
representation (2.7) valid in j, - I <j <j, + r for some a and P. The question is, 
for whlch a and P, if any, can a function v$' defined by (2.7) in j, - I <j <j2+ r be 
extended to a solution of e for all j that is leftgoing in j <j, and rightgoing in j > j, ? 
The answer is: for precisely those a, P satisfying the reflection equations 

(2.8) a = Alp,  p = A2a, 

where A, is an R x L matrix as in (2.3) relating a to /3 at the Q- 1 Q, interface, and 
A, is an L x R matrix relating /3 to a at Q,l Q+.  Thls follows from the construction 
of (2.2). The assumption that each interface is stable in isolation has permitted us to 
pass from the form (2.2) to (2.3), since it implies by Proposition 1 that E,(z) and 
E2(z)  are nonsingular for each lzl > 1. 

The matrix A(z) of (1.15) was effectively defined with respect to the grid point 
j = 0,  in the sense that it is at that point where a solution (1.12) to has the form 
Va + Wp with a = A(z)P. For the present problem, it is more natural for A, to be 
defined with respect to the grid point j,, and A, with respect to j,. We can 
accomplish this by replacing A, in (2.8) by K-JIAIMJ1 and A, by M-J2A2KJ2. 
Equation (2.8) becomes 
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and 

(2.10) M ( Z ) / ~ P= A , ( Z ) K ( Z ) ' ~ ~ .  

With this somewhat cumbersome notation it is possible to state a simple lemma on 
the existence of solutions 0: = zn$, to e. 

LEMMA1. The fixed-A j two-interface model described above admits a solution 
vy = in$,with JiJ>, 1 consisting of outgoing waves only in j < j, and j > j, if and only 
i f  the L X L matrix 

(2.11) E ~ ( z )= M ( z ) - ~ ~ A , ( z ) K ( z ) ~ ~ A , ( z )  

has an eigenvalue 1. 

Proof. Suppose has a solution vJ' = zn$, of the kind described. Let a and /3 be 
the coefficient vectors for the representation (2.7) of u in j, - I < j < j, + r.  By 
definition of A,  and A,, the equations (2.9) and (2.10) must hold. Multiplying them 
together gives 

M ( z ) I 2 p= A ~ ( z )K ( z ) ~ , A , ( z )M ( z ) ~ ' ~ ,  

that is, 

[ M ( ~ ) " P ]= E ~ ( ~ ) [ M ( z ) " B ] .  
Thus M ( z )J1P is an eigenvector of the sort required. 

Conversely, if E L ( z )has an eigenvalue 1, let P be M(z ) - J l  times a corresponding 
eigenvector, and define a by (2.9).Then by definition of P, (2.10)is satisfied also, so -
Q has a solution of the required kind. 

Lemma 1now makes it possible to give sufficient conditions for stability based on 
A,  and A ,  alone. 

PROPOSITION5 .  In the fixed-A j two-interface problem described above, in which 
each interface individually is stable, a sufficient condition for stability is 

I I A ~ ( z > I I I I A ~ ( z > I I < 1 for all lzl 1 
in any norm 1 1  . 1 1  subordinate to a vector norm. 

Remark. A ,  and A ,  are rectangular matrices, i.e., operators A,: C L  -+ CRand A,: 
CR --, CL. The norms in Proposition 5 are the operator norms subordinate to any 
norms on C and CR,which must, however, be the same for both A, and A'. 

Proof. By  the definitions of rightgoing and leftgoing we have J K , J  6 16 1 p,,) for 
all z and m ,  hence 11K(z)11,llM(z)-'11 < 1 in any norm. Together with the hypotheses 
and (2.11) this implies 1 1  EL(z)ll < 1 for each IzI > 1, which precludes the existence of 
the eigenvalue 1of Lemma 1. 

Example 3. Here we reproduce a "P-stability" result of Beam, Warming and Yee 
[ I ]  by considering reflection coefficients. Let u ,  = u ,  on [ O , l ]  be modeled by any of 
the "A-stable" formulas Q of Beam and Warming, which consist of the usual 
three-point difference operator in x coupled with an A-stable linear multistep 
formula in t .  Examples are the backward Euler and trapezoidal (= Crank-Nicolson) 
formulas. Let the boundary conditions be vn+' = 0 at x = 1, j = A j + 1 2 2, and 
q th-order space extrapolation ( q  < A j + 1) 

(2.12) (K - 1 )qv,"+l = 0 
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at x = j = 0, where K denotes the shf t  operator Kvr = u;,. We claim that for any 
fixed A j ,  admits no solution 0: = zn$, with lzl > 1. 

