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Computed eigenmodes of planar regions

Lloyd N. Trefethen and Timo Betcke

Abstract. Recently developed numerical methods make possible the high-
accuracy computation of eigenmodes of the Laplacian for a variety of “drums”
in two dimensions. A number of computed examples are presented together
with a discussion of their implications concerning bound and continuum states,
isospectrality, symmetry and degeneracy, eigenvalue avoidance, resonance, lo-
calization, eigenvalue optimization, perturbation of eigenvalues and eigenvec-
tors, and other matters.

1. Introduction

Eigenmodes of metal plates were measured experimentally by Chladni in 1808,
who became celebrated for this work, and in the generations that followed, the
mathematics of eigenmodes of vibrating plates and membranes was set forth by,
among others, Poisson (1829), Lamé (1861), Clebsch (1862), Weber (1869), Rayleigh
(1877), Schwarz (1885), and Pockels (1891). It was soon recognized that the same
mathematics describes the modes that appear in certain electromagnetic cavities. A
new application came with Schrödinger’s equation in 1926, which showed that these
equations also govern quantum states of a particle trapped in a two-dimensional
well. A further fifty years after that, these matters began to receive renewed atten-
tion with the emergence of the field of chaotic dynamics and associated questions
of billiards, scars, and ergodicity. Nowadays, for every person with an interest in
membranes or microwaves, there is another who speaks of “quantum chaos” [30].

The problem we shall consider is to find the eigenvalues λ and eigenfunctions
u of a two-dimensional planar “drum” defined by the Helmholtz equation

(1.1) −∆u = λu, u = 0 on ∂Ω,

where Ω is an open set in R2, u is twice differentiable in Ω and continuous on Ω and
not identically zero, and ∆ is the Laplacian [20, 38]. If Ω is a bounded region with
a piecewise smooth boundary, then it has a countably infinite set of eigenfunctions
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with eigenvalues satisfying

0 < λ1 < λ2 ≤ λ3 ≤ . . . , λk → ∞.

In the usual area inner product, the eigenfunctions can be taken to be orthogonal
and complete, and the lowest is of just one sign. For unbounded regions with infinite
area, eigenmodes may or may not exist, and in addition, there may be a continuous
spectrum.

Numerical methods for solving (1.1) have also been developing with the years.
We two have been involved with recent advances in this area [13, 14, 15], as
have others including Bäcker, Banjai, Barnett, Descloux, Driscoll, Heller, Saraceno,
Tolley, and Vergini [5, 7, 8, 9, 22, 23, 32, 51]. The present paper is devoted to
presenting some of the fruits of this algorithmic work. Our plan is to explore a
collection of examples of planar regions with interesting spectra, and to use these
examples to illustrate certain themes of mathematical and physical interest. Along
the way we shall record precise numbers for possible reference by future researchers.
Though we never give details of our numerical results, we report most eigenvalues
to 8 digits of precision, and all digits listed are in each case believed to be correct.
Only a few high-precision computed eigenvalues such as these have been reported
previously in the literature.

2. L-shaped regions—symmetries and singularities

Of all regions Ω that cannot be treated analytically, perhaps the most familiar is
the L shape, which we shall take to consist of a concatenation of three unit squares.
This was the central example in the 1967 paper by Fox, Henrici and Moler that
was an important early contribution to numerical methods for these problems [25],
an outgrowth of Moler’s 1965 PhD thesis at Stanford. In the late 1970s, Moler
took this example to illustrate the power of his new computer system MATLAB,
and when MathWorks, Inc. was founded in 1984, the new company chose an image
related to the first eigenmode of the L as its logo.

Figure 1 presents nine eigenfunctions of this region together with their eigen-
values. Here as in all our figures, each eigenfunction is scaled to have maximum
value 1, and the level curves lie at heights −0.8,−0.6, . . . , 0.6, 0.8, with the negative
levels shown in grey. The first six of these results were computed by Fox, et al.,
and indeed, the first twelve eigenvalues of this region can be found hardcoded in
MATLAB’s membrane function.

