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Four bugs on a rectangle
BY S. J. CHAPMAN, JAMES LOTTES AND LLOYD N. TREFETHEN*

Oxford Centre for Collaborative Applied Mathematics, Mathematical Institute,
University of Oxford, 24–29 Saint Giles, Oxford OX1 3LB, UK

The idealized mathematical problem of four bugs in cyclic pursuit starting from a 2-by-1
rectangle is considered, and asymptotic formulas are derived to describe the motion. In
contrast to the famous case of four bugs on a square, here the trajectories quickly freeze to
essentially one dimension. After the first rotation about the centre point, the scale of the
configuration has shrunk by a factor of 10427907250, and this number is then exponentiated
four more times with each successive cycle. Relations to Knuth’s double-arrow notation
and level-index arithmetic are discussed.

Keywords: cyclic pursuit; level-index arithmetic; Knuth arrow notation

1. Introduction

In 1957, Martin Gardner made famous the problem of ‘four bugs on a square’,
each one chasing the next at speed 1 (Gardner 1957). By symmetry, the bugs
remain always on a square, spiralling into a mutual collision at time 1 if the initial
side length was 1. With this in mind, for the first problem of Oxford’s Numerical
Analysis Problem Solving Squad in October 2008, L.N.T. assigned the students
what looked like a straightforward variation to be worked out numerically on
the computer:

Four particles start at t = 0 at the vertices of a 2 × 1 rectangle. Each one chases the particle
to its left with speed 1. When does a collision occur?

J.L., in his first week as a graduate student at Oxford, proved more careful
than the professor. The orbits he found were far from straightforward, and at
first the rest of the squad thought he might have been misled by numerical
error. But he was right, and in this article we shall describe the remarkable
paths that the four bugs follow, involving events on space and time scales
decreasing to zero at an almost incomprehensible rate governed by a stack
of exponentials. It is perhaps no surprise that the bugs circle infinitely
often around their midpoint before eventually colliding, but who would have
guessed that by the time the first circuit has been completed, the scale
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of the configuration has shrunk by a factor of 10427907250? This number is
approximately exp(exp(exp(exp(exp(0.176))))). The second circuit brings four
more exponentiations and a shrinkage factor approximately

exp(exp(exp(exp(exp(exp(exp(exp(exp(0.176))))))))).

We elucidate the details of the motion by an asymptotic analysis that connects
one configuration of a ‘rectangle dance’ to a similar configuration reappearing
later on a smaller scale. The discussion at the end mentions connections to
the literature of pursuit problems together with some remarks about very large
numbers, level-index arithmetic, and symmetries and sensitive dependences in
dynamical systems.

2. The rectangle dance

We label the bugs 1, 2, 3 and 4. By symmetry, 1 and 3 will follow the same
trajectories at angles differing by p, and likewise 2 and 4. So the bugs remain
always on a parallelogram, which we take to be centred at the origin. Let us
reveal the ending of our drama here at the outset: all four bugs are destined to
collide after 1.5 time units. With this end in view, let us redefine the initial time
as t = t0 = −1.5 and track events as t → 0.

Figure 1a shows the motion up to t = s1 ≈ −0.328190029216. There are no
surprises here. Each bug follows the next, and at the end we see a nice
parallelogram. This termination time has been chosen because at this moment,
the parallelogram has become a rhombus, with all sides of equal length.

Figure 1b continues the story to t = t1 ≈ −0.148243863926. We now see that
bugs 2 and 3 are getting quite close. If each were chasing the other, there would
soon be a collision. However, 3 is chasing 4, not 2. It moves along, oblivious to
bug 2, which is continually following but cannot catch up. The termination time
in the figure has been chosen since at about this time, the parallelogram has
become a rectangle again, with an aspect ratio of about 0.08748.

What happens after this point is that the motion becomes nearly one
dimensional. Bug 3 heads for 4 with 2 entrained behind it at a distance of
approximately 0.01136323; likewise bug 1 heads for 2 with 4 entrained behind.
The two pairs are approaching each other. Figure 2 shows the configuration at
the arbitrarily chosen time t = −0.03.

