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The error in the trapezoidal rule quadrature formula
can be attributed to discretization in the interior and
non-periodicity at the boundary. Using a contour
integral, we derive a unified bound for the combined
error from both sources for analytic integrands. The
bound gives the Euler–Maclaurin formula in one limit
and the geometric convergence of the trapezoidal
rule for periodic analytic functions in another. Similar
results are also given for the midpoint rule.

1. Introduction
Let f be continuous on [0, 1] and let n be a positive
integer. The (composite) trapezoidal rule approximates
the integral

I =
∫ 1

0
f (x) dx (1.1)

by the sum

In = n−1
n∑

k=0

′
f
(

k
n

)
, (1.2)

where the prime indicates that the terms k = 0 and k =
n are multiplied by 1/2. Throughout this paper, f may
be real or complex, and ‘periodic’ means periodic with
period 1.

The approximation of I by In has many interesting
properties. One is that, if f is periodic and analytic, the
convergence is geometric. This observation in some sense
goes back to Poisson in the 1820s [1], though it seems
to have been Davis in 1959 who first stated a theorem
[2,3]. Another is that, for non-periodic f , the accuracy
is O(n−2) and this can be improved to O(n−4), O(n−6)
and so on by subtracting appropriate multiples of f ′(1) −
f ′(0), f ′′′(1) − f ′′′(0) and so on, if f is sufficiently smooth.
The latter process is described by the Euler–Maclaurin
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formula, published independently by Euler and Maclaurin around 1740 [4,5]. Compendia of
results related to the Euler–Maclaurin formula can be found in [6,7].

A standard derivation of Davis’s result involves contour integrals in the complex plane, and
contour integrals can also be used to derive the Bernoulli numbers that appear in the Euler–
Maclaurin formula. With these facts in mind, we have attempted to develop a unified formulation
based on contour integrals that would make it possible to derive both kinds of results at once for
analytic integrands. It is hard to believe that our theorem can be new, but we have been unable
to find such a result in the literature. The closest we have found is [8, appendix B], which sets up
the problem in the same way without deriving an explicit estimate. Another related reference
is [9, §8.3], which gives more mathematical detail than [8] but considers the special case in
which f is analytic in the infinite strip 0 < Re z < 1, −∞ < Im z < ∞, the context of the Abel–Plana
formula, which can also be found discussed in earlier references such as [10, §3.14]. All in all,
our impression is that, whereas the techniques we apply in this paper are old ones, they may
never have been combined before to derive an explicit error estimate for a function analytic in a
finite strip.

The theorem is stated in §2. Various existing results are derived as corollaries in §3, and the
proof of the theorem is presented in §4. Section 5 mentions the variation of the midpoint rather
than trapezoidal formula, and the discussion in §6 points to connections to rational approximation
and the theory of hyperfunctions.

2. Theorem
The theorem is stated in terms of the following Euler–Maclaurin correction sum. For any m ≥ 0
and sufficiently smooth f , we define

Qm,n =
m∑

k=1
k odd

f (k)(1) − f (k)(0)
nk+1(k + 1)!

Bk+1, (2.1)

where Bk is the kth Bernoulli number (B2 = 1
6 , B4 = − 1

30 , B6 = 1
42 , . . .). We further define

�m =
m∑

k=1
k odd

| f (k)(1) − f (k)(0)| (2.2)

and

�(m+1) = sup
−a<y<a

| f (m+1)(1 + iy) − f (m+1)(iy)|. (2.3)

Note that Qm,n, �m and �(m+1) all depend on f , though the notation does not make this explicit.
Here is the theorem. The region of analyticity is sketched in figure 1 (see also §4).

Theorem 2.1. Given real numbers a > 0 and M ≥ 0 and an integer m ≥ 0, let f satisfy | f (z)| ≤ M
and have a continuous (m + 1)st derivative in the region defined by 0 ≤ Re z ≤ 1, −a < Im z < a, and be
analytic in the interior of this region. Then

In − I − Qm,n = Einterior + Eboundary + Etail (2.4)

with

|Einterior| ≤ 2M
e2πan − 1

, (2.5)

|Eboundary| ≤ �(m+1)

3πm(2n)m+2 (2.6)

and |Etail| ≤
�m(2πna + 1)m

π2 e2πna . (2.7)
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Figure 1. Contour of integration for the proof of theorem 2.1. At z = 0 and 1, the integral is defined in the principal value sense,
as suggested by the gaps in the contour. The dots show the sample points of the trapezoidal rule, which become the poles
of the characteristic function (2i)−1 cot(πnz). The theorem bounds the error by the sum of three terms: Einterior corresponding
to ΓT and ΓB, Eboundary corresponding to ΓL and ΓR, and Etail associated with extending the integrals along ΓL and ΓR to
infinite intervals.