Since the spatial difference in Q is just ( K  - K-I ) ,  it is readily seen that for each 
I z I  > 1, Q admits one rightgoing wave Z"K' and one leftgoing wave z"pl, with 
Re K < 0 < Re p, I K I  < 1 < 1p1, and p = -1,'~. The first inequality is derived as 
follows in Theorem 2.4.1 of 1241. If Q is A-stable, then R ~ ( K- I /K)  < 0 implies 
IzI G 1. Contrapositively, lzl > 1implies R ~ ( K- 1 / ~ )> 0. Since I K I  < 1, this means 
that I z I  > 1implies Re K < 0. 

Now we compute reflection coefficients. At j = A j + 4 one has 

(2.13) A, = -m= -IK, 

By the above inequalities one has 1(1 + ~ ) / ( 1- K)I< 1for lzl > 1, and therefore 

For q = 1both reflection coefficients have magnitude < 1,and by the argument of 
Proposition 5 we are done. If q > 1, the assumption A j + 1 > q implies that the 
term K ~ Jin (2.11) cancels any amplification due to the factor 1 ~ I l - q  above, so 
stability follows from Lemma 1. Alternatively, to stick with the one-boundary-at-a-
time approach of Proposition 5, one can renumber the vertices so that the left-hand 
boundary lies at j = q - 4 instead of j = i,and then IAII will be < 1regardless of 

4 
Remark. A similar argument can be applied to the LF model (1.8) together with a 

space-time extrapolation condition such as u,"+' = u;. 

3. Two Interfaces Separated By a Fixed Distance Ax. In this section we continue 
to investigate the configuration illustrated in Figure 5 ,  except that Ax rather than A j 
will be held constant. Consider a two-interface model = Q_lQ,lQ+ in which the 
interfaces lie at positions xl  = j,h and x, = j2h,  and set Ax = x, - x,. Either or 
both of the interfaces may in fact be a boundary; if both of them are, then is a 
model for a differential equation on a strip such as [0,1]. We ask: as the mesh is 
refined, i.e., as h ,  k + 0 with xl  and x, fixed, will the behavior of 0 be stable or 
unstable? 

It is now that the distinction between stability and P-stability becomes important. 
Following Beam, Warming, and Yee [I], define: 

Definition. The fixed-Ax two-interface model 0 described above is P-stable if it is 
GKS-stable and, in addition, for each fixed h > 0, it admits no solutions uy = zn$, 
with IzI > 1 containing only leftgoing waves to the left and rightgoing waves to the 
right of both interfaces. 

("P" stands for "practical".) Actually, P-stability is not a stability concept of the 
usual sort, since it is defined in terms of what eigensolutions admits rather than 
what growth estimate it satisfies. But obviously, t h s  condition is vital if the 
time-dependent finite-difference model is to be used to approximate steady-state 
solutions, a procedure that is common in practice. In their tests Beam, et al. found 
P-stability of a linearized model problem to be a good indicator of success in 
practical nonlinear steady-state flow calculations 1311. 
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We begin with the following result due to Kreiss: 

PROPOSITION6. The fixed-Ax two-interface model described above is GKS-stable i f  
and only if both interfaces Q-I Q ,  and QolQ +are individually GKS-stable. 

Proof. See Section 11 of [lo] and also Section 2 of [12]. The result refers 
specifically to GKS-stability, and is not necessarily valid for other definitions such 
as [,-stability. The basis of the argument is the invariance of GKS-stability with 
respect to perturbations of size O ( k ) ;the effect of each boundary on the other can 
be shown to be of this order as h ,  k + 0. 

The conclusion of Proposition 6 corresponds to what is often observed in practice: 
if each of two interfaces is GKS-stable, the computational results are usually 
satisfactory, while if one of them is not, they are usually wrong and sometimes 
explosively so. But this section can be viewed as an investigation of how Proposition 
6 fails to tell the whole story. Our remaining results can be summarized as follows. 
Proposition 7 shows that repeated reflections between GKS-stable interfaces can 
cause P-unstable growth at a rate constr, even though GKS-stability is maintained 
(cf. [ I ]  and Section 7 of [lo]). Proposition 8 shows that reflection between weakly 
GKS-unstable interfaces can cause catastrophic growth at the rate ( Aj)"Onstr(cf. 
Section 17 of [14]). Proposition 9 shows that the latter problem will not occur when 
the unstable interfaces have finite reflection coefficients. Proposition 10, like Pro-
position 5,  shows that all growth can be ruled out if the numerical reflection matrices 
satisfy llAlll llAzll < 1. Finally, Proposition 11 shows that in the case of dissipative 
models, for the last conclusion it is enough to consider the reflection matrices A,,A, 
for the differential equation itself. 

