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AbStmCl 

A theory of instability is presented for finite difference models of linear hyperbolic partial 
differential equations in one space dimension with a boundary. According to  this theory, instability 
is caused by spurious radiation of wave energy from the boundary at a numerical group velocity 
C 2 0. To make this point of view precise, we first develop a rigorous description of group velocity 
for difference schemes and of reflection of waves at boundaries. From these results we then obtain 
lower bounds for growth rates of unstable finite difference solution operators in I’ norms, which 
extend earlier results due to Osher and to Gustafsson, Kreiss, and Sundstrom. In particular we 
investigate /’-instability with respect to both initial and boundary data, and show how they are 
affected by (a) finite versus infinite reflection coefficients and (b)  wave radiation with C = 0 versus 
C>O. 

1. Introduction 

In solving linear hyperbolic partial differential equations numerically by means 
of finite difference approximations, a principal difficulty both theoretically and 
in practice is the question of stability. For the “Cauchy problem” on the 
unbounded domain (-a, a), a fairly complete stability theory based on Fourier 
analysis has been worked out during the last few decades by von Neumann, Lax, 
Kreiss, and others [l] ,  [14], [20], [22]. For the “initial boundary value problem” 
on a domain such as [ O , a )  or [0,1], however, Fourier analysis cannot be applied 
in a straightforward way, and progress has been slower and technically more 
complex. The most important contributions in this area were made around 1970 
by S. Osher [18], [19] and by H.-0. Kreiss and his colleagues [ 5 ] ,  [9], [lo], and 
are based on various kinds of normal mode analysis that extend the Fourier 
methods. A comprehensive theory of this type was presented in 1972 in an 
influential paper by Gustafsson, Kreiss, and Sundstrom [ 5 ] .  

The stability criterion derived in the Kreiss-Osher theory involves a “perturba- 
tion test” for “generalized eigensolutions”, whose meaning has in the past been 
obscure. But recently we have pointed out (see [25]) that this test has a physical 
interpretation in terms of group velocity, a fundamental concept in the theory of 
dispersive waves. In a dispersive system, the group velocity for waves of frequency 
w and wave number 6 is defined as C = - d w / d [ ,  where w and 6 are related by a 
dispersion relation p ( w .  €)  = 0. and it can be shown that energy associated with 
the wave component e‘(w‘+‘x) propagates asymptotically (in various senses) at 
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330 L. N. TREFETHEN 

this speed (see [15], [29]). In particular this applies to finite difference models 
of hyperbolic equations, because discretization inevitably introduces dispersion. 
The group velocity interpretation of the Kreiss-Osher results is roughly this: a 
difference model is unstable if and only if it permits spontaneous radiation of 
energy from the boundary into the interior of the mesh - that is, for the case of 
a boundary at the left, if it admits a solution consisting of a set of waves all of 
which have C 2 0. Such waves are in general “numerical parasites” rather than 
physically meaningful solutions to the original differential equation. 

The first purpose of this paper is to carry out a systematic study of the 
dispersive properties of difference models, so that the group velocity interpreta- 
tion of the instability problem can be made precise. We hope that the same 
results will also prove useful for other problems in the analysis of difference 
models. First we show that every wave ei(wr+‘x’ , &  w E R, admitted by a Cauchy 
stable difference model has a (real) group velocity, even if the model is dissipative 
(Lemma 3.2). On the basis of this result we then develop a classification of 
so-called steady-state solutions into leftgoing, strictly leftgoing, rightgoing, and 
strictly rightgoing components, corresponding roughly to group velocities C 5 0, 
C < 0, C 2 0, and C > 0 (Definitions 3.2, 3.3,4.1, 4.2). These definitions reduce 
the main theorem of [5] to the following simple form: 

THEOREM la .  (GKS stability theorem). A difference model of an initial 
boundary value problem (on the domain [0, CO))  is GKS-unstable i f  and only if it 
admits a rightgoing steady-state solution. 

Theorem l a  is not as simple as it looks, however, because it depends on the 
rather complicated notion of GKS-stability (Definition 4.6), which is discussed 
at the end of this section and in Section 4. 

Our second purpose is to derive growth estimates for solutions to unstable 
difference models which reflect in a natural way the mechanisms that underlie 
numerical instability. There are several of these mechanisms, and they differ 
widely in strength. The GKS stability definition is strict enough to encompass 
all of them, and as a result, Theorem l a  asserts fairly little about what growth 
must be exhibited by solutions to unstable difference models. But we show that 
if a small class of marginally GKS-unstable borderline cases is excluded, then 
instability must also occur in the 1’ norm. One price paid for these results is the 
sacrifice of the “sufficient” half of the necessary and sufficient condition for 
stability of Theorem la.  Certain sufficient conditions for l’stability have however 
been obtained in the past (see [9], [lo], [18], 1191). 

In particular we investigate two distinctions that are not present in the theories 
of Kreiss, et al. or Osher. The first is the distinction between rightgoing (C 2 0) 
and strictly rightgoing ( C  > 0 )  steady-state solutions for the initial boundary value 
problem model (Definitions 4.1, 4.2). By exhibiting one of these borderline 
models that admits a GKS-unstable solution with C = 0 but is stable in 12,  we show: 
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INSTABILITY OF DIFFERENCE MODELS 331 

THEOREM 1 b. GKS-instability does not imply 12-instability. 

On the other hand, for C > 0 one gets a definite rate of growth in 12: 

THEOREM 2a. The existence of a strictly rightgoing steady-state sobtion 
implies 12-instability, with an unstable growth rate at least proportional to J n .  

(Here n denotes the number of time steps. Moreover, h will denote the spatial 
grid size.) The idea behind Theorem 2a is illustrated in Figure 1 .  If a difference 
model admits a solution consisting of a wave with C > 0, consider initial data 
consisting of a few wave lengths of this oscillation near the boundary and zero 
elsewhere. As t increases the wave front will propagate into the field at spEd  
C > 0, causing growth in the fnorm by t = 1 on the order of O( l / J h )  = o ( J n ) .  
Unstable growth at the rate d n  has been observed previously by various authors. 
See Section 3 of [6], where the Kreiss-Osher ideas are applied to examine 
behavior on either side of a shock, and also Section 17 of [13]. 

b c > ;  t = o  1 t;I1 

+ - - - -  
O(t4 O( I )  

Figure 1.  Instability caused by radiation of a rightgoing wave from the boundary. 

The second distinction we introduce is between finite and infinite reflection 
coefficients associated with unstable steady-state solutions (Definition 4.3). If a 
difference model admits a rightgoing steady-state solution, then usually there is 
a set of corresponding leftgoing solution modes whose reflection coefficient matrix 
at the boundary is formally infinite. But there are also realistic problems where 
this is not so, and we show that the difference is significant to the unstable growth 
rate: 

THEOREM 3a. The existence of a strictly rightgoing steady-state solution with 
an infinite reflection coefficient implies that the 12-unstable growth rate is at least 
proportional to n. 

The idea behind Theorem 3a is illustrated in Figure 2. If initial data are taken 
consisting of a leftgoing pulse at the critical frequency, the result will be a reflected 
signal whose amplitude is larger by a factor on the order of O ( l / h )  = O ( n )  (the 
closest one can come to infinity on a discrete mesh), causing a growth in the 1’ 
norm of the same order. 
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332 L. N. T R E F E T H E N  

t = O  
c>o 
--3 

t=!. 

Figure 2. Instability caused by reflection in the boundary of a wave with infinite reflection 
coefficient. 

Theorems 2a and 3a can be interpreted as follows: a strictly rightgoing 
steady-state solution is a kind of unstable resonance, but only if an infinite 
reflection coefficient is present will the resonance be strongly excited by initial 
data. On the other hand, we also consider instability with respect to boundary 
data, and show that here an infinite reflection coefficient is no longer needed to 
excite the instability: 

THEonm 5a. The existence of a strictly rightgoing steady-state solution 
implies l*-insrability with respect to boundary data, with an unstable growth rate 
at least proportional to n. 

Our results are summarized in Table I. In  each case Theorem Na, N = 
1, . . . ,6,  establishes that the growth is at least proportional to a certain function 
of n, and Theorem Nb is the converse “sharpness” result that the growth is in 
general no faster. (We do not prove a result for position 4a. It is likely that 

Table I 
Summary of Unstable Growth Rates for Various Classes of Difference Models 

3 str 3 str rightg 
rightg st-st soln 

3 str st-St with IzI > 1 
3 rightg 3 rightg rightg s o h  with (Godunov- 
st-st soln st-st soln st-st s o h  inf. r.c. Ryabenkii) 

growth wrt 1 1 J i  n const“ 
initial data Thms l a ,  l b  Thms 2a, 2b Thms 3a, 3b  

~ ~~ 

growth wrt 1 J, n n const“ 
bndry data Thm 4b  Thms 5a. 5b  Thms 6a. 6b  

-. 

d- 
GKS-stable GKS-unstable 
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INSTABILITY OF DIFFERENCE MODELS 333 

growth at the rate Jn does not occur for all models in this category, but only 
for-those for which dC(S) /de  # 0 at the critical wave number.) 