In words, theorem 2.1 breaks the error of the trapezoidal rule adjusted by Qm,n into three terms,
the first is related to the discretization error in the interior and the others to boundary effects. Two
of these are exponentially small as n → ∞, and the other is algebraically small. We use the labels
‘boundary’ and ‘tail’ for reasons that will become evident in the proof.

Although theorem 2.1 is valid for any m ≥ 0, one would not normally apply it for odd values of
m, as Qm,n = Qm+1,n and �m = �m+1 when m is odd. This means that if m is odd, then increasing
it to the next even number yields the same bound except with O(n−m−2�(m+1)) improved to
O(n−m−3�(m+2)), assuming f (m+2) exists and is continuous.

3. Corollaries
By considering special cases of theorem 2.1, we obtain various familiar results. The first is Davis’s
theorem for periodic integrands; see [2;3, §4].

Corollary 3.1. Let f be analytic and 1-periodic with | f (z)| ≤ M in the region 0 ≤ Re z ≤ 1,
−a < Im z < a for some a > 0. Then,

|In − I| ≤ 2M
e2πan − 1

. (3.1)

Proof. By (2.1)–(2.3), Qm,n, �m and �(m+1) are zero when f is periodic. It follows from (2.6) and
(2.7) that Eboundary and Etail are zero in this case too. The bound (3.1) now follows from (2.4)
and (2.5). �

The second corollary is one version of the Euler–Maclaurin formula.

Corollary 3.2. Let f be analytic on [0, 1]. Then for any m ≥ 0,

In − I − Qm,n = O(n−m−2) (3.2)

as n → ∞.

Proof. If f is analytic on [0, 1], it is analytic and bounded in the strip around [0, 1] of half-width a
for some a > 0. The result now follows from (2.4) to (2.7) because, as n → ∞, Eboundary = O(n−m−2)
and both Einterior and Etail are of asymptotically smaller order, O(nm e−2πan). �

If f is a polynomial of degree at most m + 1, the mth Euler–Maclaurin approximation is exact.

Corollary 3.3. Let f be a polynomial of degree at most m + 1 for some m ≥ 0. Then for any n,

In = I + Qm,n. (3.3)
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Proof. If f is a polynomial of degree at most m + 1, then f (m+1) is a constant, implying �(m+1) = 0,
so (2.6) implies that Eboundary = 0 in (2.4). The bounds for the other terms Einterior and Etail contain
the factor e−2πan, where n is fixed but a can be taken as large as we want as a polynomial is
an entire function. In the case of Etail, �m is fixed, so (2.7) implies that Etail becomes arbitrarily
small as a → ∞. In the case of Einterior, M grows as a → ∞, but only at a polynomial rate, so (2.5)
implies that this term too becomes arbitrarily small as a → ∞. Thus, In − I − Qm,n must be equal
to zero. �

Corollary 3.3 leads to the identity known as Faulhaber’s formula.

Corollary 3.4. For any n ≥ 1 and m ≥ 1,

n∑
k=1

km = nm+1

m + 1
+ nm

2
+

m−1∑
k=1

k odd

(
m
k

)
Bk+1

k + 1
nm−k. (3.4)

Proof. This is equation (3.3) in the special case f (x) = nm+1xm; the term nm+1/(m + 1) is the
integral I, and the term nm/2 appears because In is defined in (1.2) with a factor 1/2 multiplying
the term k = n. The reason for the assumption m ≥ 1 is that, in the (trivial) case m = 0, the
sum on the left is missing a non-zero contribution 1/2 corresponding to the k = 0 term in
the trapezoidal sum. �

4. Proof
We now prove theorem 2.1.

As sketched in figure 1, let Γ be the boundary of the rectangle of analyticity of f , oriented in
the positive sense, and let ΓL, ΓR, ΓT and ΓB be the left, right, top and bottom boundary segments,
respectively. In the following argument, we suppose for simplicity that f extends continuously to
ΓT and ΓB. If it does not, then the required result can be obtained by replacing ΓT by ΓT − εi and
ΓB by ΓB + εi and considering ε → 0.