A number of interesting features can be seen in Fig. 1. The first one we note is
that as λ increases, the characteristic wavelength of the eigenmode decreases. If we
think of a typical mode as looking locally like sin(kx) sin(ky) for some wave numbers
kx and ky with k2 = k2

x + k2
y, then k will satisfy k2 = λ; thus a typical local wave

number is k =
√

λ, corresponding to a wavelength 2π/
√

λ. For λ ≈ 493, as in our
final image, this argument suggests a wavelength of about 0.28, which is consistent
with the patterns seen there. This dependence of wavelength on eigenvalue is related
to Weyl’s Law for eigenmodes of planar regions, which asserts that

(2.1) λn ∼
4πn

A
(n → ∞),

where A is the area of Ω [20, sec. VI.4]. For this eigenmode we have 4πn/A ≈ 435.6,
which differs from the true value by about 12%. (The better approximation 491.3

is obtained by adding to (2.1) the term
√

4πnLA−3/2, where L is the perimeter of
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λ
1
 = 9.6397238 λ

2
 = 15.197252 λ

3
 = 19.739209

λ
4
 = 29.521481 λ

5
 = 31.912636 λ

6
 = 41.474510

λ
20

 = 101.60529 λ
50

 = 250.78548 λ
104

 = 493.48022

Figure 1. Nine eigenmodes of the L-shaped region studied by Fox,
Henrici and Moler in 1967 [25]. The first eight modes shown corre-
spond to simple eigenvalues, and are thus uniquely defined, while
the last one is an arbitrary representative of a three-dimensional
eigenspace associated with a degenerate triplet.

Ω [6], the starting point of the study of the Weyl expansion and other asymptotic
results for (1.1) and related problems [6, 10, 31, 35].) There are many physi-
cal implications of these matters of the dependence of numbers of eigenmodes on
volumes. For example, a comparison of volumes of 3D regions with the scale of
Planck’s constant determines how many modes can “fit in a cavity,” and from this
analysis can be derived the Stefan–Boltzmann formula and other laws of blackbody
radiation. It was for his work in deriving these laws that Planck won the Nobel
Prize in Physics in 1918.

Another notable feature of Fig. 1 is the symmetry of the region about the
diagonal axis, which leads to symmetries of the eigenfunctions: each one is either
even or odd with respect to the diagonal, hence satisfies either a Dirichlet or a
Neumann condition there. We can explain this phenomenon as follows. Suppose
a region Ω is invariant with respect to reflection across a line L, and let u be an
eigenfunction of Ω for some λ. Let v be the function defined by v(x, y) = u(xr, yr),
where (xr, yr) are the coordinates of the reflection of (x, y) across L. Then we have
u = ue + uo, where ue = (u + v)/2 and uo = (u − v)/2 are the even and odd parts
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of u. Clearly u, v, ue and uo all satisfy the eigenvalue equation for the same λ;
at the same time, ue and uo must be distinct. If λ is simple, we conclude that
one of ue and uo must be zero, and thus u is either odd or even with respect to
L. If λ is multiple, then u may or may not be odd or even, but if it is neither,
then u and v are linearly independent and ue and uo are distinct eigenfunctions
that span the same two-dimensional space. Thus we see that when a domain has a
line of symmetry, all the functions in a basis of eigenfunctions can be taken to be
symmetric or antisymmetric with respect to that line.

The L shape also has another kind of symmetry, evident in Fig. 1 in eigenmodes
3 and 104: the region can be divided into three identical squares. It follows that
any eigenfunction of a single unit square (with Dirichlet boundary conditions) can
be extended by two reflections to an eigenfunction of the L shape with the same
eigenvalue. In the figure, the third eigenfunction is of this type, with λ3 = 2π2,
and so is the 104th, with λ104 = 50π2. The latter case is particularly interesting,
for this is an example of degeneracy, in fact, double degeneracy:

λ103 = λ104 = λ105 = 50π2.

One can explain this by noting that 50 can be written as the sum of two squares
in three different ways:

50 = 52 + 52 = 12 + 72 = 72 + 12,

implying that sin(5πx) sin(5πy), sin(πx) sin(7πy), and sin(7πx) sin(πy) are three
linearly independent eigenfunctions with this same eigenvalue. In Fig. 1 we could
have chosen one of these eigenfunctions as our illustration, but it seemed more inter-
esting to show instead the more generic choice selected arbitrarily by our numerical
method.

Further discussion of symmetry of domains and eigenfunctions, and of multi-
plicities (which a number theory argument shows can be arbitrarily high), can be
found in [38]. See also Section 7, below.