The theorems of Table I hold for general multilevel approximations to the 
scalar model equation u, = QU, ( a  constant), which may be explicit or implicit, 
dissipative or nondissipative. (Our proofs for Theorems 2a-6a treat two-level 
approximations only, but an outline of the extension of most of them to thc 
multilevel case can be found in Appendix B of [24].) The results generalize 
readily to diagonalizable models of hyperbolic systems with constant coefficients 
(see [24]), and probably also to systems with Lipschitz continuous variable 
coefficients. 

O U T L I N ~  OF ‘ r m  PAPER. For an introduction to group velocity effects in 
finite difference schemes, see [23] or [28], and for an informal presentation of 
the group velocity interpretation of the Kreiss-Osher theory, see [25]. Much of 
this material is also discussed at length in the author’s PhD dissertation [24]. The 
present paper is organized as follows. Section 2 presents numerical experiments 
to confirm that the distinctions of Table 1 are significant in practice. This also 
serves as a concrete introduction to the results that follow. Section 3 proves the 
existence of the group velocity, and defines the terms leftgoing, rightgoing, and 
so on. Section 4 introduces a left-hand boundary at x = 0 and the required 
additional boundary conditions, describes reflections at this boundary, and sets 
forth various definitions of stability for initial boundary value problems. Section 
5 proves the main theorems (Theorems la-6a) for the case of two-level models, 
and Section 6 establishes the corresponding sharpness results (Theorems 1 b-6b). 

A number of additional remarks must be made to clarify the relationship of 
the present theory to previous work, and other issues. 

WELL-POSEDNESS FOR DIFFERENTIAL EOLJATIONS. The stability problem 
for difference models with boundaries is closely analogous to the corresponding 
well-posedness problem for hyperbolic partial differential equations, for which 
a theory has been worked out by Kreiss and Sakamoto that leads to an algebraic 
condition much like the Kreiss-Osher condition described above ‘(see [l 13, [12], 
[21]). It turns out that just as in the stability problem, this condition amounts to 
a requirement that no wave solutions exist which radiate spurious energy from 
the boundary. This interpretation of the theory is apparently due to A. Majda 
and his colleagues, and will be developed in a forthcoming paper by R. Higdon 

Well-posedness is inherently simpler than stability, however, because in the 
absence of a discrete grid, there is no wavelength-dependent dispersion. As a 
result ill-posedness only becomes an issue for problems in at least two space 
dimensions. The possibility of a wave traveling tangentially along a boundary 
then emerges as a troublesome borderline case, analogous to our waves with 

[71. 
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334 L. N. TREFE‘I‘HEN 

C = 0 (see [7]). For difference models in several dimensions all complications 
must be considered at once, but Michelson [16] has provided a theory for these 
problems under a simplifying assumption of dissipativity. 

ALTERNATIVE NOTIONS OF STARIL~ITY. Our emphasis on l 2  norms is not 
meant to imply that this is the only useful way to measure stability (see Section 
4 for a discussion of the 12-versus GKS-stability definitions). The ultimate purpose 
of any stability investigation is to ensure convergence to the correct solution, but 
in complicated problems it is sometimes not obvious what kind of convergence 
is desired and what kind of stability will ensure it. In particular, some models 
that are GKS- and 12-unstable may be stable in a weak sense, i.e., with respect 
to appropriate discrete Sobolev norms, and in some applications this will be 
enough for a successful computation. See the discussion by Kreiss in [12] of 
generalized eigensolutions of “first kind” and “second kind”, and of what 
estimates can be obtained for each. 

ANALOGY TO RESULTS ON INSTABILITY I N  Lp. Our interest in algebraic 
growth rates for unstable numerical solution operators is motivated in part by 
analogous theorems that exist for the problem of instability of /*-stable difference 
models on (-00,m) in L p  norms, p f 2. These results are the work of many 
researchers, and are systematically presented in the monograph of Brenner, 
ThomCe, and Wahlbin [l]. Dispersion phenomena underlie the Lp theory too, and 
a heuristic derivation of LP-unstable growth rates by a group velocity argument 
is given in [26]. 

GODUNOV-RYABENKII INSTARII.ITY. We have not mentioned “Godunov- 
Ryabenkii eigensolutions” (Table 1 )  (see [20]), which generate catastrophic 
exponential growth. Such instabilities are well understood and easily recognized, 
but in practice it is the more subtle wavelike cases concentrated on here that cause 
the most trouble. Our theorems absorb the Godunov-Ryabenkii case into the 
class of strictly rightgoing steady-state solutions. 

TESTING FOK INSTABILITY. The results of this paper provide new insight 
and new estimates, but they offer little help with the problem of actually testing 
a difference model for instability, which still reduces to the algebraic condition 
of Kreiss and Osher. In practice this test may be difficult (see [3], [30]). 

As suggested above, our theorems hold 
for dissipative as well as nondissipative difference models. The effect of dissipativ- 
ity is to rule out all wavelike steady-state solutions that oscillate with non-zero 
wave number in x. This drastically reduces the number of potential unstable 
solutions to be tested for. 

DISSIPATIVE DIFFERENCE MODELS. 

TWO-BOUNDARY PRORI.EMS. It is well known that the fairly mild algebraic 
growth rates of Table 1 may increase to exponential when a second boundary is 
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lNSl.AHlLlTY OF DIFFERENCE MODE15 335 

added (see [13]). The wave propagation point of view is helpful to understanding 
this process, and in particular, the distinction between finite and infinite reflection 
coefficients turns out to be critical (see [27]). In principle such exponential 
blow-up might also be brought about by the introduction of variable coefficients 
or lower-order terms, but it is not clear whether this is a problem in practice. 

2. Numerical Illustrations 

Let u, = u, on x, t 2 0 be modeled for x > 0 by the leap frog formula 

(2.1) 0: = u;-' + A (  u,"+, - u,"-,), 

where A < 1 is the mesh ratio k / h  (see the next section for notational details). 
For any z with (z1 2 1,  the general solution to 0 of the form 0," = znd, can be 
written 

(2.2) u," = U ~ Z ~ K ! + U , Z " K ! ,  

where K /  and K , = - ~ / K /  are the two solutions K of 

(2.3) 

with (3, K , ) ( % e  z ) S o S ( %  K / ) ( % t ?  z )  and IK ,~S 1 s l ~ ~ l .  (Equation (2.2) must 
be modified in the confluent case K~ = K ,  = *i.) The two terms in (2.2) represent 
leftgoing and rightgoing waves, respectively; in particular, for I K (  = 1, (2.3) leads 
to the expression 

for the group velocity of the wave z"K ' ,  so that C S O  for K = K /  and C 20 for 
K = K ,  (see [23], [24]). 

To obtain a numerical solution on the mesh j ,  n 2 0 starting from given initial 
data up, v: , Q can be applied for j ,  n 2 1,  but an additional one-sided numerical 
boundary condition is needed to provide the values ?I;+'. The combination of 0 
with a boundary formula of this kind will be denoted 0. We take A =: and 
consider four possibilities: 

Each of these can be viewed as the imposition of a reflection coefficient function 
relating a, to a/  in (2.2), which in general will restrict the set of solutions vy = z"dj 
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336 L. N. TREFETHEN 

from a two- to a one-parameter family. To compute the reflection relation for 
scheme a,, one inserts (2.2) into (2 .5~1)  to obtain 

Z (a1 -k a,) = UlK1-k UrK,  , 
i.e., 

(2 .6~1)  0,: a , ( ~ ,  - 2) = - a l ( ~ I  - 2). 

Similarly for the other schemes the results are 

(2 .W) 0 0 :  ar(K,- Z3) = - C l l ( K [  - Z3), 

( 2 . 6 ~ )  

(2.68) 06: U r ( K ,  - 1 )  = -a[(  K I  - 1). 
d,: a,( 1 + Kf -2.2) = -al( 1 -t K : -  22), 

A rightgoing steady-state solution to ox is a solution vy = ~ ' ' 4 ~  containing 
rightgoing energy only; that is, a function (2.2) with af = 0, a, f 0 that satisfies 
both (2.1) and ( 2 . 5 ~ ) .  Clearly, such a solution can exist if and only if the coefficient 
of a, in ( 2 . 6 ~ )  is zero for some z with 1112 1. From (2.3) one can calculate that 
this can occur for models p, y, 8 but not a. The results are summarized in Table 
11. 

Table I1 
Rightgoing Steady-State Solutions for Models 

Q,, Qp, or, 0 6  

Z K,  K I  C ( z .  K , )  a, /a ,  

a (none) 
* i  * t i  0 - 1  P 

Y 1 -1 1 1 -3 s -1 1 -1 1 aJ 

e*nr /6  

I 

As indicated in the table, the rightgoing steady-state solutions admitted by 
6, and 0 6  have C > 0, hence are strictly rightgoing, while those admitted by 0, 
have C = 0. Models d, and 0 6  differ in that the latter has an infinite reflection 
coefficient a , / a f  = 00 corresponding to the rightgoing steady-state solution, while 
the former has a,/al <a, because the zero coefficient of a, in ( 2 . 6 ~ )  at z = K I  = 
- K ,  = 1 is balanced by a zero coefficient of al for the same parameter values. 

Thus aa, ap7 a,, ii, exemplify the first four columns of Table I. The following 
two sets of experiments give evidence that the distinctions listed in the table are 
significant in practice. 

