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A RATIONAL SPECTRAL COLLOCATION METHOD WITH
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Abstract. A spectral collocation method based on rational interpolants and adaptive grid points
is presented. The rational interpolants approximate analytic functions with exponential accuracy by
using prescribed barycentric weights and transformed Chebyshev points. The locations of the grid
points are adapted to singularities of the underlying solution, and the locations of these singularities
are approximated by the locations of poles of Chebyshev–Padé approximants. Numerical experiments
on two time-dependent problems, one with finite time blow-up and one with a moving front, indicate
that the method far outperforms the standard Chebyshev spectral collocation method for problems
whose solutions have singularities in the complex plane close to [−1, 1].
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1. Introduction. The Chebyshev spectral method (the phrase spectral method
is synonymous with spectral collocation method in this article) is a method for the
numerical solution of differential equations on a bounded nonperiodic interval, which
may be assumed without loss of generality to be [−1, 1]. The basis of the method is to
approximate the solution of a differential equation by a polynomial which interpolates
data uk at Chebyshev points xk = cos(kπ/N), k = 0, 1, . . . , N , where the data {uk}
are determined by requiring that the polynomial interpolant satisfy the differential
equation exactly at the points {xk}. As N increases, the approximation error decays
at a rate which depends on the smoothness of the underlying solution. If the solution
can be continued as an analytic function in a closed ellipse with foci ±1, semimajor
axis length L, and semiminor axis length l, then the error decays exponentially at the
rate O((L+ l)−N ) [29]. However, if the solution has singularities in the complex plane
close to [−1, 1], so that L + l ≈ 1, then this convergence rate will be too slow for the
method to be effective.

One cannot simply alter the points and expect a better convergence rate, because
polynomials which interpolate at Chebyshev points already give near best polynomial
approximations. Instead, one must consider spectral methods based on other types of
global interpolants, such as rational functions. Unlike polynomials, rational functions
can interpolate at any set of points without the drawback of the Runge phenomenon.

The purpose of this article is to present a new spectral method based on rational
interpolants and adaptive grid points, and to show that this method far outperforms
the Chebyshev spectral method for problems whose solutions have singularities in the
complex plane close to [−1, 1].

Spectral methods based on rational interpolants have been developed by Berrut,
Baltensperger, and Mittelmann [12]. A common feature of their methods is the rep-
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resentation of rational interpolants in barycentric form. The barycentric form of a
rational function r which interpolates data f0, f1, . . . , fN at points x0, x1, . . . , xN is

r(x) =

N∑
k=0

wk

x− xk
fk

N∑
k=0

wk

x− xk

,(1.1)

where w0, w1, . . . , wN are called barycentric weights. An advantage of representing a
rational interpolant in barycentric form is that its derivatives can be evaluated easily
using differentiation formulae derived by Baltensperger and Berrut [1, 2], instead
of using the quotient rule repeatedly. The pth derivative of r evaluated at xj can be

written in the form r(p)(xj) =
∑N

k=0 D
(p)
jk uk, where the entries of D(1) and D(2), the

first and second order differentiation matrices, are given by

D
(1)
jk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

wk

wj(xj − xk)
if j �= k,

−
N∑

i=0, i �=k

D
(1)
ji if j = k,

(1.2)

D
(2)
jk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2D
(1)
jk

(
D

(1)
jj − 1

xj − xk

)
if j �= k,

−
N∑

i=0, i �=k

D
(2)
ji if j = k

(1.3)

for j, k = 0, 1, . . . , N . For every set of points {xk}, there is a unique set of barycentric
weights {wk}, up to a multiplicative constant, for which (1.1) represents a polynomial
interpolant. For example, if {xk} are the Chebyshev points, then (1.1) represents a
polynomial interpolant if and only if w0 = c/2, wk = (−1)kc, k = 1, . . . , N−1, and
wN = (−1)Nc/2 for some nonzero constant c [17]. Thus, a polynomial interpolant can
be made into a rational interpolant by modifying its points and leaving its barycentric
weights unchanged, or vice versa.