Figure 2 may seem to suggest that 1 and 3 will collide. Neither is chasing the
other, however, and they do not collide. In fact, at t = s2 ≈ −0.011365703053, a
rhombus appears for a second time as 3 and 1 pass each other at a distance of
approximately 1.193963 × 10−6. We call this movement ‘dos–a–dos’ (though here,
unlike in a square dance, the two particles continue moving ahead after passing
each other back-to-back).

At t = t2 ≈ −0.00568, a rectangle appears again with bugs 3, 4 at one end and
1, 2 at the other. We call this ‘swing your partner’ (though here, it is just a
half-swing as the partner doing the swinging only has eyes for another dancer
across the room). The aspect ratio has now shrunk to a very low value. It is
approximately 2 × 10−9.
Proc. R. Soc. A
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(a)
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rectangle to rhombus: dos−a−dos

2

4

1

3

2

4
1

3

rhombus to rectangle: swing your partner

Figure 1. The first figure of the rectangle dance. The upper sketch (a) shows the orbit from t =
t0 = −1.5 to t = s1 ≈ −0.3282, at which time 2 and 4 are passing each other and the configuration
is a rhombus. The lower sketch (b), on a smaller scale, continues the motion to t = t1 ≈ −0.1482,
at which time 1 and 3 are swinging 4 and 2 around and the configuration is a rectangle again.

2

4

1

3

Figure 2. At t = −0.03, two pairs of bugs are approaching each other approximately along a line at
angle 45◦. The next event will be the return to a rhombus as 3 and 1 pass each other at a distance
of about 1.2 × 10−6.
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t0 = −1.5 e0 = 0.5

time aspect ratio

s1 ª −0.32819003 d1 ª 0.32883142

t1 ª −0.14824386 e1 ª 0.087480648

s2 ª −1.1365703e−2 d2 ª 5.2524819e−5

t2 ª −5.6828514e−3 e2 ª 2.0298533e−9

s3 ª −1.15354e−11 d3 ª 10−213953625

t3 ª −0.576768e−11 e3 ª 10−427907250

s4 ª −10−427907250 d4 ª 10−10427907250

t4 ª −10−427907250 e4 ª 10−10427907250

Figure 3. Summary of the first four cycles of the rectangle dance, with the solid dot marking bug 1.
Based on asymptotics together with careful calculations to high precision, we believe all the digits
shown are correct. For a discussion of why d4 and 34, for example, are listed with the same values
in the table, see §5. The diagrams are schematic, for in fact, the rectangles and rhombuses are
oriented after the first few steps at an angle of 44.98593236820637 . . . degrees and are growing
rapidly narrower, as indicated by the parameters 3 and d representing width-to-length ratios. The
spatial scale is determined by t: the perimeter of the parallelogram is always exactly 4|t|. A four-way
collision occurs at t = 0.

From here on, the motion is almost exactly confined to one dimension. An
infinite sequence of interactions unfolds, rectangle alternating with rhombus.
Figure 3 summarizes the situation through the first four rectangle → rhombus
→ rectangle cycles.

The first few steps that we have described are readily computed numerically
by standard ordinary differential equation (ODE) methods. After this point, the
geometries are so extreme that the problem is a perfect one for asymptotics,
though challenging. We may summarize our conclusions, based on the asymptotic
Proc. R. Soc. A
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analysis detailed in the next two sections, as follows. Let 3 < 1 be the width-to-
length ratio of a rectangle and d < 1 the width-to-length ratio of a rhombus. The
motion of the four bugs is controlled by the sequence 30, d1, 31, d2, 32, . . . , and for
j ≥ 2 with our initial condition 30 = 0.5, 3j and dj are extremely close to zero.
Section 3 derives the following formulae governing the transitions dj → 3j and
3j → dj+1 in the limits 3, d → 0. From rhombus to rectangle, there is a halving of
the time and space scales,

tj ∼ 1
2sj (2.1)

and a squaring of the aspect ratio,

3j ∼ 2d2
j

e
. (2.2)