The ‘characteristic function’ (2i)−1 cot(πnz) has simple poles at z = k/n for each integer k with
residue (2π in)−1. It follows from residue calculus that trapezoidal approximation (1.2) can be
represented by the contour integral

In =
∫
Γ

f (z)(2i)−1 cot(πnz) dz, (4.1)

where the integrals over ΓL and ΓR are taken in the principal value sense so as to introduce the
necessary factors of 1/2.

The true integral I can also be represented by a contour integral over Γ

I =
∫
Γ

f (z)u(z) dz, (4.2)

where u is defined by

u(z) =

⎧⎪⎨
⎪⎩

−1
2

Im z > 0,

+1
2

Im z < 0.
(4.3)

We can derive this formula by noting that I can be regarded as half the integral of f from 0 − 0i to
1 − 0i minus half the integral of f from 1 + 0i to 0 + 0i. As f is analytic in the rectangular region
and u is analytic in the upper and lower half-planes, these two contours of integration can be
deformed to the upper and lower halves of Γ without changing the value of the integral.
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Combining (4.1)–(4.3), we find

In − I =
∫
Γ

f (z)S(z) dz, (4.4)

with S(z) = (2i)−1 cot(πnz) − u(z), which simplifies to

S(z) =

⎧⎪⎪⎨
⎪⎪⎩

1
1 − e−2iπnz , Im z > 0,

1
e2iπnz − 1

, Im z < 0.
(4.5)

We now establish (2.4) by breaking (4.4) into four terms,

In − I = IL + IR + IT + IB, (4.6)

corresponding to the integrals of f (z)S(z) over the four segments of the boundary (figure 1). We
note immediately that, by (4.4) and (4.5), IT and IB are each bounded by M/(e2πan − 1), which
implies bound (2.5) with Einterior defined by

Einterior = IT + IB. (4.7)

To complete the derivation of (2.4)–(2.7), by (2.4) and (4.6) and (4.7), we must show that IL + IR
can be broken into the pieces

IL + IR = Qm,n + Eboundary + Etail (4.8)

with Eboundary and Etail satisfying (2.6) and (2.7).
For y ∈ (−a, a), define

g(y) = f (1 + iy) − f (iy). (4.9)

This definition simplifies (2.2) and (2.3) to

�m =
m∑

k=1
k odd

| g(k)(0)| (4.10)

and
�(m+1) = sup

−a<y<a
| g(m+1)(y)|. (4.11)

As S(1 + iy) = S(iy), our task is to estimate

IL + IR = i
∫ a

−a
g(y)S(iy) dy, (4.12)

where the integral is taken in the principal value sense. As g has a continuous (m + 1)st derivative
on (−a, a), one of the standard forms of Taylor’s theorem with remainder gives∣∣∣∣∣∣g(y) −

m∑
k=0

g(k)(0)
k!

yk

∣∣∣∣∣∣ ≤ �(m+1)

(m + 1)!
|y|m+1 (4.13)

for y ∈ (−a, a) [11, theorem 1.36]. In (4.12), we note that S(iy) is an odd function of y. Therefore,
when the sum on the left-hand side of (4.13) is inserted in (4.12) as an approximation to g(y), the
contributions from even values of k vanish (in the case k = 0, we use the fact that it is a principal
value integral). The result is∣∣∣∣∣∣∣∣

IL + IR + 2i
m∑

k=1
k odd

g(k)(0)
k!

∫ a

0

yk

e2πny − 1
dy

∣∣∣∣∣∣∣∣
≤ 2�(m+1)

(m + 1)!

∫ a

0

ym+1

e2πny − 1
dy (4.14)

because S(iy) = −1/(exp(2πny) − 1) for y > 0.
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We can now identify the pieces Qm,n, Eboundary and Etail. The quantity Eboundary is the number
inside absolute value signs on the left of (4.14), satisfying

|Eboundary| ≤ 2�(m+1)

(m + 1)!

∫ a

0

ym+1

e2πny − 1
dy. (4.15)

The quantity Qm,n is the negative of the sum on the left in (4.14), but with the integrals running
from 0 to ∞ instead of a

Qm,n = −2i
m∑

k=1
k odd

g(k)(0)
k!