PROPOSITION7. GKS-stability does not imply P-stability. Specifically, let each 
interface in the fixed-Ax two-interface model described above be GKS-stable. If the 
refection matrix at one or both interfaces has norm greater than 1 ,  then repeated 
refections between the interfaces may sometimes lead to solution growth at the rate 

JJvnJJ2 (const) r J J v o J J .  

Proof. In the following discussion, we first explain the growth rate constr by two 
different heuristic arguments, whlch will be used again later in this section. The 
purpose of these arguments is to show that, although growth at the rate (3.1) need 
not occur for every model satisfying the hypotheses, it is nevertheless the typical 
growth rate to be expected in such problems. The proof of the proposition as stated 
then consists of exhibiting Example 4. 

Argument by repeated reflections. The principle of Proposition 7 is the same as that 
of Figure 4, except that Ax rather than Aj is held constant. Suppose that for some 
I z I  = 1,a (nondissipating) wave of frequency z exists which can travel leftwards with 
C < 0, reflect at the Q- 1 Q ,  interface into a rightgoing wave with C > 0, and then 
reflect at the QolQ+ interface into the original leftgoing wave mode again. If the 
product of the two reflection coefficients in this circuit is greater than 1, then 
amplification has taken place, and it will be repeated in further reflections. The time 
taken to complete each circuit is roughly constant, independent of h and k as 
h ,  k -) 0. Therefore, one must expect growth at the rate constr. 
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Argument by perturbed reflection coefficients. If permits geometric growth in t, 
we can expect the existence of an eigensolution u; = z,$, with lzol > 1; the rate of 
growth will depend on how large lzol can be. For simplicity, suppose that Q ,  admits 
just one rightgoing mode Z"K' and one leftgoing mode z"p/ for each lzl 2 1,and as 
in the above argument, suppose that for some Jz,J= 1 one has J K J  = )p J= 1, 
C, < 0 < C,, and IA, A,I > 1. Then the diagonal matrices K and M of Section 2 
reduce to K and p, and the matrix EL of (2.11) is a scalar with modulus IA, A,/. 
Obviously, thls scalar is not equal to 1, so by Lemma 1, does not have a solution 
z;$~. But suppose it happens that EL = 1 + const, where, here and from now on, 
const denotes a quantity of order of magnitude 1 that varies from one occurrence to 
the next and is positive except possibly for an imaginary part of size O(E), when this 
makes sense in context. To find a solution satisfying (2.7), consider z = z,(l + E), 
0 < E << 1. This perturbation changes K ,  p, A, and A, by O(E). In particular, K and p 
become 

(In the limit E = 0, the constants here are l/hlC,I and l/hlC,I.) By (2.11), EL 
therefore becomes 

For EL  to have value 1,the two factors have to balance, which means E = O(l/A j) .  
Therefore, one can expect that any eigensolution z"$~to a will grow at the rate 

as asserted in (3.1). 
Example 4. Let u, = u, on [O,1] be approximated by the LF formula (1.8) together 

with the (admittedly contrived) boundary conditions 

The reflection coefficient functions are easily seen to be 

and since the denominators are never zero, both interfaces are GKS-stable. How- 
ever, lAll can be larger than l .  For simplicity, consider the semidiscrete limit h = 0, 
z = 1. By (1.17), for any 8 = [ h  E 10, m/2), LF then has a solution 

For any 8 with IA1(8)1 > 1, one can expect a to admit an eigensolution that grows 
approximately at the rate I A ~ ( ~ ) I ~ ~ ~ ~ ~ / ~ ,  since each circuit of a trapped wave packet 
will take time 2/cos 8. The maximum of these rates for the given formulas turns out 
to be at 8 = .75, where one gets \A,\ = 2.38, C = .725, and growth (1.37)'. Numeri- 
cal experiments confirril that solutions grow roughly at this rate, independently of h 
and k. 
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To establish Proposition 7 rigorously, one must prove that admits the kind of 
growing eigensolution we have described. This can be done by using perturbation 
arguments based on the above heuristic reasoning to show that (2.11) in Lemma 1 
has a solution with lzl = (1.371~.Since the conclusion is so obvious, we will not give 
details. 

The possibility of P-unstable growth as in Example 4 was recognized from the 
start by Gustafsson, Kreiss, and Sundstrom, and in fact Section 7 of [ lo]is devoted 
to determining when it will occur in a certain 2 x 2 problem. In our particular 
example, the model remains P-unstable no matter how small h and k become. Beam, 
et al. give the impression in various papers that this cannot happen, but that is true 
only when one is dealing with dissipative formulas; see Proposition 10 below. The 
reason that dissipation did not ensure P-stability for the values of h and k they were 
dealing with was that, because of their interest in steady-state results, they were 
using very large values of A ,  and their formulas happened to be nondissipative in the 
limit X + co.Thus, their computations made use of difference formulas that were 
dissipative but only weakly so. 