From rectangle to rhombus is where the big contraction occurs. Now the time
and space scales shrink in proportion to the aspect ratio of the rectangle:

sj+1 ∼ 3jtj , (2.3)

while the aspect ratio is exponentiated:

dj+1 ∼
√

2 e−1/3j

√
3j

. (2.4)

By combining equations (2.2) and (2.4) we can eliminate dj+1 and derive an
expression relating the aspect ratio of one rectangle to the aspect ratio of the next:

3j+1 ∼ 4
e3j

e−2/3j . (2.5)

In all the formulae (2.1)–(2.5), the symbol ∼ has its usual precise mathematical
meaning: the ratio of the quantities on the left and right converges to 1 in the
limit (3, d → 0). It is tempting to try to combine equations (2.2) and (2.4) in the
other order to eliminate 3j and get an asymptotic formula relating dj+1 to dj .
However, the presence of the exponential in equation (2.4) implies that 3j must
be known to more than leading-order accuracy for this to be possible. In fact,
our analysis will refine equation (2.2) by deriving further terms in the asymptotic
expansion for 3j :

3j = 2d2
j

e
+ 2d4

j

e2

(
4 − 2e +

∫ 1

0

ev − 1
v

dv − 2 log dj

)
+ o(d4

j ). (2.6)

The integral in this expression has the value
∫ 1

0

ev − 1
v

dv = 1.31790215145440 . . . , (2.7)

and by combining equation (2.4) with equation (2.6) one can derive the desired
relationship:

dj+1 ∼ C
e−e/2d2

j

d2
j

(2.8)
Proc. R. Soc. A
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with

C = exp
(

5
2

− e + 1
2

∫ 1

0

ev − 1
v

dv

)
≈ 1.55374671137565. (2.9)

3. Differential equations and rescaled time

We begin the analysis by formulating a system of ODEs describing the motion
of the four bugs. At any time, the bugs lie at the vertices of a parallelogram.
Denoting their positions in the x–h plane purely for notational convenience
by complex variables z1, z2, z3 = −z1, and z4 = −z2 with z = x + ih, we have
the equations

dz1

dt
= z2 − z1

|z2 − z1| and
dz2

dt
= −z2 − z1

|z2 + z1| . (3.1)

We set
�1 eif = z2 − z1 and �2 ei(f−q) = z1 + z2, (3.2)

so that �1 ≥ 0 and �2 ≥ 0 are the lengths of the sides of the parallelogram, while f
and q are the angle of orientation and the internal angle, as sketched in figure 4.

Substituting equation (3.1) into equation (3.2) gives, after some manipulation,
an equivalent system of ODEs in the variables �1, �2, f, q:

d�1

dt
= −1 − cos q,

d�2

dt
= −1 + cos q (3.3)

and
dq

dt
=

(
1
�1

− 1
�2

)
sin q,

df

dt
= sin q

�1
. (3.4)

We note that the orientation f plays no role in the evolution of the other variables.
Thus, following the schematic approach of figure 3, we shall not consider f further.

One conclusion comes immediately from equation (3.3). Since d�1/dt +
d�2/dt = −2, the perimeter 2(�1 + �2) of the parallelogram reduces at the constant
rate 4. With initial side lengths 2 and 1 at t = −3/2, the figure shrinks to a collision
at t = 0, as stated in §1.

We now take one further step, taking advantage of scale invariance, to
reduce the problem from three dependent variables to two. Let the configuration
variables be rescaled as

s = �1 − �2

�1 + �2
and x = cos q,

and let time be rescaled logarithmically,

t̃ = − log(−2t).

Our problem now is to track the evolution of s and x as t̃ → ∞. Equations (3.3)
and (3.4) become

dx

dt̃
= 2s(1 − x2)

1 − s2
and

ds

dt̃
= s − x . (3.5)
Proc. R. Soc. A
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z1

z2

z3

z4

0

f

q

1

2

Figure 4. Sketch of the four bugs at the vertices of a parallelogram showing the variables �1, �2, f, q.
The differential equations ultimately analysed are formulated in the non-dimensionalized variables
x = cos q and s = (�1 − �2)/(�1 + �2) as well as the rescaled time t̃ = − log(−2t).