Baltensperger, Berrut, and Noël exploited this property, modifying a polynomial
which interpolates at Chebyshev points into a rational interpolant which approximates
analytic functions with exponential accuracy, by applying a conformal map to the
points and leaving the barycentric weights unchanged [4]. Baltensperger and Berrut
developed a spectral method based on that rational interpolant, in which they used
the conformal map of Kosloff and Tal-Ezer [24] to distribute grid points more evenly
over the computational interval [3, 11]. Berrut had shown in earlier work that if that
rational interpolant has arbitrary points, then it cannot have poles in the interpolation
interval, which is a crucial property for approximating continuous functions [9].

Berrut and Mittelmann took the alternative approach, modifying a polynomial
which interpolates at Chebyshev points into a rational interpolant with preassigned
poles, by changing the barycentric weights using a formula discovered by Berrut [10]
and leaving the points unchanged [13]. They developed a spectral method based on
that rational interpolant, in which they computed the locations of preassigned poles
by minimizing a residual error iteratively [14, 15].
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Berrut and Mittelmann also developed a spectral method based on a combination
of the two previous rational interpolants, in which they used a modified version of the
conformal map of Bayliss and Turkel [8] to adapt grid points to multiple fronts, and
computed the parameters of the map and the locations of poles simultaneously by
minimizing a residual error iteratively [16]. However, this computationally expensive
optimization step renders their method inefficient for time-dependent problems.

Spectral methods based on adaptive grid points have, so far, required that the
underlying problem be transformed into new coordinates, where the transformation
maps predefined grid points in a transformed coordinate into irregular grid points in a
physical coordinate. The aim is to transform a problem which has a rapidly varying
solution into one which has a slowly varying solution. The transformation is usually
achieved by means of a parametrized map whose parameters are chosen to minimize
an error functional [6, 7, 22]. A related method is that of an adaptive finite difference
method coupled with a spectral method, in which a transformation serving the same
purpose as that just described is constructed from the grid points of an adaptive finite
difference solution [26, 27].

In this article, we present a new adaptive rational spectral method which, unlike
existing adaptive spectral methods, does not require that the underlying problem be
transformed into new coordinates, and unlike existing rational spectral methods, takes
into account and locates a priori unknown singularities of the underlying solution.
In section 2, we explain how a conformal map which maps the singularities of a
function farther into the complex plane can be used to improve the Chebyshev spectral
method. In section 3, we explain how Chebyshev–Padé approximation can be used
to approximate the locations of these singularities. In section 4, we explain how the
new method can be implemented from ideas discussed in sections 2 and 3. In section
5, we present the results of numerical experiments on two time-dependent problems.
Finally in section 6, we present some conclusions.

2. Enlarging the ellipse of analyticity. The basis of our adaptive rational
spectral method is the following theorem, which was proved in [4], on the exponential
convergence of rational functions which interpolate at transformed Chebyshev points.

Theorem 1. Let D1 and D2 be domains in C containing J = [−1, 1] and a real
interval I, respectively. Let g : D1 → D2 be a conformal map such that g(J) = I.
Let Eρ denote an ellipse with foci ±1 and semimajor axes of lengths that sum to ρ.
If f : D2 → C is such that f ◦ g : D1 → C is analytic inside and on Eρ, and if g is
analytic inside and on Eσ ⊇ Eρ, then the rational function

rN (x) =

N∑′

k=0

(−1)k

x− xk
f(xk)

N∑′

k=0

(−1)k

x− xk

, xk = g(cos(kπ/N)),(2.1)

where the prime indicates that the k = 0 and k = N terms are halved, satisfies

|rN (x) − f(x)| = O((L + l)−N )(2.2)

uniformly for all x ∈ [−1, 1].
If the solution u of a differential equation can be continued as an analytic function

in a neighborhood of [−1, 1] in the complex plane, then the error in approximating u
by the Chebyshev spectral method will decay exponentially at a rate which depends
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on the size of the largest ellipse with foci ±1 in which u is analytic. To be brief, this
largest ellipse will be called the ellipse of analyticity of u.