Now, let reflection coefficients be present that are not merely greater than 1, but 
infinite. The potential growth rate becomes much more severe. 

PROPOSITION8. Let one or both interfaces in the fixed-Ax two-interface problem be 
algebraically GKS-unstable, with an infinite reflection coefficient. Then repeated reflec-
tions between the interfaces may sometimes lead to solution growth at the exponential 
rate 

Remark. For a single GKS-unstable interface with an infinite-reflection coeffi-
cient, it is shown in [27] that the unstable growth is in general no worse than 
Ilunll - const nlluoll. This is what is meant above by "algebraically" GKS-unstable. 

Proof. Again we will motivate (3.4) by two arguments. Then we prove the 
proposition by exhibiting Example 5. 

Argument by repeated reflections. Suppose A ,  is infinite at z = z,, and behaves 
near there like 

const 
IIAlll = -. 

Iz - zOI  

Since there are only A j points between the interfaces for each fixed h ,  Fourier 
analysis implies that no wave on the Q ,  grid can have a spectrum narrower than 
O ( l / A  j ) .  Therefore, it is plausible that in applying (3.5) to the finite grid, the largest 
amplification possible will be that obtained with an effective value z,,, with 
lzeff- zOI = const/A j ,  i.e., llAlll - const A j. Since as before each circuit takes 
roughly a fixed amount of time, independent of h and k as h ,  k + 0 ,  this leads 
immediately to (3.4). 

Argument by perturbed reflection coefficients. As before, suppose that Q ,  admits 
one leftgoing mode z "pJand one rightgoing mode z " KJ for each I z I >, 1, and that for 
some lzol = 1 one has I K I  = IpI = 1, C, < 0 < C,, IA,(z,)I = oo, and IA,(z,)I > 0 .  
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Suppose, furthermore, that A,  behaves like (3.5) for z = z,. Then, under the 
perturbation z = zo(l  + E ) ,  one has 

For EL = 1we must have (1 - const E)"J = E ,  which implies 

Hence, growth should be expected at the rate 

const logA j 1' "I - erconstlog AJ = 
-

lluOll Aj 
(Aj)'OnSt 

Example 5 ([14, Section 171). Let u,  = u, on [O,1] be approximated by LF (1.8) 
with boundary conditions u:+' = u;+' (1.16) and u,",+,', = 0. We have seen in (1.18) 
that this model has an infinite reflection coefficient at z = -1; in fact one has as in 
Example 3, 

With these formulas (2.11) becomes 

and since p = -I/K for LF, this can be rewritten 

Assume A j + 1is even, and write K = 1 - 6. The condition EL(z) = 1becomes 

It is obvious that this equation has a positive real solution near 6 = 0, which is 
asymptotic to 8 = log A j/2A j as A j + co.The corresponding value of z is asymp-
totic to 

Therefore, has an eigensolution which grows at the rate 

This matches the result stated as (17.10) in [14], and numerical experiments confirm 
that physical solutions are rapidly obliterated by growth at the predicted rate. 

The possibility of catastrophic two-boundary interactions as in Proposition 8 has 
long been recognized by Kreiss and his colleagues, and it has been given sometimes 
as a justification of the apparent strictness of the GKS stability definition. We now 
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show that this justification is only partial, for not all GKS-unstable boundaries have 
infinite reflection coefficients, yet an infinite reflection coefficient is required for the 
catastrophic two-boundary interaction to occur: 

PROPOSITION9. Let one or both interfaces in the fixed-Ax two-interface problem be 
algebraically GKS-unstable, but with finite reflection coefficients only. Then admits 
no eigensolutions u," = z"+; that grow faster than (const)'. 

Proof. Consider an eigensolution z"+; of e,and let M, K ,  A,, A ,  be the matrices 
of Lemma 1for the given value z. By Lemma 1, the matrix 

has an eigenvalue 1, which implies IIELII, > 1. On the other hand, the finite 
reflection coefficients assumption implies 

for some T < m. These bounds together yield 

or in particular, since I K I < 1 < IpI for each of the entries in M and K ,  

for some K and p. 
Now the critical observation is that for any Cauchy stable formula Q, IzI - 1 is 

bounded by a multiple of 1 - I K I when the latter is small. For a proof, see Lemma 
9.1 of [lo]; the constant factor is essentially A times the maximum group velocity 
admitted by Q. Therefore, the last inequality implies IzI < for large enough 
A j. But this leads to 

l Z l n  < ( T ) ~ ~ C O ~ ~ ~ / ~ J= const', 

which proves the proposition. 
Our next result is the same as Proposition 5, but restated for the fixed-Ax 

problem. 