Each of s and x oscillates between (almost) ±1 as t̃ → ∞, getting ever closer to
these limits with each cycle. When x = 0, the bugs lie at the corners of a rectangle
with aspect ratio

3 = 1 − |s|
1 + |s| . (3.6)

When s = 0, the configuration is a rhombus with aspect ratio

d = tan
(

cos−1 |x |
2

)
. (3.7)

4. Asymptotic analysis

The next six pages summarize, rather tersely, our asymptotic analysis. After that
we return to a discussion of other aspects of the problem.

Asymptotically, the motion proceeds as a repetition of three stages. In stage 1
an almost flat parallelogram with interior angle close to 0 flips to an almost flat
parallelogram with interior angle close to p (passing through a rectangle on the
way). In stage 2 the ends approach each other so that the parallelogram shortens.
In stage 3 the ends get so close that the parallelogram changes from being long
and thin to short and fat (passing through a rhombus on the way). These stages
are illustrated in figure 5.

(a) Rectangle to rhombus

We begin with the long thin rectangle x(0) = 0, s(0) = −1 + p, p 	 1. We wish
to find the value of x when s = 0.

Stage 1: During this stage the rectangle flattens (so that x changes from 0
to being close to −1, corresponding to the interior angle q expanding from p/2
to close to p), while remaining long and thin (that is, s will stay close to −1,
corresponding to l1 	 l2).
Proc. R. Soc. A
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stage 1 flip (swing your partner)

stage 2 shorten

stage 3 long and thin to short and fat (dos−a−dos)

Figure 5. Schematic of the asymptotic stages of the dance. In stage 1, an almost flat parallelogram
with interior angle close to 0 flips to an almost flat parallelogram with interior angle close to p

(passing through a rectangle on the way). In stage 2, the ends approach each other so that the
parallelogram shortens. In stage 3 the ends get so close that the parallelogram changes from being
long and thin to short and fat (passing through a rhombus on the way).

Writing s = −1 + pu, t̃ = pt gives

dx
dt

= −(1 − x2)
u

+ p(1 − x2)
2

+ · · · and
du
dt

= −(1 + x) + pu. (4.1)

Expanding x = x0 + px1 + · · ·, u = u0 + pu1 + · · ·, we find at leading order

1
1 − x0

dx0

dt
= 1

u0

du0

dt
,

so that u0(1 − x0) = const. = 1 by the initial condition. Then,

du0

dt
= −2 + 1

u0
, (4.2)

with solution

u0 + 1
2

log
(

u0 − 1
2

)
= −2t + 1 − log 2

2
.

As t → ∞,

u0 ∼ 1
2
(1 + e1−4t) and x0 ∼ −1 + 2e1−4t. (4.3)

To capture fully the asymptotic behaviour (2.4) we need the next term in the
expansion also. After some manipulation, it can be shown that

u1 = e−2u0−4t

u0

∫ t

0
e2u0+4t

(
t + u0

2
− 1

2
+ u2

0

)
dt,
Proc. R. Soc. A
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so that as t → ∞,

u1 ∼ t

2
− 1

8
. (4.4)

This expansion ceases to be asymptotic when e−4t = O(p), i.e. t = (1/4) log 1/p.
At this point, x has become close to 1, but s is still close to −1.

Stage 2: During this stage, the parallelogram shortens while remaining thin.
During the whole of stage 2, the four bugs are almost collinear, so that x and s
are both close to −1. As the parallelogram shortens, its interior angle gets closer
and closer to p, as bug 4 tucks in behind bug 1 and bug 2 tucks in behind bug 3
(figure 2).

Most of stage 2 occurs on a long time scale, but in order to obtain the initial
conditions for the evolution, we need to consider first a short timescale that will
enable us to match with the solution in stage 1.

We rescale by setting s = −1 + pu, x = −1 + py, t = (1/4) log 1/p + t̂. Then,

yt̂ = −2y
u

+ p
(

y + y2

u

)
+ · · · and ut̂ = p(u − y).

Here, u is slowly increasing while y is rapidly decreasing. Expanding y ∼ y0 +
py1 + · · ·, u ∼ u0 + pu1 + · · · gives, at leading order,

u0 = 1
2 and y0 = C e−4t̂. (4.5)

Matching with equation (4.3) gives C = 2e. At next order

du1

dt̂
= 1

2
− 2e1−4t̂.