Theorem 1 suggests that one should choose a conformal map g for which the
ellipse of analyticity of u ◦ g is larger than the ellipse of analyticity of u, and apply
g in a spectral method based on rational interpolants of the form (2.1), to obtain an
approximation of u which is more accurate than that obtained using the Chebyshev
spectral method with the same number of grid points. Alternatively, one can obtain
an equally accurate approximation of u by using the Chebyshev spectral method to
approximate u ◦ g directly, but this approach requires the tedious transformation of
the underlying differential equation into new coordinates. To be precise, if x is the
physical coordinate and y = g−1(x) is the transformed coordinate, where g−1 is the
inverse of g, then the first few derivatives of u have to be transformed according to

du

dx
=

1

g′(y)

du

dy
,(2.3)

d2u

dx2
=

1

[g′(y)]2
d2u

dy2
− g′′(y)

[g′(y)]3
du

dy
,(2.4)

d3u

dx3
=

1

[g′(y)]3
d3u

dy3
− 3g′′(y)

[g′(y)]4
d2u

dy2
− g′′′(y)g′(y) − 3[g′′(y)]2

[g′(y)]5
du

dy
,(2.5)

and similarly for higher derivatives. These transformations are not required when one
approximates u by a spectral method based on rational interpolants of the form (2.1).

How do we choose g? If only real solutions are of interest, then we should choose
g such that g−1 maps the two complex conjugate singularities lying on the ellipse of
analyticity of u farther away from [−1, 1]. There are many possibilities, but for the
time being, consider the case where u is analytic everywhere in the complex plane
except along two lines extending from 0 ± εi to 0 ±∞i, as shown in the region I1 of
Figure 1. Then

1. h1(z) = −zε−1i rotates and scales I1 to produce I2,
2. h2(z) = sin−1(z) maps I2 to the vertical strip I3, and
3. h3(z) = −z/ sin−1(ε−1i) rotates and scales I3 to produce I4.

The conformal map g which maps I4 to I1 is the inverse of h3 ◦h2 ◦h1 and due to the
identity sin−1(z) = −i sinh−1(iz), can be written in the form

g(z) = ε sinh(z sinh−1( 1
ε )).(2.6)

Figure 1 shows the adaptive nature of g, in that it maps points which are clustered
near the boundaries of [−1, 1] into points which are clustered near the singular lines of
u. Table 1 shows that as ε decreases geometrically, the number of grid points required
for the Chebyshev spectral method to approximate u to 10 digits of accuracy increases
geometrically, whereas for a spectral method based on rational interpolants of the form
(2.1) and the conformal map (2.6), this number increases only algebraically.

The derivation of (2.6) can be generalized to cases where the two singular lines
begin at δ ± εi instead of 0 ± εi. The conformal map g becomes

g(z) = δ + ε sinh
[(

sinh−1( 1−δ
ε ) + sinh−1( 1+δ

ε )
)

z−1
2 + sinh−1( 1−δ

ε )
]
.(2.7)

The derivation of (2.7) makes no assumptions about the type of singularities of u, so
(2.7) is applicable for all types of singularities, such as poles and branch points, as
long as they are confined to the two singular lines.
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Fig. 1. Sequence of transformation images to be read from top to bottom, then from left to
right. In the first panel, the thick lines represent singular lines, the thin line represents [−1, 1], and
the white background represents the region of analyticity I1. In the fourth panel, the dots represent
Chebyshev points.

Table 1

Comparison of theoretical convergence rates for the Chebyshev spectral method and the adaptive
rational spectral method. If a convergence rate is O(K−N ), then Nmin is the smallest integer N for
which K−N is less than 10−10.

ε
Chebyshev spectral method Adaptive rational spectral method
Convergence rate Nmin Convergence rate Nmin

1 O(2.4142−N ) 27 O(3.8258−N ) 18
0.1 O(1.1050−N ) 231 O(1.6528−N ) 46
0.01 O(1.0100−N ) 2303 O(1.3395−N ) 79
0.001 O(1.0010−N ) 23026 O(1.2277−N ) 113
0.0001 O(1.0001−N ) 230259 O(1.1711−N ) 146

3. Locating the singularities. The parameters δ and ε required in (2.7) are
usually not known analytically, so it is necessary to approximate them using some
singularity location technique. The technique must be computationally cheap for our
adaptive rational spectral method to be more efficient than existing rational spectral
methods. The technique which we chose is based on Chebyshev–Padé approximation.
It is conceptually similar to the technique presented by Weideman in [30], where the
locations of singularities are approximated by the locations of poles of Fourier–Padé
approximants.
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If f is Lipschitz continuous on [−1, 1], then it has a Chebyshev expansion

f(x) =

∞∑
k=0

akTk(x),(3.1)

where ak = 2
π

∫ 1

−1
(1−x2)−

1
2 f(x)Tk(x) dx (a0 is half the value given by this formula)

and Tk(x) = cos(k cos−1(x)). The scalars {ak} are called Chebyshev coefficients and
the functions {Tk} are the Chebyshev polynomials. The linear [m,n] Chebyshev–Padé
approximation of f is defined as the rational function

rm,n(x) ≡ p(x)

q(x)
=

m∑
k=0

bkTk(x)