Another issue that arises with the L shape is the singularity associated with the
reentrant corner. In general, an eigenfunction (1.1) can be analytically continued
outside ∂Ω near any boundary point at which ∂Ω is an analytic curve [19, 26, 33,

50]. By multiple reflections, it can also be continued across any corner where ∂Ω
consists locally of two straight segments meeting at an internal angle of π/α, where
α is an integer. Thus the five salient corners of the L shaped region are points
of analyticity, with α = 2, but the reentrant corner, with α = 2/3, is a point of
singularity. Accurate numerical methods must take such singularities into account.

Figure 2 shows another kind of L-shaped region, now with a quarter-circular
curved boundary. One can interpret this region as one-quarter of a square of side
length 2 with a unit circle removed—a familiar example in chaotic dynamics known
as a Sinai billiard. In this case another reflection argument shows that all the
corners are nonsingular, and the eigenfunctions can be analytically continued into
a neighborhood of Ω. Another change from the usual L shape is that there are no
longer any degenerate eigenvalues, at least so far as we are aware.

3. A rectangular dumbbell—broken symmetry and line splitting

Our next example carries further the discussion of symmetry. Here Ω is a
“dumbbell” consisting of two squares of side length π coupled by a bridge of length
and width π/4. Since Ω is symmetric with respect to two axes, one sees in Fig. 3
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λ
1
 = 7.0202539 λ

2
 = 13.786585 λ

3
 = 18.101760

λ
4
 = 25.224874 λ

5
 = 28.808478 λ

6
 = 34.857495

λ
20

 = 96.226813 λ
50

 = 225.46200 λ
100

 = 436.51095

Figure 2. Nine eigenmodes of a curved L-shaped region (one
quarter of a Sinai billiard).

that all the eigenfunctions are symmetric or antisymmetric with respect to both
symmetry lines. (There are no degeneracies, so no special choices of eigenfunctions
are needed to achieve these symmetries.)

The new feature of this example is that it can be viewed as two square domains
that are weakly coupled. In a square of side length π, the eigenvalues are the num-
bers i2 + j2, where i and j are positive integers: that is, 2, 5, 5, 8, 10, 10, 13, 13, . . . .
In a disconnected region consisting of two such squares uncoupled, the eigenvalues
would accordingly be

2, 2, 5, 5, 5, 5, 8, 8, 10, 10, 10, 10, . . . .

When the bridge is put in connecting the two squares, the eigenvalues decrease and
the degeneracies are broken; for our particular choices of dimensions the first six
numbers in the above sequence become approximately

1.956, 1.961, 4.80, 4.83, 4.99684, 4.99685.

From the figure one can get an idea of why some of the eigenvalues have shrunk
farther than others. Eigenmode 1, for example, has greater amplitude in the bridge
region than eigenmode 2, which explains why λ1 is further than λ2 from 2. As
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λ
1
 = 1.9557938 λ

2
 = 1.9606830

λ
3
 = 4.8007611 λ

4
 = 4.8298953

λ
5
 = 4.9968371 λ

6
 = 4.9968509

λ
50

 = 39.634544 λ
100

 = 72.673422

Figure 3. Eight eigenmodes of a rectangular dumbbell. Without
the coupling between the two halves, the first six eigenvalues would
be 2, 2, 5, 5, 5, 5. The coupling lowers the eigenvalues and breaks
the degeneracy.

λ increases, the eigenmodes fully penetrate the bridge region as well as the two
squares.

This example can be interpreted as an illustration of the physical phenomenon
of spectral line splitting. The simplest model of an atomic system might be isotropic
in space, leading to eigenvalues of the Schrödinger operator appearing in degenerate
pairs or triplets. This would be analogous to one or both halves of the dumbbell
region, without the coupling. Higher-order effects, however, may break the symme-
try and cause splitting of the lines. One of the first examples of this phenomenon
was the Zeeman effect, in which the application of an external magnetic field causes
spectroscopic lines to split; this discovery won the second Nobel Prize awarded in
Physics, in 1902, for Lorentz and Zeeman. Twenty years later, the observation of
fine structure splitting in the spectral lines of the hydrogen atom was one of the
pieces of evidence that led Goudsmit and Uhlenbeck to the idea of electron spin;



COMPUTED EIGENMODES OF PLANAR REGIONS 7

λ
1
 = 1.9582193 λ

2
 = 2.4050102

λ
3
 = 4.8150607 λ

4
 = 4.9968440

λ
5
 = 5.8838632 λ

6
 = 6.1669647

λ
50

 = 40.900767 λ
100

 = 80.003552

Figure 4. Eight eigenmodes of an asymmetrical dumbbell. The
spatial variation in the drum causes localization of the lower eigen-
functions on one side or the other.

the lack of a Prize for this discovery is often cited as one of the puzzling omissions
in Nobel history.