Thus,

u1 = t̂

2
+ 1

2
e1−4t̂ + D. (4.6)

Matching with equation (4.4) gives

D = −1
8

+ 1
8

log
1
p
.

Let us now switch to the long time scale t̂ = t̂/p. By this time y is exponentially
small, so that y 	 u and, to all orders in p,

du

dt̂
= u,

so that
u = n et̂ . (4.7)

Matching with equations (4.5) and (4.6) gives

n ∼ 1
2

+ pD = 1
2

+ p
(

−1
8

+ 1
8

log
1
p

)
.

Then,
1
y

dy

dt̂
∼ −2 e−t̂

np
+ 1 ∼ −4e−t̂

p
− (1 + log p) e−t̂ + 1,
Proc. R. Soc. A
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so that

y ∼ B et̂ exp

(
4 e−t̂

p
+ (1 + log p) e−t̂

)
.

Here, it is crucial to have u correct to O(p) to get the leading-order behaviour of
y. Matching with equation (4.5) gives

B = 2 e−4/p

p
.

Hence,

y ∼ 2 e−4/p

p
et̂ exp

(
4 e−t̂

p
+ (1 + log p) e−t̂

)
. (4.8)

This expansion is valid until t̂ = log 1/p, at which point u0 = O(1/p).
Stage 3 : During this stage, the parallelogram finally shortens enough that

instead of being long and thin (corresponding to s ≈ −1, l1 	 l2) it becomes short
and fat (corresponding to s ≈ 1, l2 	 l1). During this stage, it passes through the
rhombus (corresponding to s = 0, l1 = l2).

Set t̂ = log 1/p + t̄. By this time,

y ∼ 2 e−4/p

p2
et̄ exp(4 e−t̄).

Now set x = −1 + ky with k = 2 e−4/p/p2. Then,

dy
dt̄

= 4sy
1 − s2

+ · · · and
ds
dt̄

= s + 1 − ky.

Hence, expanding s ∼ s0 + ks1 + · · ·, y ∼ y0 + ky1 + · · ·, at leading order

s0 = −1 + a et̄ and y0 = m e2 e−t̄/a

2 e−t̄ − a
.

Matching with equations (4.7) and (4.8) gives a = 1/2, m = 2. We finally reach the
rhombus when s0 = 0, which occurs for t̄ = log 2, at which point y0 = 4 e2. Thus,
if x = −1 + k when s = 0, then

k ∼ 8e2e−4/p

p
. (4.9)

(b) Rhombus to rectangle

The rhombus lies in the middle of stage 3, as the parallelogram switches from
being long and thin to short and fat. We can see from figure 5 that after stage
3 we return to stage 1, but with l1 and l2 swapped. It is convenient to swap the
labels of l1 and l2 now (while the configuration is a rhombus so that the labelling
makes no difference) so that when we emerge from stage 3 to stage 1 the notation
will correspond to that of §3. This switch of labels corresponds to replacing q
by p − q, so we must replace x with −x . Thus, we continue in stage 3 with the
Proc. R. Soc. A
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rhombus x(0) = 1 − k, s(0) = 0, k 	 1, where we have reset time to zero. We wish
to find the value of s when x = 0. Setting x = 1 − ky as in stage 3 above gives

−dy

dt̃
= 4sy

1 − s2
+ · · ·, ds

dt̃
= s − 1 + ky

and

y(0) = 1, s(0) = 0.

Expanding s ∼ s0 + ks1 + · · ·, y ∼ y0 + ky1 + · · ·, gives, at leading order,

s0 = 1 − et̃ and y0 = e−2 e2 e−t̃

2 e−t̃ − 1
. (4.10)

The expansion breaks down as t̃ → t∗ = log 2, when s ∼ −1 − 2(t̃ − t∗), y ∼
−e−1/(t̃ − t∗). To capture the asymptotics fully we need the next-order correction
terms. At the next order, we find

ds1

dt̃
= s1 + y0 = s1 + e−2 e2 e−t̃

2 e−t̃ − 1

and
dy1

dt̃
+ 4s0y1

1 − s2
0

= dy1

dt̃
− y1

y0

dy0

dt̃
= −4(1 + s2

0)s1y0

(1 − s2
0)2

+ 2s0y2
0

1 − s2
0

.