1 +

n∑
k=1

ckTk(x)

(3.2)

of numerator degree at most m and denominator degree at most n, such that the
Chebyshev expansion of fq − p satisfies

f(x)q(x) − p(x) = O(Tm+n+1(x)).(3.3)

The coefficients {bk} and {ck} can be determined by substituting (3.1) and (3.2) into
(3.3), matching terms with Chebyshev polynomials of equal degree, and finally solving
the system of linear equations

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −d0,1 · · · −d0,n

. . .
...

...
...

1 −dm,1 · · · −dm,n

−dm+1,1 · · · −dm+1,n

...
...

...
−dm+n,1 · · · −dm+n,n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

b0
...
bm
c1
...
cn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0

...
am

am+1

...
am+n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,(3.4)

where
∑∞

j=0 dj,kTj(x) =
∑∞

j=0 ajTj(x)Tk(x) for {bk} and {ck} as required. It should
be noted that {ck} can be computed independently of {bk}, in which case the system
of linear equations to be solved is only of size n. The poles of rm,n can be determined
by computing the eigenvalues of the companion matrix [5, 18]

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
1
2 0 1

2
. . .

. . .
. . .

. . .
. . .

. . .
1
2 0 1

2
c0

−2cn

c1
−2cn

· · · cn−3

−2cn

cn−2

−2cn
+

1

2

cn−1

−2cn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,(3.5)

where c0 = 1. This is a matrix eigenvalue problem of size n. It can be deduced from
(3.4) that rm,n always exists and is unique provided that cn �= 0.

How do we determine δ and ε? The aim is to approximate them by the real and
imaginary parts of the poles of a Chebyshev–Padé approximant. If we can evaluate
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or approximate the solution u of a differential equation at M+1 Chebyshev points,
typically scaled and translated to a subinterval of [−1, 1] rather than [−1, 1] itself,
then we can compute approximations to the Chebyshev coefficients a0, . . . , aM of u
by applying the fast Fourier transform to these values of u. The poles of an [m, 2]
Chebyshev–Padé approximation of u, where m is a small integer which we take to be
M/2 rounded to the nearest integer, can then be computed by applying the techniques
described in the preceding paragraph. The locations of these poles approximate the
locations of the two complex conjugate singularities lying on the ellipse of analyticity
of u [28], and hence δ and ε. The overall work involves solving a 2×2 system of linear
equations and computing the eigenvalues of a 2 × 2 matrix, both of which are trivial
computationally. In practice, the ill-conditioning of (3.4) is not a problem, because
we need only know δ and ε to one or two digits of accuracy.

4. Implementation. How do we put together a spectral method based on the
ideas discussed in sections 2 and 3? If we can evaluate or approximate the solution u of
a differential equation at grid points xn

0 , x
n
1 , . . . , x

n
N and time tn, then we approximate

u by the rational interpolant

rnN (x, t) =

N∑′

k=0

(−1)k

x− xn
k

rnN (xn
k , t)

N∑′

k=0

(−1)k

x− xn
k

,(4.1)

where rnN (xn
k , t

n) ≈ u(xn
k , t

n). The data {rnN (xn
k , t

n+1)} approximating {u(xn
k , t

n+1)}
can be determined by discretizing the underlying differential equation using a temporal
discretization method of choice and requiring that rnN satisfy the discretized equation
exactly at the grid points {xn

k} and at any intermediate time steps, where the spatial
derivatives of rnN can be evaluated as the product of differentiation matrices and
data vectors, as mentioned in section 1. In MATLAB, the first and second order
differentiation matrices can be constructed by calling bcmatrix:

% BCMATRIX constructs the first and second order differentiation matrices, D1

% and D2, corresponding to the barycentric weights w and grid points x. Note

% that w and x must be column vectors of the same size.

function [D1,D2] = bcmatrix(w,x)

N = length(x)-1; ii = (1:N+2:(N+1)^2)’;

Dw = repmat(w’,N+1,1) ./ repmat(w,1,N+1) - eye(N+1);

Dx = repmat(x ,1,N+1) - repmat(x’,N+1,1) + eye(N+1);

D1 = Dw ./ Dx;

D1(ii) = 0; D1(ii) = - sum(D1,2);

D2 = 2*D1 .* (repmat(D1(ii),1,N+1) - 1./Dx);

D2(ii) = 0; D2(ii) = - sum(D2,2);

There is no difference between what we have done so far and what we would do with
the Chebyshev spectral method. The difference arises when we adapt grid points for
the next time step, for which we do the following.