4. An asymmetric dumbbell—localization of eigenfunctions

Our third example is a small perturbation of the last one, but the perturbation
changes the eigenvectors greatly. Here again we consider a rectangular dumbbell,
but now, the square on the right has side lengths reduced from π to 0.9π. The effects
of this perturbation illustrate the general principle that whereas eigenvalues of self-
adjoint problems are well-conditioned with respect to perturbations, the condition
number of an eigenfunction is inversely proportional to the distance to the next
nearest eigenfunction [29]. When two eigenvalues are nearly equal, the associated
eigenfunctions may change wildly in response to perturbations, and in the limit of
degenerate eigenvalues, they may change discontinuously (although the space they
mutually span will not).
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Specifically, the difference between Figs. 3 and 4 is an elementary instance of
localization: by introducing spatial variation in our system, we have caused some
of the eigenmodes to be locally “pinned.” Barry Simon puts it like this [46]:

Thus W [a perturbation] is a small flea on the elephant V [the
symmetrical problem]. The flea does not change the shape of the
elephant. . . but it can irritate the elephant enough so that it shifts
its weight, i.e.,. . . the ground state, instead of being asymptotically
in both wells, may reside asymptotically in only one well.

Simon and others including Helffer and Sjöstrand have analyzed such effects in
depth.

More remarkable examples of eigenmode localization occur in extended or infi-
nite domains with random geometries. For example, if the dumbbell were extended
to an infinite necklace of square beads of randomly varying sizes, we would (with
probability 1) find eigenmodes exponentially localized. Thus the difference between
Figs. 3 and 4 is a first step in the direction of the phenomenon of Anderson local-

ization [1]. In its simplest form this effect is exhibited by a tridiagonal symmetric
matrix with nonzero off-diagonal entries and random entries on the diagonal, whose
eigenvectors are localized, in contrast to the global eigenvectors one encounters for a
tridiagonal symmetric Toeplitz matrix. Such localization effects have fundamental
importance for matters related to electrical conductivity and transparency to light
in condensed matter systems, and there is another Nobel Prize in Physics in this
story, awarded in 1977 to Anderson, Mott and van Vleck.

For problems of this kind there is always the balance to be considered between
the strength of the coupling between entries (the width of the bridge in Figs. 3
and 4) and the strength of the spatial variation (the degree of asymmetry of the
dumbbell). When the coupling is dominant the eigenvectors tend to be global, and
when the variation is dominant they tend to be local. For a fixed region as in Fig. 4,
though lower modes may be localized, almost all higher modes will usually be global.
Indeed, for domains whose classical billiard trajectories are chaotic, Shnirelman’s

theorem, also known as the quantum ergodicity theorem, asserts that almost all
higher modes will be global and uniformly distributed (ergodic) [44]. (The region
of Fig. 4 and the other polygonal regions of the article are not in this class; because
of the straight sides their classical billiard dynamics is “pseudointegrable” rather
than chaotic.)

5. An unbounded region—continuous spectrum, resonance, tunneling

We now turn to an example of an unbounded region with infinite area. In
such cases there will often be a continuous spectrum, and there may or may not be
eigenfunctions in addition that correspond to bound states. Our region, shown in
Fig. 5, is a semi-infinite strip of width 1 into which a slit of length 1/2 has been
cut at a distance 1 unit from the end.