First, Figure 3 shows a set of computations driven by random inifial dala 

n = O , l ,  v? = l? 
I I '  
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INSTABILITY OF DIFFERENCE MODELS 337 

t = O  t = .5 
Figure 3.  Schemes 0- - Q6 with random initial data. Only Q6 is clearly unstable. 

where { l y }  are uniformly distributed random numbers in [-1,1]. The domain is 
[0, 13, with mesh size h = 1/ 100 and right-hand boundary condition vyoo = 0. For 
each scheme 00-06, the distributions vo and v1O0 ( r  =;) are plotted. Obviously 
an instability is present in case 6, where the first row of Table I predicts growth 
like n, while no instability is evident in cases a-y, where the table predicts only 
J n .  These results are consistent with the view that 0, and 0 6  both admit unstable 
strictly rightgoing solutions, but only in the latter case is this mode strongly 
excited by initial data. (Of course, the lack of visible growth in Figures 3a-y 
does not imply that 0, gives results that converge to the correct solution as the 
mesh is refined.) 

Second, Figure 4 shows corresponding plots for zero initial data but random 
boundary data 

g" = 5" 

added as an inhomogeneous forcing term to the boundary condition (2.5); thus 
( 2 . 5 ~ )  becomes 
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338 L. N. TREFPTHEN 

t = O  t = .5 
Figure 4. Schemes 0- - f& with random boundary data. O7 and Oa are clearly unstable 

and similarly for p, y, 6. (Adding boundary data in this way is of course inappropri- 
ate for the differential equation u, = u, under consideration, but this is beside 
the point; the same kind of behavior can occur in more realistic problems.) Now 
the situation has changed: while oa and ap still appear stable, both oy and Q, 
are evidently unstable. In each case the boundary function has stimulated a 
rightgoing wave in the mode (2, K , )  listed in Table 11. The distinction between 
finite and infinite reflection coefficients has apparently ceased to matter, as 
predicted in thesecond row of Table I. (The growth visible in these plots in fact 
has order O(Jn),  but this would increase to O( n )  if the boundary data were not 
random but fixed at exactly the frequency of the unstable mode.) 

One can devise many more experiments to explore the behavior of unstable 
difference models. In particular, the solution curves of Figures 3 and 4 were 
irregular because of the randomness in their forcing data, but smooth wavelike 
instabilities as in Figures 1 and 2 can also be observed numerically: see [27] and 
also Section 4.1 of [24]. Section 5 of [24] investigates borderline GKS-unstable 
models experimentally in some detail. 

The proofs in Section 6 contain rigorous analyses of the instability of LF with 
several particular choices of boundary conditions, including 6. 
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INSTABILITY OF DIFFEKBNCE MODELS 339 

3. Fundamentals for the Cauchy Problem 

Consider the model hyperbolic equation 

(3.1) u, = aux,  x , r c R ,  

where a E R  is constant and u = u ( x ,  t )  is a complex-valued function to be 
determined. We postpone consideration of boundary and initial conditions to the 
next section. To approximate (3.1) by a finite difference model, we choose a 
space step h>O and a rime step k > O  and make use of a discrete formula to 
generate a grid function { u y } ,  j ,  n E Z, which it is hoped will satisfy 

(3.2) u," = u (  jh, n k ) .  

Let K and Z denote the shift operators 

(3.3) Ku," = u , " + ~ ,  Zuy = v ,"+ l .  

We shall permit K or Z to act on any objects that have space or time indices, 
respectively. The approximation u will be computed as the solution of an s + 2- 
leuel finire diflerence formula, denoted by Q, of the form 

(3.4) s z o ,  

where each Q, is a spatial difference operator 

(3.5) 

Here I and r are fixed non-negative integers that indicate how far Q extends to 
the left and right of center. 

In applying Q to generate u, one.assumes at step n + l  that the values 
U" -', . - , U" are available. Let 11 * 11 denote the norm 

(3.6) 

and let 1' denote the set of spatial grid functions 4 for which this number is 
finite. For (3.4) to be applicable for determining u"+', we assume that Q-.' has 
a bounded inverse as an operator on  1'. 

In practice, 0 may be applied with varying values of h and k ,  and it is hoped 
that as h, k + 0, the solution u will approximate u, as suggested in (3.2). However, 
our stability results will make no reference to u, and (3.1) and (3.2) are provided 
for motivation only. We assume that although h and k may vary, the mesh ratio 
A = k /  h is constant. This is typical for models of hyperbolic problems. We further 
assume that the coefficients aju of (3.5) may depend on A, but not on h and k 
independently. Thus Q is a fixed difference formula, independent of x, f, h, and 
k. For such a formula the definition of stability takes the following simple form: 
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340 L. N. TREFETHEN 

DEFINITION 3.1. 
for any solution u of Q, 

(3.7) 

Q is Cauchy stable if there exists a constant M such that, 

S 

~ ~ u " ~ ~ ~ M  C JIu'II for all n 2 0 .  
u =o 

We assume always that this condition holds: 

CAUCtiY STABIIJTY ASSUMPTION. Q i s  Cauchy stable. 

Q can be represented in various ways in terms of K and Z. Let P denote the 
bivariate polynomial 

(3.8) 

Equation (3.4) can then be rewritten as 

(3.9) 

The dispersion refarion for Q is the equation 

P( K ,  Z )  u; = 0. 

(3.10) P( K ,  2) = 0, 

whose solutions are pairs ( K ,  z )  E C2. Whenever a relationship between K and z 
is mentioned in what follows, it should be understood that we are speaking only 
of pairs ( K ,  z )  that satisfy (3.10). For any non-zero values of K and z the 
corresponding waue number 5 and frequency w are defined modulo 2 r l h  and 
2 r l  k ,  respectively, by the formulas 

(3.11) = etch, = elwk. 

Whenever K and 5 or z and w are mentioned below, it is assumed that they are 
related by (3.11). Obviously 6 E R if and only if ( K I  = 1, and w E R if and only if 

For any z E C, the associated resolvent polynomial is the univariate polynomial 
Iz(= 1 .  

P, of degree at most f + r  defined by 

(3.12) P , ( K ) = P ( K ,  2). 

In addition we let Pa denote the limiting polynomial associated with the 
coefficients at step n + 1 alone, 

The resoluent equation for 0 is the spatial difference operator equation 

(3.13) P z ( K ) 4  = 0. 
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INSTABILITY OF DIFFERENCE MODELS 341 

We shall be concerned with the class of solutions v of Q of the form 

(3.14) v; = ~ “ 4 ~  

for some z E C and some spatial grid function 4. (We do not require 4 E l’.) It 
is obvious that a distribution (3.14) is a solution to Q if and only if 4 satisfies 
(3.13). For definiteness we make the following assumption of nondegeneracy. 
The first statement ensures that the stencil of Q extends a full 1 and r points to  
the left and right (cf. Assumption 5.5 of [ 5 ] ) ,  and the second that the center 
point j = O  is meaningfully defined (cf. Assumption 3.1 of [5] and the “pole 
condition” of [8]). 

NONDEGENERACY ASSUMPTION. For all z E C with IzI 2 1 ,  P,(K)  has non- 
zero 0-th and ( I  + r )  -th coefficients. Moreover, Pa( K )  # 0 for I K I  = 1,  and the curve 
P,  (1.1 = 1) has pos@ve winding number 1 about the origin. 

(The condition on P-(K) actually follows by Fourier analysis from the inverti- 

The following lemma describes all solutions (3.14) admitted by 0 (cf. [ 5 ] ,  
bility of O-, .) 

pp. 659-660): 

LEMMA 3.1. For any z E C with 121 2 1, P, (K)  has exactly 1 + r roofs, counted 
with multiplicity, and they are non-zero. For IzI > 1 ,  1 of these satisfy I K I  < 1,  r 
satisfy ( K I >  1 ,  and none satisfy I K I  = 1.  Given 1212 1,  let { K , } , ~ , ~ ~ ,  p 2 1,  denote 
the distinct roots of P, ( K ) ,  and let v, denote the multiplicity of K, .  Then the 1 + r 
sequences 

(3.15) 4. I = K ; j 6 ,  1 5 i S p ,  l S : S S v , - l ,  

are linearly independent solutions to (3.13), and they span the linear space of all 
such solutions. 

Proof: The first part of the nondegeneracy assumption implies that P, has 
l+r roots, counted with multiplicity, and that they are all non-zero. For IzI > 1,  
a root with I K I  = 1 would contradict the von Neumann condition, hence Cauchy 
stability, and this implies that, for IzI > 1, the roots divide into well-defined sets 
inside and outside of the unit circle. The fact that there are 1 roots in the first 
set and r in the second can be established by examining the limit Z+OO and 
applying the winding number part of the nondegeneracy assumption (cf. Lemma 
5.2 of [ 5 ] ) .  Finally, the breakdown into fundamental solutions (3.15) is a standard 
result in the study of recurrence relations; see for example Section 4.2 of [17]. 

R, i.e., ~ K ~ I =  lzol = 1, 0 admits a solution 

(3.16) V: = 2 ° K ’  o -  - exp {i(wot +tax)), x =  jh, t =  nk. 