Algorithm 1. At the end of the nth time step:
1. Evaluate rnN (x, tn+1) at M +1 Chebyshev points scaled and translated to a

subinterval of [−1, 1] centered at δ.
2. Compute approximate Chebyshev coefficients of rnN (x, tn+1) in that interval

from the values in step 1 using the fast Fourier transform.
3. Compute new values of δ and ε from the Chebyshev coefficients in step 2 using

the Chebyshev–Padé singularity location technique.
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4. Define new grid points xn+1
k = g(cos(kπ/N)), k = 0, 1, . . . , N , where g is

given by (2.7) with the new δ and ε.
5. Evaluate rnN (x, tn+1) at the new grid points {xn+1

k } and use these values as
initial data for the next time step.

In practice, we start with a grid of Chebyshev points and only begin adapting the
grid points when ε falls below a threshold indicating how close the true singularities
of u in the complex plane are to [−1, 1]. In our numerical experiments, we take this
threshold to be 0.5. It is necessary to make a few remarks about steps 1–3.

The number M+1 of Chebyshev points in step 1 should be enough for rnN (x, tn+1)
to be approximated to a prescribed accuracy in the subinterval centered at δ. The
width of the subinterval should be sufficiently small for M to be small, too, and yet
sufficiently large for the real part of the true singularities of u(x, tn+1) to lie within
it. In our numerical experiments, we take M to be the smallest power of 2 for which
the Chebyshev coefficient of largest subindex in step 2 is less than 10−6 in absolute
value and we take the subinterval to be [δ − ζ, δ + ζ], where ζ = min(10ε, 1 − |δ|). A
typical value of M is 128. In MATLAB, step 1 (and step 5) can be implemented by
calling bcinterp:

% BCINTERP evaluates the barycentric interpolation formula to find the values

% ff of a rational interpolant with barycentric weights w, grid points x, and

% grid data f, at the points xx. Note that w, x, and f must be column vectors

% of the same size.

function ff = bcinterp(w,x,f,xx)

[mask,index] = ismember(xx,x);

invmask = (mask==0);

xxx = xx(invmask);

ff = zeros(length(xx),1);

numer = zeros(length(xxx),1);

denom = zeros(length(xxx),1);

for i=1:length(x)

temp = w(i)./(xxx-x(i));

numer = numer + temp*f(i);

denom = denom + temp;

end

ff(invmask) = numer./denom;

ff(mask) = f(index(mask));

and step 2 can be implemented by calling chebpoly:

% CHEBPOLY uses the fast Fourier transform to find M+1 Chebyshev coefficients

% A of a function, given its values U at M+1 Chebyshev points. The operation

% is applied to each column of U.

function A = chebpoly(U)

M = size(U,1)-1;

U(M+2:2*M,:) = U(M:-1:2,:);

A = real(ifft(U)); A = A(1:M+1,:); A(2:M,:) = 2*A(2:M,:);

The new ε in step 3 should be multiplied by a safety factor to ensure that (2.7)
accounts for the true singularities of u(x, tn+1). In our numerical experiments, we
take this safety factor to be 0.75. In MATLAB, step 3 can be implemented by calling
chebpade, which in turn calls chebeval and chebpoly:

% CHEBPADE computes the poles z of an [m,n] Chebyshev-Pade approximation of a

% function with Chebyshev coefficients a. Note that a must be a column vector

% with the coefficients in the order a0, a1, a2, ...

function z = chebpade(m,n,a)

N = length(a)-1; % number of coefficients less one

E = chebeval([zeros(1,n);eye(N+n,n)]);
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F = repmat(chebeval([a;zeros(n,1)]),1,n);