For a semiinfinite strip without the slit, for any integer k and real number α,
the function

(5.1) u(x, y) = sin(kπy) sin(αx)

satisfies the eigenvalue equation with

(5.2) λ = π2 + α2.
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λ = 10.0

λ = 15.0

λ = 18.6

λ = 25.0

λ = 30.0

λ = 35.0

Figure 5. A semi-infinite slit with a resonant square cavity at
the end. Each number λ ≥ π2 is in the spectrum, but the asso-
ciated eigenfunctions of the continuous spectrum only penetrate
significantly into the cavity when λ is close to an eigenvalue of the
square. For such values of λ, the resonance may be strong enough
that the amplitude is greater in the resonant cavity than outside.
Here we see this effect for λ = 18.6 ≈ 2π2: the amplitude in the
cavity is about 5.3 times as great as that outside.

This function is not square-integrable, so technically speaking, u is not an eigen-
function and λ is not an eigenvalue. However, it is common to bend terminology
and call u an eigenfunction anyway, or an eigenfunction of the continuous spectrum.
In any case, by mollifying u suitably we can make it a function in L2 that comes
arbitrarily close to satisfying the eigenvalue equation, and thus each number

λ ∈ [π2,∞)

is in the spectrum for the semiinfinite strip.
For the slit strip, the spectrum is the same, and for each λ ∈ (π2,∞), there

is again an eigenfunction of the continuous spectrum. Near the slit, these eigen-
functions have interesting behavior, as is evident in Fig. 5. For most values of λ,
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λ
1
 = 8.6650336

Figure 6. If the cavity in Figure 5 is enlarged, the region supports
a bound state.

the amplitude of the eigenfunction in the cavity region is less than in the rest of
Ω, but for certain values, the oscillation excited in the cavity becomes as large as
that outside or larger. This is the phenomenon of resonance. If the cavity were
an isolated system, it would have true eigenmodes with frequencies equal to the
multiples 2, 5, 5, 8, . . . of π2. In fact it is weakly coupled to the infinite strip, a
system that may oscillate at arbitrary frequencies above π2. One might expect
that there should be true eigenmodes of this operator localized in the cavity, but
this cannot be so in this case. There are “quasimodes” of this form, which behave
like eigenmodes for a time, but they cannot be true eigenmodes since eventually
the energy in them must leak out to the rest of the system by tunneling through
the gap defined by the slit.1

The problem of how to analyze situations like this, where there is an eigenmode
that “ought to be there” but mathematically is not, has led to the theory of reso-
nance in mathematical physics [34]. Physically it is of great importance, the basis
of all kinds of phenomena of metastability. One of the mathematical foundations
of such analysis is the WKBJ method invented in 1926. A celebrated application
was Gamow’s 1928 analysis of tunneling effects in quantum systems to explain the
half-lives of unstable atomic nuclei. Another example is phosphorescence, a process
that relies on atoms becoming excited to metastable states, not modes but qua-
simodes, which release their energy only slowly. Long before the quantum theory
had come along to show that these effects involved modes and quasimodes, Henri
Becquerel won the 1903 Nobel Prize in Physics for work related to radioactivity
and phosphorescence.

6. Unbounded regions with bound states

Some eigenvalue problems in unbounded domains, on the other hand, possess
one or more bound states that are genuine eigenfunctions, usually decaying expo-
nentially away from their central region. In the Schrödinger equation of quantum
mechanics, this is a familiar effect if a potential has a local minimum. Indeed, the
quantum states of atoms and molecules are of precisely this nature.

1The term quasimode is standard in contexts like this of Hermitian operators whose eigenvec-
tors may have surprising behavior because of degenerate or near-degenerate eigenvalues [2, 18].

Some of the fundamental results of spectral asymptotics and quantum chaos are derived by con-
structing quasimodes by methods of semiclassical mechanics. The alternative term pseudomode

is generally used for strongly non-Hermitian operators, where modal surprises may appear even
though the eigenvalues are well separated [49].
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λ
1
 = 9.1700516

Figure 7. Bound state in an infinite “L”.

λ
1
 = 8.5143132

Figure 8. Bound state in an infinite zig-zag region.