Suppose now that for some to, 
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342 L. N. TREFETHEN 

If w depends smoothly on 6 in a neighborhood of (0, then according to the theory 
of dispersive waves (see [2], [15], [29]), the energy associated with the wave 
(3.16) travels at the group velocity C defined by the formula 

(3.17) 

provided this number is real. By differentiating (3.11), one obtains the formulas 

dK = ihK d& dz  = ikz dw, 

and it follows that an equivalent expression for the group velocity is 

(3.18) 

In Lemma 5.1 we shall justify in one of many possible ways the claim that C 
represents the velocity of energy propagation. 

In the remainder of this section, we explore some of the purely algebraic 
properties of C. First, the following lemma establishes that C always exists when 

and w,, are real. This result holds not only for unitary approximations such as 
leap frog, Crank-Nicolson, and the Box scheme, but also for dissipative or 
partially dissipative formulas such as Lax-Wendroff, Lax-Friedrichs, and the 
Upwind formula (see Appendix A of [24]). Indeed we have made no assumptions 
regarding the dissipativity of 0. 

LEMMA 3.2. Suppose that Q admits the solution (3.16) with I K ( ~ I =  IzOl = 1, 

( i )  in a neighborhood of ( K ~ ) ,  zo), z is a single-valued analytic function of K ,  

( i i )  the group velocity derivative (3.17) exists and is real, 
(iii) C = O  ifand only if.,] isa multiple root ofP,,. Therefore ifC # 0,  z = Z ( K )  

i.e., to, wo E R. Then. 

has an analytic inverse K = K ( Z )  near ( K O .  20). 

Proof: If 0 admits the solution (3.16), then P ( K O ,  ZO) =0, where P is the 
polynomial defined by (3.8). For any K E C, consider the univariate polynomial 
P , ( z )  defined (cf. (3.12)) by 

p, (2) = P( K ,  2 ) .  

The coefficient of P, of degree s +  1 is P,(K), which by the Nondegeneracy 
Assumption is non-zero for I K I  = 1. In particular, P, must have exact degree s +  1 
for K = K,,, and since the coefficients of Px are analytic functions of K ,  also in a 
neighborhood of KO. Now zO must be a simple root of P,,, for if it were not, Q 
would admit a linearly growing solution 

U;= n Z : K { ) ,  
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INSTABILITY OF DIFFERENCE MODELS 343 

as in the proof of Lemma 3.1 but with the roles of j and n interchanged, and 
Fourier analysis shows that this would contradict Cauchy stability. These facts 
together with the implicit function theorem imply that, in a neighborhood of 
( K ~ ,  zo), the dispersion relation P( K ,  I) = 0 determines a single-valued analytic 
function z ( K ) ,  satisfying 

(3.19) z -zo= A ( K  - K ~ ) ” +  O ( ( K  + K ~ ) ’ + ’ ) ,  A # 0, 

for some A E C, where v 2 1 is the multiplicity of K~ as a root of PZ,). This proves 
(i). 

Claim (iii) follows from (3.18) and (3.19). 
To establish (ii) we must show that C is real. For v 2 2 this is immediate; so 

assume v =  1. The situation is indicated in Figure 5 :  Z ( K )  maps a neighborhood 
of K~ conformally onto a neighborhood of zO.  Now Cauchy stability implies that, 
for any K with I K I =  1, one must have I z ( K ) ~ S  1 (the von Neumann condition). 
For this inequality to hold, z( K )  must map the tangent to ‘ ( K (  = 1 at K~ onto a 
curve that is tangent to (21 = 1 at zo, as illustrated in the figure. Algebraically 
this is equivalent to the condition 

and inserting this into (3.18) proves C E R, which concludes the proof. 

Figure 5. Analytic relationship between z and K at a point K”. z0 with C Z 0. 

The standard definition (3.17) of the group velocity is based on the study of 
the connection between perturbations to + & , + A t  in 5 and perturbations wo + 

w O + A o  in w,  where it is usually supposed that both A 5  and Aw are real, at least 
to first order. This amounts to studying the relationship between K and z as K 

or is perturbed along the unit circle. However, the analyticity in the last lemma 
implies that one may equally well consider perturbations of K and z off the unit 
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344 L. N. TREFETHEN 

circle, which is equivalent to considering complex A( and Aw, and this is what 
is done in the work of Kreiss and Osher. The following lemma makes the 
connection between these two approaches explicit, and in particular shows that 
the “perturbation test” associated with the Kreiss-Osher theory amounts to a 
test of group velocity. 

We continue to assume that Q admits the solution (3.16) with I K ~ (  = lzoI = 1. 
In a sufficiently small neighborhood of zo, the equation P(K,  z) = 0 defines v 
continuous functions { K ~ ( Z ) } , ~ ~ = ~  with limz+% K ~ ( z )  = K” for each i. Let R denote 
the intersection of such a neighborhood with lz( > 1. The von Neumann condition 
implies I K ~ (  z)l f 1 for z E R for each i. Therefore the following integers are well 
defined: 

vl: number of roots K~ with I K ~ ( z ) ~ >  1 for Z E R ,  

v,: number of roots K~ with I K ~ ( z ) ~ <  1 for ZER, 

v = v , + v , .  

The subscripts 1 and r stand for “leftgoing” and “rightgoing”, respectively, since 
a solution K’Z” with I K I  < 1 < Izl can be thought of as translating to the right as 
n increases, and a solution with I K I ,  lzI> 1,  to the left. In Section 2.3 of [24] 
these translation speeds are made precise, and it is shown that they approach C 
in the limit z + zO.  

LEMMA 3.3. Let 0 admit the solution (3.16) with I K ~ ~ =  (zol = 1,  and let R, 
v, vl, and v, be defined as above. 

(i) If v is  even, then vI = v, = iv. If v is odd, then either v l  = i( v +  1) and 
v, = $( v - 1 ), or the reverse. 

(ii) (Perturbation test) If C # 0 ( so  that v = 1 by Lemma 3.2(iii), and we can 
w r i t e K ( z ) f o r K , ( z ) ) ,  thenC<O i f a n d o n f y i f I ~ ( z ) l > I  forzER, a n d C > O  if 
and only i f  I K ( z ) ~  < 1 for z E R. That is, C i s  negative if  vI = 1 and positive i f  vr = 1. 

Claim (i) follows from (3.19) (cf. Theorem 9.2 of [S]). Claim (ii) 
follows from (3.18). 

Proof: 

If 0 admits a solution (3.16) with lzol 2 1 and ~ K ~ I Z  1, we set vI = v and v, = 0 

We are now prepared to state some definitions that will be central to all of 
if IKol>l,and v ,=vand v I = O i f  JKO(<I .  

what follows. 

DEFINITION 3.2. Let Q admit a solution 

(3.20) v;  = Z l fK { ,  j 6  

with IzolZ1 and 6Smax{vl ,  v,}. 
l ) ,  or if I K ~ \ =  (zol = 1 and C > O  

(respectively C < 0), then u is strictly rightgoing (respectively, strictly leftgoing). 
If lzoI> 1 and I K ~ I <  1 (respectively 
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INSTABILITY OF DIFFERENCE MODELS 345 

1.1 > I 1.1 = 1 1.1 = 1 1.1 = 1 121 = 1 121 = 1 1.1 = 1 121 = 1 

c<o c=o c=o c=o c>o 
IC;I > 1 llcl = 1 IKl > 1 IZl = 1 1K1 = 1 IK I  = 1 IKl < 1 )KI  = 1 

If u is strictly rightgoing (respectively strictly leftgoing), or if (zo( = 1 and 
I K ~ I  < 1 (respectively I K ~ I  > l),  or if I K ~ I  = I zoI = 1 and C = 0 and 6 S vr (respectively 
S I v f ) ,  then u is rightgoing (respectively leftgoing). 

1.1 > 1 

1x1 < 1 

6 = U( 6 5  
= u, + 1 min{uc, u,} 

Now we are finally prepared to mix modes by considering, still for fixed z, 
all of the associated values of K .  In the notation used earlier, { K i } y = ]  was the set 
of distinct values K for a given z. From Lemma 3.1 it is readily seen that, according 
to our definitions, for all 121 2 1 (with obvious notation) 

6 = u, 
= u( + 1 

5 v?'= 1, 
i = l  i = l  

Thus for every IzI 2 1, Q admits exactly I rightgoing and r leftgoing independent 
modes (3.20). FrQm this point on, let { ~ ~ ) f t ;  be the set of all K ' S  repeated 
according to multiplicity, with { Si} chosen accordingly, so that ( K ~ ,  S i )  := and 
( K ~ ,  $)12;+, are the parameters associated with rightgoing and leftgoing modes, 
respectively. Then we can conveniently form linear combinations as follows: 

DEFINITION 3.3. A steady-state solution to Q is a non-zero linear combi- 
nation 

(3.21) 
i - 1  i = l + l  
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346 L. N. TREFETHEN 

with 1.~12 1 and complex constants { a ; } ,  where { K ~ }  and (6,) are defined in such 
a way that the two sums range over all right- and leftgoing modes (3.20), 
respectively, admitted by Q for the given z. 

Equation (3.21) is nothing more than a breakdown of the solutions to Q that 
have regular behavior with respect to t, presented so as to emphasize the flow 
of energy right or left in the various component wave modes. It could be applied 
directly, for example, to analyze the steady-state response of a finite difference 
model to a sinusoidal forcing oscillation. 