D = -chebpoly(E.*F);

c = [1;D(m+2:m+n+1,:)\a(m+2:m+n+1)]; % denominator coefficients

if (n > 1) % denominator is at least quadratic

C = diag(0.5*ones(n-1,1),-1); % companion matrix

C = C + diag([1;0.5*ones(n-2,1)],1);

C(n,1:n) = -0.5*c(1:n)’/c(n+1);

C(n,n-1) = C(n,n-1) + 0.5;

z = eig(C); % poles

else % denominator is linear

z = -c(1)/c(2); % poles

end

% CHEBEVAL uses the fast Fourier transform to find the values U of a function

% at N+1 Chebyshev points, given its N+1 Chebyshev coefficients A. The

% operation is applied to each column of A.

function U = chebeval(A)

N = size(A,1)-1;

A(2:N,:) = A(2:N,:)/2; A(N+2:2*N,:) = A(N:-1:2,:);

U = real(fft(A)); U = U(1:N+1,:);

5. Numerical experiments. We now present the results of numerical exper-
iments on two time-dependent problems. The problems are discretized temporally
using the adaptive Runge–Kutta 5(4) method of Dormand and Prince [20] with an
error tolerance of 10−10 (we did not use the ode45 solver of MATLAB, even though it
implements the same method, because it does not give us the option of pausing at the
end of each time step to adapt the grid points), and solutions are computed using the
Chebyshev spectral method and our adaptive rational spectral method with various
N < 128. The approximation errors are calculated as the maximum absolute value
of the difference between the various approximations and their N = 128 counterparts
evaluated at 10001 equispaced points.

5.1. Blow-up problem. The first problem is the Frank–Kamenetskii or Gelfand
equation

∂u

∂t
=

∂2u

∂x2
+ eu, −1 < x < 1,(5.1)

with the initial condition u(x, 0) = 0 and boundary conditions u(−1, t) = u(1, t) = 0.
The equation arises in mathematical models of exothermic chemical reactions in solids
[25]. The solution of this problem is symmetric with a peak at x = 0 which blows up
to infinity in finite time due to the nonlinear exponential term, a phenomenon known
in the literature as thermal runaway. The solution has logarithmic singularities along
the line Re(x) = 0 near the blow-up time T [19], but this time is not known to high
precision. The numerical experiment was run until t = 3.544664598. The results are
summarized in Figure 2.

The first row of the figure shows the solution u approximated using the adaptive
rational spectral method with N = 56. The grid points are shown as dots. The
logarithmic blow-up effect can be seen in the fact that when time moves forward by
two digits, the height of u increases by almost a fixed amount. The equidistribution
of grid points along the approximation curves enables the method to resolve the tall
sharp peak.

The second row shows the poles whose locations approximate the locations of the
two complex conjugate singularities lying on the ellipse of analyticity of u. The poles
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Fig. 2. The first row shows approximations of the solution of (5.1) computed using the adaptive
rational spectral method with N = 56. Dots represent grid points. The second row shows the poles
computed using the Chebyshev–Padé singularity location technique. The third row shows log-linear
plots of approximation error against N . Dashed lines correspond to the Chebyshev spectral method
and solid lines to the adaptive rational spectral method. Dashed lines are absent where the Chebyshev
spectral method failed to produce a result.

appear along the line Re(x) = 0 in agreement with the theory. They move closer to
each other as the peak grows taller and coalesce at the blow-up time [30].

The third row shows plots of approximation error against N on a log-linear scale
for the Chebyshev spectral method and the adaptive rational spectral method. As
the height of u increases from about 8 to 20, the maximum number of accurate digits
for the adaptive rational spectral method decreases in steps of about 2, reflecting the
loss of absolute accuracy in the evaluation of eu as its magnitude grows in steps of
about 2 digits and its relative accuracy remains at about 16 digits. Apart from this
quirk, the method requires about 50 grid points to produce results which are accurate
to the limit of temporal errors. In contrast, the Chebyshev spectral method fails to
produce any result beyond t = 3.54466 for N ≤ 128.
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Fig. 3. Shapes of the solution of (5.1) near the blow-up point and blow-up time. Dashed curves
correspond to the asymptotic approximation (5.2), and solid curves to the adaptive rational spectral
method with N = 56.

Table 2

The solution of (5.1) evaluated at x = 0 approximated using the adaptive rational spectral method.