For our problem (1.1), the analogous configuration is that of an unbounded
region Ω whose portions extending to infinity have bounded width, and with a
bulge or a bend in one or more positions. For example, suppose we consider the
semi-infinite slit with a resonant cavity of Figure 5, but now, we increase the side
length of the cavity from 1 to 1.5. The resulting region has a single bound state
with eigenvalue about 8.67, shown in Figure 6. An explanation of why such states
may exist is as follows. Since the cavity has size 1.5, we can expect it approximately
to admit oscillations of frequency λ = 2π2/(1.5)2 ≈ 8.77. This number lies below
the minimal value of π2 ≈ 9.87 for the continuous spectrum in the semiinfinite
portion of the domain. Physically, a vibration at this frequency cannot tunnel out
of the square cavity region; the width of the semiinfinite strip is such as to admit
exponentially decaying solutions with λ ≈ 8.67 but no sinusoidal solutions. In the
language of the Heisenberg uncertainty principle, it could be said that a particle
located in the semiinfinite part of Ω, with y position accordingly known to lie within
0 and 1, could not have momentum as low as that associated with λ ≈ 8.77.

Bound states such as these have been of growing interest among physicists in
recent years, because nanotechnology has advanced to the point where it is pos-
sible to build quantum “corrals,” “wires,” “tubes” and “waveguides” that contain
electrons in a quasi-two-dimensional fashion so that their quantum states are well
approximated by (1.1). Celebrated images of localized states in microscopic systems
have been produced by Eigler and his colleagues [21]. The book [41] is devoted
to exploring another class of such problems and examines a number of interesting
illustrative regions. For example, suppose we consider an “infinite L-shaped region”
in the form of an infinite strip of width 1 with a sharp right-angle bend in it. As first
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λ
1
 = 8.8912257 λ

2
 = 9.6675196

Figure 9. When the two infinite legs are separated by one more
unit, there are two bound states.

shown in [39] and [45], this region has a single bound state with λ ≈ 9.1700516,
illustrated in Figure 7. For the two-bend region of Figure 8 there is a bound state
with λ ≈ 8.5143132, and when the same region is extended by a unit square spacer
in the middle, there are two bound states, as shown in Figure 9 [17]. In [41], these
and other mathematical predictions are confirmed by physical experiments carried
out in microwave cavities.

It has been proved that any two-dimensional “tube” of constant width, if it
approaches straight channels at infinity and contains a bend at a finite location,
must sustain at least one bound state [24, 28].

7. Eigenvalue avoidance or level repulsion

Except for λ1, any eigenvalue of (1.1) can be degenerate. As we have discussed,
degeneracies typically (but not always [12]) arise when Ω has multiple lines of sym-
metry. For example, it is easily seen that rectangular domains may have numerous
degeneracies, and this was the explanation for the effect λ103 = λ104 = λ105 in
Figure 1. In rectangles the vertical and horizontal directions decouple, and it is no
surprise if degenerate eigenvalues appear in systems that decouple into two or more
independent subsystems.

Generically, however, the problem (1.1) tends to avoid degenerate eigenvalues,
and this is a phenomenon that has been analyzed in detail since it was first noted by
von Neumann and Wigner in 1929 [3, 48, 52]. The following elementary argument
captures the essence of the matter. The set of real symmetric 2 × 2 matrices is a
vector space of dimension 3:

{(

a b
b c

)}

, a, b, c ∈ R.

The set of real symmetric 2×2 matrices whose eigenvalues are degenerate, however,
is a subspace of dimension just one:

{(

a 0
0 a

)}

, a ∈ R.

The codimension of the set of degenerate matrices is thus 2, not 1 as one might have
expected. It follows that for generic 2×2 real symmetric matrix problems dependent
on a single real parameter α, one cannot expect to find a value of α for which there
will be a degenerate pair of eigenvalues. Essentially the same argument works for
n×n matrices, and the same effect occurs also with problem (1.1). Triple eigenvalues
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λ
1
 = 2.0315440 λ

2
 = 5.0015576 λ

3
 = 5.1854610

λ
4
 = 8.2705660 λ

5
 = 10.018467 λ

6
 = 10.281345

Figure 10. A square of side length π, but with the corner snipped
to break the symmetry.

generically require 5 parameters, quadruple eigenvalues need 9, quintuples need 14,
and so on.