4. Fundamentals for the Initial Boundary Value Problem 

Now we shall introduce a boundary, and specify initial, boundary, and forcing 
data. Since the results to come do not depend on the differential equation being 
approximated, but only on the difference model, we proceed directly to the 
numerical form of these quantities. 

Consider a grid function { u y }  defined for j 2 0. For j 2 I ,  u will be determined 
by the finite difference formula Q of (3.4), but with a possibly non-zero forcing 
term F added on the right-hand side: 

Q (with F=O) is assumed to satisfy the assumptions stated in the last section. 
For 0 5 j d I - 1, u will be determined by a linear set of equations with a possibly 
non-zero forcing term g, which can be written as follows for some integers N ,  
and N 2 :  

r=o n=-l 

(These conditions incorporate both physically meaningful boundary conditions 
and additional purely numerical ones.) The symbol 0 will denote the difference 
model defined by (4.1) and (4.2). For analytical purposes we can consider solutions 
uy defined for all n E Z, but in apllications u will be initialized by an initial data 
distribution 

(4.3) u ; =  f P ,  O S j < a ,  O S a S s ,  

after which (4.1) and (4.2) will be applied for n 2 s. (Actually initial values are 
needed for CT 5 max { s, N2} ,  but to avoid too much fussiness let us stick with (4.3) 
and assume N 2 S  s.) 

Suppose F and g are identically zero. If ( z (  2 1 is given, we found in the last 
section that Q admits an ( I +  r)-dimensional space of steady-state solutions (3.21) 
consisting of linear combinations of r leftgoing modes and 1 rightgoing ones. A 
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INSTABILITY OF DIFFERENCE MODELS 347 

solution of the form (3.21) to 0, however, will have to satisfy in addition the l 
boundary conditions (4.2). We define in analogy to Definition 3.3: 

DEFINITION 4.1. Suppose that 0 with F = g = 0 admits a non-zero solution 
(3.21) for some I with lzlh 1.  (That is, (3.21) satisfies (4.2) with g = O  as well 
as (4.1) with F=O.) Then u is a steady-stare solution to 0. 

A parameter count suggests that in general, the set of steady-state solutions 
to 0 will b e 2  linear space of dimension ( I  + r )  - I = r. To make this precise, given 
lzlr 1 and hence { K , ( z ) }  and { 8 , ( z ) } ,  let (3.21) be inserted in (4.2). The result 
is an 1 X ( I  + r)-linear system of equations in a,, * * - , a'+, , which can be !written 
(4.4) ~[r l (z)a[ ' J+ ~ [ ' J ( z ) a l ' ]  = 0 

7 with ar r l=  ( a , ,  * . , and a"'= . . , al+,) , or equivalently, 

(4.4') D( z ) a  = 0 

with a = ( a , ,  * . . , a'+,)=. Here D"](z),  D"'(z), and D( z )  are matrices of 
dimensions 1 x I ,  f x r, and 1 x ( I  + r ) ,  respectively. 

Equations (4.4) and (4.4') can be interpreted as the imposition of a reflection 
coefficient function relating leftgoing waves to rightgoing ones at the boundary. 
If D"'(z,) is nonsingular for a given z, ,  which is the typical situation, then one 
obtains 

a"] = -(D"]( zo))-' @'I( zo)a['1, 

which represents a solution to the problem of determining what waves will be 
reflected rightward in the steady state when a leftgoing wave is incident at the 
boundary (see Section 3 of [24]). On the other hand, if D"](z0) is singular, then 
the reflection problem has no unique solution, for (4.4) implies that d admits a 
solution (3.21) with a"] # 0, a"'= 0. 

DEFINITION 4.2. Suppose 0 admits a steady-state solution (3.21) in which 
every mode with non-zero amplitude is rightgoing (respectively, strictly right- 
going). Then u is a rightgoing (respectively, strictly rightgoing) steady-state 
solution. 

Our results can be summarized as follows: 

LEMMA 4.1. The function (3.21) is a steady-stare solution to 0 if and only 
if the coefficient uectors a"], a"' satisfy (4.4). 0 admits a rightgoing steady-state 
solution for lzol 2 1 if and only if D"]( zo) is singular. 

Thus 0 has a rightgoing steady-state solution with z =zo if and only if 
rank (D"'( zo)) < I. This observation suggests the following formalization of the 
notion of an infinite reflection coefficient: 
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348 L. N. TREFETHEN 

DEFINITION 4.3. Suppose 0 admits a strictly rightgoing steady-state solution 
for z = z O ,  lzol 2 1. 0 has an infinite reflection coeficienr at z = zO if rank (D'( zO))  = 
1, where D'( zO) is the submatrix of D( zO) containing only those columns corres- 
ponding to strictly rightgoing or strictly leftgoing components. 

Now we consider various definitions of stability for 0. First, let II.II+ denote 
the norm defined by 

(4.5) 
co 

11411: = h z 14,12, 
I"0 

(cf. (3 .6 ) ) ,  and let 1: denote the set of spatial grid functions 4 on j 2 0 for which 
this number is finite. The simplest stability definition has to do with dependence 
of interior solution values on initial data. Let F," and g," be identically zero again. 
Let S be the solution operator S: (/:)'+I + ( I : ) ' + '  defined by 

(4.6) s: ( . . . , U n - s ) + + ( U n + l  . . . , o n - + ' ) ,  

Let these (s+ 1)-level vectors be normed in the natural way by 

I[( un, - * * , Un-s) l12 = i ~ ~ U f l - q : ,  
U = O  

and let ( (S( (  be the induced operator norm applied to S. We define: 

DEFINITION 4.4. 0 is 12-stable if there exists a constant M such that 
/ 

(4.7) I l s " l l ~ M  for all n 2 O .  

Another notion of stability concerns dependence of interior solution values 
on boundary data. This time, assume that F is identically zero and that g," is 
zero for n < s but possibly non-zero for n 2 s. Let u," be computed for n 2 0 with 
homogeneous initial data f = 0 in (4.3). For each n 2 s + 1, let S g )  denote the 
operator 

sp: g H  U n  

with norm induced by the 1: norm (4.5) on U" and a similar norm l l . l l l  on g, 
defined by 

(4.8) 
I-1 w 

Ilgllf= h E c lg;l'- 
j = O  n = s  

DEFINITION 4.5. 
a constant M such that 

(4.9) I I s ~ ) I I  5 M for aII n L 0. 

d is I2-stable with respect to boundary data if there exists 
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INSTABILITY OF DIFFERENCE MODELS 349 

It can readily be seen that although I'stability does not imply 12-stabilig 
with respect to boundary data, the gap between the two is at  most a factor of J n :  

LEMMA 4.2. For a n y  0 and n 2 1,  
- 

(4.10) I l S P l l ~  J n  osy-, IlS"ll 

Proof: We apply the discrete form of Duhamel's principle. Given boundary 
data g = {gy}, define an associated family of initial data distributions W" E ( I : ) " + '  

W" =(is+'", 0, .  - * , O), n 2 0 ,  
by 

where 6" E 1: is simply 

i "= (go" , .  . . 7 g;-, 7 090, * * *). 

( US, - * * , v") = (0 ,  * - - , O), 

Then by (4.1)-(4.3) one has 

( U I + s ,  * * * , 0') = (i', 0,  * ' * , O )  = w", 

( U Z + S ,  * * - , U 2 )  = swo+ w1, 

and after n steps, 

(4.11) ( g " + S , .  . . , = sn-1 w"+ s"-2 w' + . . . + W " - l .  

P = max lIS"lI, 
If we set 

OSuLn-1  

then (4.11) implies 

I I ( U n + s , .  * * ,  u")lldp(IIw"II+* . *+l lw"- ' l l ) ;  

IIU"ll+ ~ ' ~ l I w o I I + *  * . +IIWn-lll), 

hence 

and therefore, by the Holder inequality, 

11 ~ " 1 1 :  s p 2 n (  11 w01l2+ * * * + 11 wn-'1I2) 

=p2.(llg^"ll:+. ' * + l g " + s - l ( ( : )  

a . m g l l : .  

Thus I I u " ( ( +  5 pJ&ll,, and since g was arbitrary, this establishes (4.10). 

The final definition of stability that we shall consider comes from the paper 
of Gustafsson, Kreiss, and Sundstrom [ 5 ] ,  where it is given as Definition 3.3. This 
time, let f;. be zero and consider functions FY and gy that are zero for n -= s but 

 10970312, 1984, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.3160370305 by O

xford U
niversity, W

iley O
nline L

ibrary on [27/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



350 L. N. TREFETHEN 

possibly non-zero for n E s. For a distribution 4; indexed by 0 S j  < 00, n 2 0, 
define the norm II4IIX., by 

n - O  j = O  

DEFINITION 4.6. 4 is GKS-stable if there exist constants a. L 0 and M such 
that, for all a > aO, the following estimate holds for all sufficiently small k:  

Remarks on the GKS stability definition. It is not obvious at first inspection 
what the function is of the various terms in the GKS definition of stability. In fact, 
(4.12) has two principal features that set it apart from 12-stability with respect to 
initial and boundary data: 

1. The second term on the left in (4.12) requires that not only interior values 
but also boundary values depend stably on the forcing data. This is an essential 
restriction, which becomes significant whenever 0 admits rightgoing but not 
strictly rightgoing steady-state solutions. In particular it gives rise to Theorem 
1 b. Sometimes it is important to have such an estimate - for example, in a problem 
where physical quantities at the boundary are of independent interest, or in any 
situation where boundary values from one computation will be used as forcing 
data in another (Section 5.4 of [24]). 