Hence

s1 = et̃
∫ t̃

0

e−2 e−t ′ e2 e−t′

2 e−t ′ − 1
dt ′ = et̃−1

2

∫ 1

2 e−t̃−1

ev

v
dv

and

y1 = y0

∫ t̃

0
−4(1 + s2

0)s1

(1 − s2
0)2

+ 2s0y0

1 − s2
0

dt.

As t̃ → t∗,

s1 ∼ e−1K − e−1 log(t∗ − t̃) (4.11)

and

y1 ∼ e−2

(
−K + log(t∗ − t̃)

2(t̃ − t∗)2
+ −2K − 5 + 2 e + 2 log(t∗ − t̃)

4(t̃ − t∗)

)
, (4.12)

where

K =
∫ 1

0

ev − 1
v

dv. (4.13)
Proc. R. Soc. A
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Stage 1: We have now emerged from stage 3 and returned to stage 1. Thus,
we rescale s = −1 + ku, t̃ = t∗ + kt. A similar expansion holds to that in §3. This
time, instead of initial conditions, we have the matching condition

x ∼ 1 + e−1

t
, u ∼ −2t, as t → −∞.

Expanding x = x0 + kx1 + · · ·, u = u0 + ku1 + · · ·, we find

u0(1 − x0) = 2 e−1 (4.14)

and
u0 + e−1 log(u0 − e−1) = −2t + d, (4.15)

for some constant d. As t → −∞,

u0 ∼ −2t + d − e−1 log(−2t).

From equations (4.10) and (4.11), as t̃ → t∗,

s0 + ks1 ∼ −1 − 2kt + k e−1K − k e−1 log(−kt).

Matching gives
d = e−1(log 2 + K − log k).

At the next order, we find

x1 = − c1

u0
− 2(t + u0/2)

eu0
+ 2u1

eu2
0

(4.16)

and

u1 = e−eu0−2et

u0

∫ t

eeu0+2et(2 e−1t + e−1u0 + c1 + u2
0) dt. (4.17)

As t → −∞,

u1 ∼ −t2 − e−1t log(−t) + e−1
(

3
2

+ K − log k
)

t, (4.18)

x1 ∼ − 1
2e

+ 1
4 e2t

(3 + 2 e2c1 + 2K − 2 log(−kt)). (4.19)

Matching equation (4.19) with equation (4.12) gives

2K + 5 − 2e − 2 log k = 3 + 2 e2c1 + 2K − 2 log k,

i.e. c1 = e−2 − e−1. We find that when x = 0,

t ∼ 1
2e

(log 2 + K − log k − 1),

s ∼ −1 + 2k
e

+ k2

e2
(2 − e + log 2 + K − log k).

Thus, if we set s = −1 + p when x = 0, then

p ∼ 2k
e

+ k2

e2
(2 − e + log 2 + K − log k). (4.20)
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Equations (4.9) and (4.20) now allow us to iterate from kj → pj → kj+1. Note
that in such an iteration, the O(k2) terms in equation (4.20) are needed to get
the correct leading-order behaviour in equation (4.9).

To translate from k and p to d and 3 we recall that for the rectangle,
when l2 	 l1,

s = l1 − l2
l1 + l2

= 1 − 3

1 + 3
,

while for the rhombus with q 	 1, d = tan q/2, so that

x = cos q = 1 − d2

1 + d2
.

Thus,

p = 2e

1 + e
, k = 2d2

1 + d2
. (4.21)

Using equation (4.21) in equations (4.20) and (4.9) leads to equations (2.4) and
(2.6). Finally, we determine the time taken for the transitions from rectangle to
rhombus and vice versa. For the rectangle to rhombus transition, the majority of
the time is spent in stages 2 and 3, and the transition time from x = 0 to s = 0
is log 2/p + O(p log p). Translating back to unstretched time, this gives sj+1 ∼
pjtj/2 ∼ ejtj , which is equation (2.3). For the rhombus to rectangle transition,
the majority of the time is spent in stage 3, and the transition time from s = 0
to x = 0 is t∗ = log 2 + O(k). Translating back to unstretched time, this gives
tj ∼ sj/2, which is equation (2.1).