One of the many reasons for interest in eigenvalue avoidance is that it may offer
a window into the behavior of the Riemann zeta function. It is an old idea, known
as the Hilbert–Pólya conjecture, that the zeros of the zeta function on the critical
line Rez = 1

2
might be the eigenvalues of some operator. Extensive numerical

experiments have shown that these zeros appear to be distributed in a fashion close
to that of the eigenvalues of random Hermitian matrices [42, 43]. (In the complex
Hermitian case the avoidance effect is even stronger, as the codimension increases
from 2 to 3.) This discovery has generated a great amount of research activity, which
one day, perhaps, might lead to a proof of the Riemann hypothesis [11, 36, 37].
Closer to the topic of this article, it has been conjectured that if the region Ω is one
whose classical billiard trajectories are chaotic, then its eigenvalues match statistics
for random real symmetric matrices [16].

Figure 10 gives an illustration of the eigenvalue avoidance effect.2 For a square
of side length π, the eigenvalues will be 2, 5, 5, 8, 10, 10, . . . , with multiple degenera-
cies attributable to the symmetry. Suppose now that we break the symmetry by
snipping the upper-right corner of the square, inserting a new boundary segment
between points a distance π/4 from the corner along the upper and right sides.
In the figure we see that the degeneracy of λ3 and λ4 has been broken, and these
eigenvalues now differ by about 3.7%. This effect is much like what we saw already
in Figure. 3.

Figure 11 shows the influence of the snipped corner on the dependence of the
eigenvalues on a parameter. On the left, the first nine eigenvalues are plotted for

2The idea of considering problems like this was suggested to us by Rainer Hempel of the
Technical University of Braunschweig. For another computed example see [14].
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0.5 0.75 1 1.25 1.5 1.75 2
0

2

4

6

8

10

12

14

16

18

20

→

length of rectangle
0.5 0.75 1 1.25 1.5 1.75 2

→

length of snipped rectangle

Figure 11. The first nine eigenvalues for rectangles and snipped
rectangles of height 1 and varying length. For the snipped rectan-
gles, though this is not clear from the figure in all cases, the curves
have no intersections.

rectangles of height π and length ranging from π/2 to 2π. As the length increases, all
the eigenvalues decrease monotonically, but the rates are quite uneven and there
are a number of degeneracies. On the right, the analogous plot is presented for
rectangles with a corner of side length π/4 snipped away. The curves lie roughly in
the same positions, but their topology has changed entirely: the intersections are
gone.

8. Isospectral drums

One of the celebrated examples of problem (1.1) stems from Mark Kac’s Chau-
venet Prize-winning 1966 article, “Can one hear the shape of a drum?” [35]. Kac
was asking a uniqueness question, whether there could be two distinct regions Ω1

and Ω2, not related by rotation or reflection, with all identical eigenvalues. In 1992
Gordon, Webb and Wolpert shown that the answer is no, and Figure 12 shows one
of their examples [27]. The shape on the left and that one the right are different,
but all their eigenvalues are identical. The eigenvalues and eigenfunctions for these
regions were first computed by Driscoll [23].

9. Maximizing λ3/λ1

Finally, we consider a problem of eigenvalue optimization. As is well known,
there are all kinds of constraints on the spacing and separation of the eigenvalues
of a system (1.1). A specific question one may ask is, how large can the ratio λ2/λ1

be? The longstanding Payne–Pólya–Weinberger conjecture was this the maximum
was achieved by a disk, for which we have

λ2

λ1

=
j2
1,1

j2
0,1

≈ 2.539,
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λ
50
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Figure 12. Isospectral drums of Gordon, Webb and Wolpert [27].
Eigenmodes like these were observed experimentally by Sridhar
and Kudrolli [47] and computed by Driscoll [23].

where jk,1 represents the first zero of the Bessel function Jk. This conjecture was

turned into a theorem by by Ashbaugh and Benguria [4].
What about λ3/λ1? Maximizing this ratio is an open problem; the maximum

is certainly not achieved by a disk. The best estimate up to now appears to be due
to Levitin and Yagudin [40], who propose a certain dumbbell shape for which the
ratio appears to be about 3.202. Figure 13 shows another dumbbell shape whose
ratio λ3/λ1 falls short of this value by about 0.35% and is thus apparently not quite
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λ
1
 = 1.00000 λ

2
 = 1.77629

λ
3
 = 3.19074 λ

4
 = 3.19074

Figure 13. A two-disk domain with a high ratio λ3/λ1.

optimal. It is, however, very simple, consisting of the union of the disks of radius
2.002324 centered at x = ±1.191321. To six-digit accuracy at least, this region has
a degenerate eigenvalue pair λ3 = λ4.
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