2. All of the norms in (4.12) are integrals over t rather than estimates at 
fixed t. (The decay factors e-"I, the normalizing terms (a  - a(,)/( 1 + a k ) ,  and the 
replacement of f by F all stem from this.) This is a technical restriction made 
necessary by the proof of the main stability theorem (our Theorem l a )  in [ 5 ] ,  
which depends upon Fourier transforms with respect to f .  For theoretical applica- 
tions the reliance on integrals in t is an unfortunate weakness in the GKS theory, 
but in practice it seems to have no significance. Indeed it appears that GKS- 
stability may imply I2-stability, although up to now this has not been proved. 

Because of these complications, the application of the concept of GKS- 
stability - for example, to reach conclusions regarding convergence (see [4]) - is 
often not an easy matter. However, there are two important advantages of the 
GKS definition, which motivated its introduction in [5] :  

1. This is the only stability definition for which necessary and sufficient 
conditions have been obtained for difference models of general form. 
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INSTABILITY OF DIFFERENCE MODELS 351 

2. It can be shown that if a difference model 6 is GKS-stable, then the same 
holds for nearby difference models defined by coefficients sufficiently close to 
those of 6. In other words, the set of GKS-stable difference models is open. On 
the basis of this fact it can be shown that perturbations introduced by smoothly 
variable coefficients, lower order terms, and multiple boundaries preserve GKS- 
stability (see [ 5 ] ,  [9], [ll]). Thus GKS-stability is robust in a way that 1' and 
other notions of stability are not. 

5. Growth Rate Results 

We are now in a position to prove Theorems la-6a of Table I. 

THEOREM la. 0 is GKS-stable if and only if it admits no rightgoing steady- 
state solutions. 

Proof: This is a restatement of the result that is generally considered the 
main theorem of [ 5 ] ,  where it appears as Lemma 10.3 and the sentence following 
in the form of a determinant condition: 0 is GKS-stable if and only if det D"'( z)  # 
0 for all z with (21 2 1, where D"' is the 1 X 1-matrix of (4.4). (See [ 5 ]  for certain 
restrictive assumptions on the range of permissible models 6.) By Lemma 4.1, 
the determinant condition is equivalent to the condition that there are no 
rightgoing steady-state solutions. 

The rest of our proofs will be limited to the case of two-level (s = 0) difference 
models. They are all based on Lemma 5.1 below, which states that if a wave 
packet is smooth, then it propagates approximately at speed C. Proving this 
involves estimating a Fourier integral that has a standard form: if one divides 
through by the carrier oscillation e""[)'+eox) , then what remains is the same kind 
of integral as governs the propagation of a smooth signal under a consistent finite 
difference model of the equation u, = -Cu,, where C = C(to, wo).  A variety of 
estimates for such integrals are available in the literature on stability of difference 
schemes in the maximum norm (cf. [ I ] ) .  However, all we need is a very special 
case. Therefore, rather than appeal to existing theorems, which would introduce 
undetermined constants and obscure the simplicity of what is going on, we give 
the following argument from first principles. 

Let h and k be fixed and let Q be a two-level constant-coefficient Cauchy 
stable difference formula that admits a solution exp { i(wot + (3)) with to, wo E R. 
By Lemma 3.2, there exists C E R such that the dispersion function w (  6) satisfies 

for some constant M. By Cauchy stability, we have 9m w 2 0 for all 6 E R, which 
implies 9m ~ ( 5 )  2 O'also. Since 7 - ei' is a contraction map for 9m 7)  2 0, this 
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352 1.. N. TREFETHEN 

LEMMA 5.1. Let p ( x )  bcong to C: (twice continuously differentiable with 
compact support) and satisfy p " ~  L' .  Let Q be applied (for all x E R) with initial 
data 

u"(x )  = exp { i tox}p(x) .  

Then, for any n 2 0 and any x E R, u " ( x )  satisfies 

(5.4) lu"(x)-exp { i ( w o t + ~ o x ) } p ( x - C t ) ( ~ M t ( ( p " ( , ,  

where t = nk, ) ) * I l l  is the L' norm, and M is the constant of (5.1). 

Proof: 
forms. We get 

A 

Obviously p E L2; hence uo E Lz also, and we can use Fourier trans- 

&t) d t  u " ( x )  = e ' ( w ( 5 ) r + b x )  

PCt- to) dZ = I e i ( w ( t ) r + 6 x )  

I 
= I [ e " ' f ' ' + e x p { i ( w , - C ( ~ - S o ) ) t }  

- exp { ~ ( w o  - C ( t -  t o ) ) t } ]  e'*'fi(t - to) dt. 

The integral involving the middle term in the brackets is just 

exp {i(w,t+ tax)) I exp { i ( t -  t 0 ) ( x -  ct)}F(t- to) d t  

= exp { i (  wot + r o x ) } p ( x  - Ct).  

Thus we have, using ( 5 . 2 ) ,  

l~" (x) - -xp{ i (wor+tox)}p(x-Ct ) l  
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INSTABILITY OF DIFFERENCE MODELS 353 

concluding the proof. 

If p is smooth, then the right-hand side of (5.4) is small. To make p smooth 
we broaden it, while continuing to hold h and k fixed, although the same results 
could be obtained by leaving p fixed and reducing h and k. 

Suppose p( x )  = P( E X )  for somd fixed P E Ci with p .̂ E L1. Then LEMMA 5.2. 

Proof: 
Here is the first set of growth rate theorems. 

THEOREM 2a. 

The verification is straightforward and is given in Appendix B of [24]. 

Suppose a admits a strictly rightgoing steady-state solution. 
Then it is 12-unstable, and satisfies 

- 
~ls"lle const. J n  

for infinitely many integers n > 0. 

Then it is also 12-unstable with respect to boundary data, and satisfies 

(5 .5 )  I I s ~ ) ~ ~  2 const. n 

for all n =- 0. 

In particular, (5 .5)  holds if Q admits a strictly rightgoing 
steady-state solution with infinite reflection coefficient. 

Theorem 6a is a special case of Theorem 5a, and we state it separately 
only for the sake of Table I. Theorem 2a follows from Theorem 5a by Lemma 
4.2 (equation (4.10)). Thus our problem is to prove Theorem 5a. 

First we observe that if 0 admits a strictly rightgoing steady-state solution 
with lzol> 1 (i.e., of Godunov-Ryabenkii type [20]), then catastrophic growth 
at the rate lzOl" will take place, which is much more rapid than (5.5). Assume 
therefore that Q admits a strictly rightgoing stady-state solution (cf. (3.21)) 

THEOREM 5a. Suppose 0 admits a strictly rightgoing steady-state solution. 

THEOREM 6a. 

Proofs: 

1 .  I 
2," .x aiKj = exp { ioot} 1 ai exp { i&x} t = nk, x = jh 

with lzol = 1. The hypothesis that (5.6) is strictly rightgoing implies that each K~ 

with ai # 0 is simple (Lemma 3.2(iii)) and has I K ~ ~ =  l,i.e., ti E R, with an associated 
group velocity Ci = C( K ~ ,  zo) > 0. 

1 = 1  i = l  
(5.6) 
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Here is the idea of the proof: Let h, k be fixed, and consider the Cauchy 
problem modeled by 0 - that is, ignore the boundary to begin with. Construct a 
wave packet consisting of a smooth envelope multiplied by (5.6). Initially the 
packet will have width N and lie to the left of x = 0. But by time t = Nk, much of 
the energy will have traveled into x > 0, as illustrated in Figure 6. 

t = O  t = N  

Now the key point is this: the solution {u;}  obtained under 0 in this manner 
is identical in j 2 0  to the solution {fi,”} obtained i f  Q is applied with initial data 
zero and boundary data equal to the numbers { g ; }  = {[G( u) ] , ” }  produced when 
{ uy}  is inserted into (4.2): 

- 
N 

(5.7) 

c--3 

0”) 

In other words, { u / }  would be an exact solution of 0 with g = 0, as well as of 
Q, if it happened to satisfy the homogeneous boundary conditions. It does not, 
but it does satisfy Q when we take just the right inhomogeneous “equivalent 
boundary data” g = G( u )  # 0. Since uo is made up of a steady-state solution to Q 
multiplied by a smooth envelope, the homogeneous boundary conditions are 
nearly satisfied, so G( u )  will be small. In fact we shall pick yo such that 11 ~ ‘ 1 1 ,  = 0 
and 

( 5 . 8 )  ~ ~ ~ ~ ~ ~ + z c o n s t .  J N ,  
but such that G (  u )  satisfies 

(5 .9 )  IIG(u)II,Sconst./JN. 

(These norms were defined in (4.5) and (4.8).) Since l l S ~ ) l [  = supgllunll+/llgllt, (5.8) 
and (5.9) imply ( 5 . 5 ) .  