N t = 3.544 t = 3.54466 t = 3.5446645 t = 3.544664598
32 7.460488435 12.36019369 16.16163618 19.81771341
48 7.460488439 12.36040241 16.17636012 20.65913394
64 7.460488439 12.36040263 16.17643386 20.66847337
80 7.460488439 12.36040250 16.17642809 20.66802983
96 7.460488436 12.36040214 16.17641126 20.66650626
112 7.460488436 12.36040219 16.17641359 20.66671875

We also include Figure 3, which compares shapes of a computed approximation
of u near the blow-up time with the asymptotic approximation [19]

u(x, t) = ξ − log(1 + η2) − 5

2

log(ξ)

ξ

η2

1 + η2
+ O

(1

ξ

)
,(5.2)

where ξ = − log(T − t), η = x/
√

4ξ(T − t), and T = 3.544664598. The shapes match
only near x = 0, because (5.2) is valid only as x → 0 and t → T . In addition, we
include Table 2, which lists the height of u approximated using the adaptive rational
spectral method with various N , and hope that it will serve as a reference for further
study of this blow-up problem.

5.2. Moving front problem. The second problem is the Burgers equation

∂u

∂t
= ν

∂2u

∂x2
− u

∂u

∂x
, 0 < x < 1,(5.3)

with the initial condition u(x, 0) = sin(2πx) + 1
2 sin(πx) and boundary conditions

u(0, t) = u(1, t) = 0. This problem serves as a common test problem for adaptive
grid methods (see [23] and the references therein). Its solution develops a steep front
which moves towards x = 1 but, due to the homogeneous boundary conditions, also
decays with time. The width of the front is O(ν). The numerical experiment was run
until t = 0.90 with ν = 10−3. The results are summarized in Figure 4.

The first row of the figure shows the solution u approximated using the adaptive
rational spectral method with N = 56. The grid points are shown as dots. The
clustering of grid points where the approximation curves have steep gradients enables
the method to resolve the thin steep front.
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Fig. 4. Like Figure 2 but for (5.3) with ν = 10−3.

The second row shows the poles whose locations approximate the locations of the
two complex conjugate singularities lying on the ellipse of analyticity of u. The poles
move closer to each other when the front steepens, and apart again when the front
decays. They also move towards Re(x) = 1 in accordance with the front. In the
absence of viscosity, they would coalesce when a shock is formed [30].

The third row shows plots of approximation error against N on a log-linear scale
for the Chebyshev spectral method and the adaptive rational spectral method. The
latter requires about 100 grid points to produce results which are accurate to the limit
of temporal errors. In contrast, the Chebyshev spectral method fails to produce any
result beyond t = 0.15 for N ≤ 128.

We also vary ν and include Figure 5, which shows plots of approximation error
against N on a log-linear scale for the adaptive rational spectral method with various
ν. Each time ν decreases geometrically by a factor of 10, the number of grid points
required for the method to produce results accurate to the limit of temporal errors
increases by an approximately constant amount of 50.
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Fig. 5. Log-linear plots of approximation error against N for the solution of (5.3) approximated
using the adaptive rational spectral method. Dotted lines correspond to ν = 10−2, solid lines to
ν = 10−3, and dashed lines to ν = 10−4.

6. Conclusion. We have presented an adaptive rational spectral method which
far outperforms the Chebyshev spectral method for problems whose solutions have
singularities in the complex plane close to [−1, 1]. It combines ideas from existing
rational spectral methods [3, 11] with an adaptive technique for locating singularities
[30] using Chebyshev–Padé approximation. The method can be improved in various
ways. For example, one can derive maps analogous to (2.7) for problems on periodic
intervals or problems with multiple complex conjugate singularities. We are in the
process of doing this using the framework of Schwarz–Christoffel mapping [21]. We are
also studying the maps used in other adaptive spectral methods and hope to compare
the effectiveness of those maps with ours. In addition, we are investigating further
improvements and applications to some of the innumerable problems of scientific
computing whose solutions involve fronts, boundary layers, or other singularities.
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entiation matrices for Čebyšev–Gauss–Lobatto points, Comput. Math. Appl., 37 (1999),
pp. 41–48.

[2] R. Baltensperger and J.-P. Berrut, Errata to The errors in calculating the pseudospec-
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