5. Discussion

For the history of pursuit problems, a very readable reference is Nahin’s recent
book Chases and Escapes (Nahin 2007). Such problems apparently originated
with the French mathematician, astronomer and marine scientist Pierre Bouguer,
who published a paper in 1735 on the problem of a pirate ship chasing a merchant
vessel. Thus, the fundamental paradox underlying the present paper is nearly
three centuries old: if A chases B with both moving at the same speed, then, in
general, A will be swung around by B but will never catch it.

Problems of cyclic pursuit, with each particle chasing the next, seem to
have originated with three bugs (or dogs) on a regular triangle in a Cambridge
University tripos exam of 1871, and in published form in a paper 6 years later
by Edouard Lucas. The generalization to a regular n-gon became familiar in the
1950s through publications by, among others, H. Steinhaus, L. A. Graham, J. C.
Clapham and M. Gardner as mentioned before. Deviations from regular polygons
appeared with Frank Morley as published in a textbook of Harry Bateman
in 1918. A key paper on this problem was published by Klamkin & Newman
(1971). These authors found that like our parallelograms, irregular triangles
quickly degenerate to nearly one dimension and undergo an infinite sequence
of interactions on smaller and smaller scales until finally all three particles collide
together simultaneously. (Having understood figure 5, the reader will find it easy
to work out the analogous moves for triangles.) The parallelogram and triangle
Proc. R. Soc. A
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problems are of similar complexity: in each case, the shape at each time is
determined by two parameters, and a single parameter is enough to describe
the cyclically recurring extreme shapes (rhombus and rectangle; thin and fat
isosceles triangles). The key contribution of the present paper when compared
with Klamkin and Newman is an explicit description of the orbits with asymptotic
analysis to make them quantitative.

Numerical simulations began years ago; we note in particular a paper by
Behroozi & Gagnon (1975). A more recent paper of interest is by Richardson
(2001). But the four-bug problem beautifully illustrates that not everything can
be done by numerical simulation.

The extraordinarily large numbers we have encountered defy one’s intuition.
For example, consider the formula

1010428000000 = e10428000000
. (false!) (5.1)

Of course, this equation is not mathematically valid; a correct formula would be

1010428000000 = e10428000000+ log log 10/ log 10 = e10428000000.36...

.

Yet, if 428000000 represents a number known only to three digits of accuracy,
then the two sides of formula (5.1) are the same after all. Further down the
stack, the choice of exponents makes even less difference, so for example, the
mathematically erroneous equation

101010101010428000000

= e e e e e10428000000

, (false!) (5.2)

in which the two sides differ by a quantity that is unimaginably large, is again
quite valid if you only know three digits of the top exponent.

Another mathematically invalid equation that is nevertheless almost
incomprehensibly close to correct for these giant numbers is

(1010428000000
)2 = 1010428000000

. (false!) (5.3)

(Strictly speaking the exponent on the right should be 10 raised to a power that
matches 428000000.00 . . . in the first 428000000 digits after the decimal point.)
In general, if B is a very large number represented by a stack of exponentials as
in equation (5.2), then to very good approximation

B2 = B and 2B > B, (5.4)

the latter equation reflecting the fact that although the numbers appearing in the
lower reaches of a stack of exponentials do not make much difference, the height of
the stack always matters. It is interesting to note the similarity of equation (5.4)
with the equations

∞2 = ∞ and 2∞ > ∞, (5.5)

which serve as shorthand for two of the discoveries of Georg Cantor (1845–1918)
that shocked his contemporaries but soon became a standard and indispensable
part of mathematics. Cantor proved that some sets that one might expect to differ
in size have in fact the same cardinality as defined by one-to-one correspondence:
thus ‘∞2 = ∞’ reflects the fact that, for example, the numbers of points on a
Proc. R. Soc. A
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line and in a plane are equal. Other infinite sets, however, are truly different in
cardinality, and in particular, the set of subsets of an infinite set S is always
larger than S itself: ‘2∞ > ∞’. Comparing equations (5.4) and (5.5), we see that
the kinds of numbers arising in the analysis of the four-bug problem are so large
that, to good approximation, they have some of the same properties as infinity.