Here are the details. Let P E  C; be a fixed function with P ( x )  > 0 on ( - l , O ) ,  
P ( x )  = O  elsewhere, and PEL’, and write P,!,,,x=supIP’(x)I. Let N be given, 
and set T = Nk. Consider the Cauchy problem for Q (for all x E R) with initial data 

(5.10) u o ( x )  = 2: ai exp { i t i x ) p i ( x ) ,  p i ( x )  = P ( x / C , T ) .  

- 

- 

A 

I 

i =  I 
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INSTABILITY OF DIFFEHENCE MODELS 355 

u " ( x ) - ~  a, exp( i (w"t+S ix ) }p i (x -Ci t )  
A tllP;ill 

~ t x  ~ ~ i ~ ~ i ~ ~ ~ ~ ~ ~ ~  = ~ x  lailMiC;2. T 

(5.1 1) 

(x) lS  f i n -  

u" (x) -za i  exp{i(wot+&i)}P 5- 
( C T  :)I :' 

u"- "(x)-x a, exp( i (w, ( t -ak)+~,x) )P  
(:T -:k) I 

+I J a ; e x p { i ( w , ( t - a a k ) + ~ ; x ) ) J  P - 1 ( i T  

Therefore, for some Az < 00, if x = jh with j restricted to a bounded range, we have 

O S j S N ] ,  - 1 S a S N 2 .  (5.12) I.;-"-fi;-"lSz, A2 

Now by definition, fi is the steady-state solution (5.6) multiplied by the constant 
P(-r/ T), which implies 

G(fi)=O. 

Consequently we have from (5.7) 

N? 
J G ( ~ ) ; J  = J G ( ~  - f i ) ; l ~  I u;+l - fi;+ll+ f lbg)l I~;-u- fiy-1. 

i -0  u=-1 

By (5.12), each summand on the right is 0(1/N).  Therefore, 
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356 L. N. TREFETHEN 

for some A 3 .  Hence 

(to be precise, this bound holds for a function g which is equal to G(v)  for 
n S N - 1 and to zero thereafter), and taking the square root gives (5.9). 

The other half of the argument is to show that IIuNII+ (equation (4.5)) is big. 
Now by definition of the numbers K , ,  the steady-state solution (5.6) cannot be 
zero at more than 1 - 1 consecutive grid points without being identically zero. It 
follows that one has 

for some A 4 ,  so long as T 2 T o Z  1h/rnaxi C,. Taking the square root and using 
(5.1 1) we arrive at ( 5 . 8 ) ,  as desired. 

Now we add the hypothesis of an infinite reflection coefficient. 

THEOREM 3a. Suppose Q admits a strictly rightgoing steady-state solution 
with infinite repection coefficient (Definitions 4.1-4.3). Then 

IlS”ll2 const. n 

for infinitely many n > 0. 

Once again the case of a steady-state solution with lzol> 1 is easy; 
so assume that Q admits a strictly rightgoing steady-state solution (5.6) with 
lzOl = lexp { i o O K } l  = 1,  hence also tl E R and Ci > 0 for each i such that ai # 0. 
Our argument will make use only of these and other components ti with ti E R 
and Ci # 0 (positive or negative). Rather than introduce new notation in place 
of 1, r, a i ,  etc., let us assume for simplicity that all components ti ,  1 5 i 5 1 + r, 
are of this kind. In this situation Definition 4.3 for an infinite reflection coefficient 
reduces to the condition rank D(zo)  = 1 (cf. equation (4.4‘)). 

Proof: 

The proof is an extension of that of Theorem 5a, which related the given 
initial boundary value problem for 0 to a Cauchy problem forQ. For Theorem 
5a, we constructed initial data 0‘) with IIuOII+ = 0, IItrNII+ 2 const. J N ,  and IlG(u)ll, S 
const. / J N ,  where G(u)  was the “equivalent boundary data” distribution (5.7) 
for u. Taking the ratio of norms we then established (5.5). This time, we shall 
add a small essentially leftgoing component to tr so as to obtain a solution w that 
satisfies the boundary conditions of 0 to a higher order, although IIwoll+ will no 
longer be zero. To be precise, we shall construct wo so that 

(5.14) 11 wn - vn l l  s const. I*, O s n S N ,  
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INSTABILITY OF DIFFERENCE MODELS 357 

but 

(5.15) llG( w ) " ,  5 const. / N. 

Since llt1~11+ =0, (5.14) implies 

(5.16) 

and together with (5.8), it also gives 

(5.17) 

- 
11 wall+ 5 const. / J N ,  

- 
11 wNllt 2 const. J N ,  

assuming N is sufficiently large. Equations (5.15)-(5.17) imply that for each N, 
either llSNll 2 const. N or IlSd"'ll2 const. N3'2. By Lemma 4.2, these facts imply 
llSNll 2 const. N for infinitely many N. 

Thus the proof comes down to finding wo such that (5.14) and (5.15) hold. 
Here is the construction, which is based on Fourier transform manipulations. 

First, let N and T = Nk be given and let P and pi be defined as before 
(equation (5.10)). Since P has compact support, p is entire. Assume further that 
it satisfies 

(5.18) I B ( ~ ) ~ s  const. 

for 6 in any fixed strip I9m 615 y. (For example, take P ( x )  = d ( 6 x + 3 ) ,  where 
4 is the threefold convolution x[-l , l l*x[-I,I~*x~-I,I~,  whose transform is d(6) = 

By Lemma 3.2, {ti} are the point values at w = w o  of l + r  functions & ( w )  
that are analytic and invertible in some neighborhood of wo.  Define Z = 
Coo- l / f i ,  wo+ 1/fi]. For all sufficiently large N,  I lies in such a neighbor- 
hood. Now since (5.6) is a rightgoing steady-state solution, Lemma 4.1 implies 
D(wo)a =0, where Q = (a l ,  - - , = (Q,, - - , al,O, - * - , O)=and D ( w )  isthe 
1 x ( I  + r )  matrix of (4.4'), which for convenience we now view as a function of w 
instead of z. By the assumption of an infinite reflection coefficient, as discussed 
above, D(wo) has full rank 1. Therefore, by the implicit function theorem, there 
exists a coefficient-vector function A ( w ) ,  analytic on I for all sufficiently large N,  
that satisfies 

(5.19) D ( w ) A ( w )  = O  for all w E I 

[sin (6)/72613.) 

and 

(5.20) 

Assuming N is sufficiently large, define now 

(5.21) W " ( x ) =  A , ( w )  e x p { i ( w t + ~ , ( w ) r ) } T p ( ( w - w o ) T )  dw, f =  nk. 
1-1  I 
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W" is an integral of functions that satisfy both Q and 0, and so W" must satisfy 
these also. The fact that it satisfies 0 can be expressed in the notation of (5.7) as 

(5.22) G( W) = 0. 

In general W" does not belong to L2,  but grows exponentially as x + f m ,  because 
the wave numbers 5 , ( w )  need not be real for w E I except at w = wo.  

Let Si denote ( , ( I ) .  Cauchy stability (see Figure 5 in Section 3) implies that 
S, is a smooth arc lying tangent to the real axis at &, with S 1 , .  . . , SI situated 
above or on the axis and S , + ] ,  . * . , S,+, below or on it, as indicated in Figure 7. 

Figure 7. Integration contours in the proof of Theorem 3a for a model with 1 = r = 1. 

(If 0 is strictly nondissipative, each Si lies in R, and the proof can be simplified.) 
Since I and S, are related analytically, (5.21) can be transplanted to an equivalent 
integral over UI", S, : 

To obtain a function in L 2 ,  we replace each S, by the nearby contour Ri = 9 e  Si, 
as shown in Figure 7, and define 

For sufficiently large N, R, and S, both lie in the domains of analyticity of w (  .) 
and A , ( w (  )); so (5.24) makes sense. It is also clear that W" as defined satisfies 
Q. What remains is to establish (5.14) and (5.15). 

To prove (5.15), observe that since the integrand in (5.23) and (5.24) is 
analytic, W " ( x )  - w " ( x )  can be written as 

d 4 5 )  d5, (5 .25 )  W " ( x ) -  w " ( x )  =I A , ( w ( 5 ) )  e ' (w(S) '+Fx)  T P ( ( 4 5 )  - wo) T )  - 
d5 I,. - 

where 0, consists of the two vertical segments connecting &(uO*l/JN) and 
%e[.$(w,* l / f i ) ] .  Each of these segments has length 0(1/N) and lies at a 
distance at least const. / J N  from t,, where by (5.18), &(w( .$ ) -w0)T)  has 
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INSTABILITY OF DIFFERENCE MODELS 359 

magnitude O(N-"'). The terms A; and d w / d t  in (5.25) are both uniformly 
bounded on  Dl independently of N, and for x = jh and r = nk with l j lS J (any 
fixed constant) and n 5 N, the same is true of e ' (w( ' ) r+tx) .  Therefore (5.25) implies 

1 
N 

1 W y -  wylSconst.-NN -3'2= O(N-"') 

for IjlSJ, n S N ,  hence G ( W -  W ) Y = O ( N . - ~ " ) ,  and hence by (5.22) also 

G(w); = O(N--"'). 