∫∞

0

yk

e2πny − 1
dy. (4.16)

And Etail is the error just introduced in extending those integrals to ∞

Etail = −2i
m∑

k=1
k odd

g(k)(0)
k!

∫∞

a

yk

e2πny − 1
dy. (4.17)

These definitions ensure that (4.8) holds as required; what remains is to derive (2.6) from (4.15)
and (2.7) from (4.17) and to confirm that (4.16) matches the definition of Qm,n given in (2.1).

That (4.16) matches (2.1) follows from an identity that goes back to the late nineteenth
century [12,13], ∫∞

0

uk du
1 − e2πu = ik+1 Bk+1

2k + 2
, k odd, (4.18)

as g(k)(0) = ik( f (k)(1) − f (k)(0)) and i2k+2 = 1 for k odd.
To derive (2.6) from (4.15), we note that the change of variables t = 2πny and extension of the

upper limit of integration to ∞ in (4.15) gives

|Eboundary| ≤ 2�(m+1)

(2πn)m+2
1

(m + 1)!

∫∞

0

tm+1

et − 1
dt. (4.19)

Bound (2.6) follows from this together with an identity closely related to (4.18) [7, (25.5.1)]

1
(m + 1)!

∫∞

0

tm+1

et − 1
dt = ζ (m + 2) (m ≥ 0), (4.20)

where ζ is the Riemann zeta function. The numbers ζ (m + 2) decrease monotonically from their
maximum ζ (2) = π2/6 in the case m = 0.

To derive (2.7) from (4.17), we note that, by (4.10) and (4.17),

|Etail| ≤ 2�m max
1≤k≤m
k odd

1
k!

∫∞

a

yk

e2πny − 1
dy, (4.21)

or, after the change of variables t = 2πny,

|Etail| ≤ 2�m max
1≤k≤m
k odd

1
k!(2πn)k+1

∫∞

2πan

tk

et − 1
dt. (4.22)

Applying lemma A.1 of appendix A with b = 2πna and using the inequalities (2πn)−k−1 ≤ (2π )−2

and (b + 1)k ≤ (b + 1)m, we obtain (2.7).

5. Midpoint rule variant
A close cousin of trapezoidal rule (1.2) is the midpoint rule

Ĩn = n−1
n∑

k=1

f
(

(k − 1/2)
n

)
, (5.1)

where now no prime is needed in the sum as all the terms have the same weight. All the
arguments of this paper can be carried through for this case with minor changes. The term
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cot(πnz) in (4.1) becomes − tan(πnz), and the correction sum Qm,n of (2.1) is adjusted slightly
to become

Q̃m,n =
m∑

k=1
k odd

f (k)(1) − f (k)(0)
nk+1(k + 1)!

(2−k − 1)Bk+1. (5.2)

The constant −1 becomes +1 in the denominators of equations (4.14)–(4.17) and (4.19)–(4.22),
altering Eboundary and Etail in a manner that leaves them still bounded as before, though slightly
tighter bounds could now be derived. In the case of (4.18), 1 becomes −1 in the denominator on
the left, and the right-hand side is consequently multiplied by the factor 2−k − 1, explaining the
appearance of this factor in the definition of Q̃m,n above.

However, it is not necessary to carry out the estimates just described, because the n-point
midpoint rule can be analysed in an elementary way as a linear combination of twice the 2n-point
trapezoidal rule minus the n-point trapezoidal rule

Ĩn = 2I2n − In and Q̃m,n = 2Qm,2n − Qm,n. (5.3)

In view of the factor nk+1 in the denominator of (2.1), this explains instantly the appearance of the
factor 2−k − 1 in (5.2).

Here is the analogue of theorem 2.1, and corollaries 3.1–3.3, for the midpoint rule. As we have
mentioned, in this case the bounds on Eboundary and Etail could be further sharpened somewhat.
For a statement of the midpoint rule variant of the Euler–Maclaurin formula in the more standard
form of an asymptotic series, see [6, eqn (2.9.25)], and for a more detailed treatment, see [14].