PROPOSITION10. In the fixed-Ax two-interface problem, in which each interface 
individually is GKS-stable, a sufficient condition for P-stability is 

IIA1(z>II I I A ~ ( z > I I < 1 for all l z l 2  1 

in any norm subordinate to a vector norm. 

Proof. Same as for Proposition 5. 
Finally, we return to the question of dissipation. In the fixed-Aj situation, the use 

of dissipative formulas gave no guarantee of stability, because the attenuation 
introduced by dissipation might always be overcome by amplification due to 
reflection at the boundaries. But in the fixed-Ax problem, the attenuation of any 
nonphysical wave mode will increase as the mesh is refined. For fine enough meshes, 
this must overcome any finite amplification factors. 
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To obtain a theorem along these lines, though not the sharpest possible, assume 
for simplicity as in [lo] that the matrix A in the differential equation (1.1) is already 
diagonal, with 2 positive and R = N - L negative eigenvalues, and let A, (A x L )  
and 2,( 2  x R )  be reflection matrices imposed as homogeneous boundary condi-
tions to define an initial-boundary value problem for (1.1) on Exl, x,]. Then we have 

PROPOSITI~N11. Let e be a GKS-stable, total@ dissipative, consistent model of the 
fixed-Ax two-interface problem described above, and suppose 

in some norm subordinate to a vector norm. Then,for all sufficient@ small h and k ,  e is 
P-stable. 

Remark. By "totally dissipative," we mean that the interior model Q dissipates 
oscillations with respect to t as well as x. For two-level formulas this is the same as 
the usual definition of dissipativity. For multi-level formulas, there is the additional 
requirement that the scheme admit no solutions vy = zn$, = const, with IzI = 1 
but z # 1[24]. 

Remark. This result is related to the theorem stated by Gustafsson in [I l l .  See also 

[71. 
Proof. We must show that 0 admits no eigensolution z"$~with lzl > 1, for large 

enough A j. Suppose to the contrary that for a sequence of values A j -, so, e has a 
solution z"$~with lzl > 1.Since Q is GKS-stable, it has finite reflection coefficients, 
so (3.6)-(3.8) of the last proof are again valid. Equation (3.8) implies I K ~t 1and Ipl11 
for some K and p as A j -+ so. By dissipativity, this implies K + 1 and p + 1. By 
total dissipativity, this in turn implies z -+ 1also. 

Consider the behavior of the L X L matrix ELof (2.11) as A j -+ so and z -+ 1. By 
consistency, L values p and R values K approach 1, and the corresponding basis 
vectors in terms of whlch EL is defined approach the basis vectors for the differential 
equation, namely unit vectors of the form (0,. ..,0,1,0,. ..,O)T. Consistency further 
implies that the numerical reflection matrices A, and A,, when restricted to these 2 
and R rows and columns, approach A, and A,. On the other hand, the remaining 
L - 2 values p and R - R values K are bounded away from 1 in modulus as 
A j -* oo,and therefore the elements of M-"J and K"J in these remaining positions 
converge to zero as A j -+ oo.These observations imply 

(The norms on the matrices without tildes are arbitrary, so long as they reduce to the 
norms on the matrices with tildes when restricted to the appropriate components.) 
Together with the hypothesis, these bounds show that EL cannot have 1 as an 
eigenvalue. Therefore, by Lemma 1, the assumed sequence of eigensolutions cannot 
exist after all. 

Acknowledgements. I am grateful for valuable discussions with Robert Warming 
and Michael Giles. Marsha Berger made many constructive suggestions and caught 
an error in the formulation of Proposition 5.  
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APPENDIX 
Notation 

j ,  n space, time index 

h ,  k  space, time step size 

A = k / h  mesh ratio 


U ( X ,  t ) ,  u$' continuous, discrete solution vector 

N dimension of u ,  u 

E , L! wave number, frequency 

C ( L 4  group velocity 
z temporal amplification factor 

K ,  II. rightgoing, leftgoing spatial amplification factor 

1, r no. of points to the left, right of center in stencil 
R = Nl ,  L = Nr no. of rightgoing, leftgoing numerical wave modes 

Q ,  0 finite difference model for i.v.p ., i.b .v.p. 


A ( z )  reflection matrix function at boundary 

const positive constant, different each time 
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