There is a literature on stacks of exponentials going back at least to Hardy
and Littlewood, and one of the contributions is a double-arrow notation due to
Knuth (1976). An example makes the definition clear:

10↑↑7 = 10101010101010

≈ 1010101010428000000

. (5.6)

(It is a safe bet that the reader has never seen the ‘≈ ’ symbol used to connect
two quantities that differ more vastly than these.) Thus, the scale of the four-bug
configuration shrinks by factors of about

10↑↑7, 10↑↑11, 10↑↑15, . . . (5.7)

after 3, 4, 5, . . . rotations. Knuth’s numbers are integers, but a related
development for real numbers arises in computer science. The standard method
for computing with real numbers is floating point arithmetic, in which a fraction
and an exponent are each represented by binary numbers, leading to a system of
numbers mimicking scientific notation with about 16 digits of relative accuracy
and magnitudes roughly from 10−308 to 10308 (Overton 2001). Since the 1980s, a
different representation known as level-index arithmetic has been advocated by
Clenshaw and Olver and others (Clenshaw & Olver 1984). Here, every number is
represented by a stack such as

±e±e e e e e 0.176...

,

where the level is the number of exponentiations in the stack and the index is
the top exponent, which lies in [0, 1). Thus, in standard level index notation, the
four-bug scale after 3, 4, 5, . . . rotations shrinks by factors

[6/0.176 . . . ], [10/0.176 . . . ], [14/0.176 . . . ], . . . .

This system has some appealing properties, but a hardware implementation would
hardly get far for the four-bug problem: Clenshaw and Olver recommend that the
maximum level be set at 7.

Level index arithmetic also comes with a notion of generalized precision
for measuring the agreement of two quantities (Clenshaw & Olver 1984).
Approximately speaking, x and x ′ agree with generalized precision a if their
two indices differ by a or less. With this terminology, one could make precise
statements, for example, about the meaning of the numbers in figure 3 or the
symbol ‘≈’ in equation (5.6).

It is also interesting to reflect on the four-bug problem from the point of view
of sensitivity of solutions of differential equations to perturbations in the initial
data. This paper has highlighted the phenomenon that Martin Gardner’s square
is an unstable configuration, at least from one point of view: if you perturb the
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symmetry ever so slightly, the resulting four-particle configurations change utterly
in shape. (The same may or may not go for regular n-gons for larger n.) Indeed,
the four-bug problem as we have posed it with a rectangular initial condition
itself possesses a fragile symmetry: any perturbation along the way would quickly
eliminate the rectangles and rhombuses.

Thus, the four-bug problem brings to mind the sensitive dependences that are
the heart of the subject of chaos, with well-known connections to many scientific
problems including the weather and perhaps the climate of planet Earth. One
cannot simply say that this system is chaotic: in the original t, {zj} variables, the
trajectories only last for a finite time and the distorted configurations are only
distorted in a relative, not absolute sense. One the other hand, after the change
to s, x , t̃ variables we get a system that very likely is chaotic. Matters of stability
versus chaos are among the fundamental questions one would ask in a scientific
application related to the four-bug problem, such as the analysis of a collection of
animals or robots like those recently investigated by Marshall et al. (2004, 2006).
For particles connected gravitationally rather than by our constant-speed pursuit
law, such questions have attracted interest for a long time (Diacu & Holmes 1996).

We have benefited from discussions with the other 2008 Problem Squad members Almut
Eisenträger, Jen Pestana and Hao Wang. L.N.T. would also like to thank Mr and Mrs
E. McLoughlin of Meols, Wirral, UK, for inviting him to a square dance shortly before this project
began. This publication is based on work supported in part by Award no. KUK-C1-013-04, made
by King Abdullah University of Science and Technology (KAUST).
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