Theorem 5.1. Let f , a, M and m be as in theorem 2.1, and let Ĩn and Q̃m,n be defined by (5.1) and (5.2).
Then

Ĩn − I − Q̃m,n = Einterior + Eboundary + Etail (5.4)

with Einterior, Eboundary and Etail satisfying the same bounds (2.5)–(2.7) as before. Corollaries 3.1–3.3 hold
as before with In and Qm,n replaced by Ĩn and Q̃m,n.

In analogy to corollary 3.4, theorem 5.1 implies the following Faulhaber-like formula for
sums of odd powers of integers. This can be derived by applying the analogue of corollary 3.3,
Ĩn = I + Q̃m,n, to the function f (x) = nm+1xm. Alternatively and more simply, it follows by
combining corollary 3.4 and (5.3), that is, regarding a sum of powers of odd integers as a sum
of powers of all integers minus a sum of powers of even integers. Again the key difference is the
appearance of the factor 2−k − 1.

Corollary 5.2. For any n ≥ 1 and m ≥ 1,

n∑
k=1

(2k − 1)m = 2m

⎡
⎢⎢⎣ nm+1

m + 1
+

m−1∑
k=1

k odd

(
m
k

)
(2−k − 1)Bk+1

k + 1
nm−k

⎤
⎥⎥⎦ . (5.5)

6. Discussion
In the theory of hyperfunctions, delta functions and other distributions are realized not by the test
functions and linear functionals of real analysis, but by methods of complex analysis. Specifically,
a hyperfunction on a real interval is defined as a difference of analytic functions in the upper
and lower half-planes, or, more precisely, an equivalence class of such differences [15–17]. Our
arguments have exactly this flavour, and, in particular, the function S(z) is expressed in (4.5) in
hyperfunction form. The reason hyperfunction theory is relevant is that it provides a convenient
framework in which to compare the integral I with the trapezoidal or midpoint approximations
In, which are regarded essentially as integrals whose integrands are strings of delta functions.
This paper is a contribution towards a longer term goal of strengthening the links between
hyperfunction theory and numerical analysis.
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Going beyond the trapezoidal and midpoint rules, it may be noted that, whenever an integral
I of an analytic function f is approximated by a quadrature formula In = ∑n

k=0 wk f (xk) defined by
nodes {xk} and weights {wk}, In can be written as a contour integral involving the product r(z) f (z),
where r is the type (n, n + 1) rational function with poles xk and residues wk. Writing I itself as a
contour integral of f times a hyperfunction, such as u(z) in (4.3), makes it possible to estimate In − I
by contour integrals. This technique was pioneered by Takahasi & Mori [18], who had the vision
of connecting numerical analysis and hyperfunctions long before we did, and it was applied to the
comparison of Gauss and Clenshaw–Curtis quadrature formulae in [19]. Such analyses highlight
the fact that every quadrature formula implicitly makes use of a rational approximation, and the
properties of these rational approximations are investigated in [3, §14; 20,21].
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Appendix A
The following inequality was used in the proof of §4.

Lemma A.1. For any real number b ≥ 0 and integer k ≥ 1,

1
k!

∫∞

b

tk

et − 1
dt ≤ 2(b + 1)k e−b. (A 1)

Proof. As observed below (4.20), the left-hand side of (A 1) is ≤ π2/6 ≈ 1.64, whereas it can be
verified that the right-hand side is greater than this value for b ≤ 0.75. To complete the proof, we
may accordingly assume b > 0.75. As e0.75 > 2, replacing the denominator in (A 1) by et decreases
the integral by less than a factor of 2, so it is enough to show

1
k!

∫∞

b

tk

et dt ≤ (b + 1)k e−b (A 2)

for b > 0.75. We can do this by induction in k. For k = 1, the inequality holds as an equality, as can
be verified by integration by parts. Assume then that it holds for some k ≥ 1 and consider the case
k + 1. Integration by parts gives

1
(k + 1)!

∫∞

b

tk+1

et dt = −1
(k + 1)!

tk+1 e−t
∣∣∣∣
∞

b
+ 1

k!

∫∞

b

tk

et dt

≤ 1
(k + 1)!

bk+1 e−b + (b + 1)k e−b

by the inductive hypothesis. Cancelling the common factor of e−b, this leaves us with the problem
of establishing

1
(k + 1)!

bk+1 + (b + 1)k ≤ (b + 1)k+1,

which follows because the left-hand side is less than bk+1 + (b + 1)k and the right-hand side is
equal to b(b + 1)k + (b + 1)k. �
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