Equation (5.15) follows from this just as (5 .9 )  followed from (5.13). 
To prove (5.14), we subtract from (5.24) the Fourier integral for u " ( x ) ,  

u n ( x )  = e ~ ( w ( f ) r + t r ) -  %(5) d t  
J R  

(5.26) 

m(t-tI)cm d t ,  = c e l ( w ( t ) l + P )  

(see (5.10)), and break up the result into four pieces 

w"( x )  - u " ( x )  = II + 1 2  + 1 3  + 1 4 ,  

where 

1, = -1 jR-,, a,C, e l ( w ( f ) r + t x )  m ( t - t I ) C , T )  d t ,  

Z2=c 1,. [ A , ( ~ ( ~ ) ) - U , ] C , ~ " " ' ~ ' ' + ~ " ' T ~ ( ( ~ - ~ , ) C , T )  dt,  

- 
To obtain (5.14) it is enough to show that llIjllSconst. / J N  for each j ,  that is, 

(5.27) Illill' 5 const. / N for j = 1,2,3,4,  n S N. 

Since each I j  is a Fourier integral eigx 4([) dt ,  Parseval's theorem implies 
that (5.27) is equivalent to the bound 

(5.28) IFj( t)(' d( 5 const. / N I 
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360 L. N. TREFEI‘HEN 

on the norm of the Fourier integrand. For j =  1, (5.28) holds because p(((- 
(,)C,T)) is small for ( E  R- R, : by (5.18) one has an order of magnitude 

N - 3 1 2  I m  llZ1ll’=C [N((N)-’]’d(= Ne45 
l / f i  1/JN 

(The approximation sign indicates equality up to order in N, ignoring constants.) 
For J = 2 , 3 , 4 ,  on the other hand, (5.28) holds because the integrand contains a 
term (the one written in square brackets) that is 0 at ( = 6, and grows at most 
linearly (and independently of N) with (- 6,. One estimates 

Together these bounds establish (5.27). 

6. Sharpness Results 

In this section we show that Theorems la-6a of Table I are sharp in the 
following sense: there exist difference models satisfying the hypotheses of each 
theorem for which the unstable growth rate is no greater than that asserted. The 
proofs consist of constructing explicit examples of such models. The desired 
growth rate bounds are established in each case by the following trick, which is 
related to the proof of Theorem 3a: the given initial boundary value problem is 
imbedded by a clever extension of the initial data to J < O  in an initial value 
problem whose solution satisfies the original boundary condition exactly. Such a 
trick cannot of course be accomplished for arbitrary difference models, and in 
particular the method is limited to problems in one space dimension. 

Our first result, together with Theorem 2a, shows that the distinction between 
rightgoing and strictly rightgoing steady-state solutions has a real effect on 
l’-stability. 

THEOREM 1 b. GKS-instability does not imply 12-instability. That is,  there 
exists a model 0 admitting a rightgoing steady-state solution for which 

(6.1) IlS“ll dconst. for all n 2 1. 

Proof: A simple proof of such a claim can be based on the “transparent 
interface anomaly” (cf. [20], [21]) in which a Cauchy stable model of u, = u, on 
--CO < j < 00 is folded into an equivalent initial boundary value problem model in 
two variables on 1 2 0 .  If the original formula is leap frog, Crank-Nicolson, or 
any other Cauchy stable formula that admits a wave solution with C = 0, then 
the folded model 0 is GKS-unstable but 12-stable. 

However, since the definitions here have been limited to scalar problems, we 
must give a proof involving just a single variable. Consider again the leap frog 
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INSTABILITY OF DIFFERENCE MODEIS 361 

formula from (2.1), 

(6.2) Q: u ~ + ~ = u ~ - ~ + A ( u ~ + ~ - ~ ~  '), 

with A < 1. (Crank-Nicolson could also be used here.) For convenience let the 
domain be j2 -1 instead of j 2 0 ,  redefining II-Il,and 13 correspondingly, and 
take the numerical boundary condition to be 

(6.3) u " ; l  = -u;+I. 

The model Q defined by (6.2), (6.3) admits rightgoing steady-state solutions 
u? = Z"K' with K = *i, so by Theorem l a  it is GKS-unstable. But by (2.4) these 
solutions have C = 0 and ttps are not strictly rightgoing. 

We establish (6.1) as follows. Given arbitrary initial data u", u' E 1: satisfying 
(6.3), let oo and u 1  be extended to functions wO, w1 defined for all j e  Z according 
to 

(6.4) WZj = (-1)'WU u = o , 1 ,  jEZ. 

Let { u " } ,  0 5  n < 00, be the solution obtained under 0 with initial data uo, u ' ,  
and let { w"}, 0 d n < cx), be the solution obtained under Q with initial data w", w'. 
We claim that, for all n 20, U" is identical to the restriction of W" to j2-1: 

(6.5) wy=uy for j2-1, nZ0. 

To establish this, it is enough to show that w", like u", satisfies the boundary 
condition (6.3) for all n, i.e., w ! ! ~  = -wi. But this is a corollary of the more 
general fact, which is easily proved by induction, that W" satisfies (6.4) for all u 2 0. 

Now since leap frog with A < 1 is Cauchy-stable, one has from (3.7) 

(6.6) II W"ll s M(ll w" I1 + ll W'll) 

for some M (dependent on A). Together with (6.4) this implies 

llU"ll+ 5 II W"ll s M(ll WOII +llwlll) 5 J2M(lI~"Il+ +IIulII+), n Z 0 ,  

which establishes (6.1). 

Remark. The above proof has the unfortunate feature that (6.3) is not 
consistent with any mathematically reasonable boundary condition for the 
equation u, = u,. Example p of Section 2 was more satisfactory in this respect. 
We suspect it too is l'-stable, but have not managed to show this. 

The next result, in conjunction with Theorem 3a, proves that the distinction 
between finite and infinite reflection coefficients also has a real effect on 1'- 
instability. 
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362 1.. N. TREFETHEN 

THEOREM 2b. There exists a .model 0 admitting a strictly rightgoing steady- 
state solution for which 

(6.7) JJTJJScons t .  J n  for all n I 1. 

This proof is a variation on the last one. Consider again the domain 
j Z  -1, and take 0 to be leap frog (6.2) together with the boundary condition 

- 

Proof: 

(6.8) u":' = u ; + ' ,  

The reflection coefficient function (cf. (2.6)) for this problem is 

a, K:-l K : - l  - =--=-- 
a/  Kf-1 I-I/K:- 

which has modulus 1 whenever (K,( = 1, but 0 admits two sawtoothed strictly 
rightgoing steady-state solutions, uy = (-1)' and uy = (-l)", both of which have 
C = + l .  

Given initial data uO, u 1  satisfying (6.8), let N 2 2 be chosen. Let u') and u' 
be extended to functions w" and w 1  defined for all j E  Z by the conditions 

2u,"-ui;lfor - N S j 5 - 2 ,  j e v e n ,  

ubl otherwise. 
W y  = u=o, 1, 

Let W "  for n 2 2 be the solution obtained under (6.2) with initial data w", w ' .  
We claim that, for n d N, U" is identical to the restriction of W "  to j 2  -1: 

(6.10) wy = u; for j 2 - 1 ,  O S n S N .  

To establish this. it is enough to show that w', like u", satisfies the boundary 
condition 

(6.1 1)  w!! ,  = w ; ,  O S n S N .  

We have constructed w in (6.9) to  make this so. In fact, (6.1 1) is a special case 
of the symmetry property 

w!!, = wz + (-l) '(  wz - w ; ) ,  0 S n 5 N,  ljl d min { N ,  N +  1 - n } .  

This identity holds for n = 0 , l  by (6.9) and for subsequent n by the following 
induction argument based on the formula (6.2): 

 10970312, 1984, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.3160370305 by O

xford U
niversity, W

iley O
nline L

ibrary on [27/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



INSTABILITY OF DIFFERENCE MODELS 363 

In the last step we have used the fact that wonc1 = won-', which follows from (6.1 1) 
applied at the previous time step together with (6.2). 

Now by the triangle inequality one has from (6.9) 

IIw"ll~J?IIv"ll++2(4Nh)"21vo"l d ( 1  +JN)IIv"II+ 5 3JNIIV"II+. 

IIV N II+SIlwNII~ M ~ l l ~ o l l + l l ~ l l l ~  5 3MJN(IIv"I+ +IIVIII+), 

Combining this with (6.6) and (6.10) yields the growth rate bound 

and since N was arbitrary, this implies (6.7). 

A similar trick provides a growth rate bound for a problem with an infinite 
reflection coefficient: 

THEOREM 3b. There exists a model Q admitting a strictly rightgoing steady- 
state solution with infinite reflection coefficient for which 

(6.12) I l S " l l ~  const. n for all n 2 1. 

Proof: Consider (6.2) on j ,  n 2 0 with boundary condition 
(6.13) vgn+l = v;+l* 

The reflection function (cf. (2.6)) is now 

a,-KI-l ~ ~ - 1  __--- - 
U/  1-K, l + l / K /  

which becomes infinite for K/ = -K, = -1, corresponding to the strictly rightgoing 
steady-state solution 07 = (-l)n with C = + l .  

Let extensions w", w 1  of oU, v1 be defined as follows: 

Vi" > j Z 0 ,  

j S - N ,  0=0,1 .  (6.14) 
I il 

2 1 (-l)i+lw;+(-l)jw:j+,, - N + 1  s j s - 1 ,  
i = l  

As usual, let wn be computed for n Z 2 by applying (6.2) for all j E  Z. Let (6.14) 
be rewritten in the equivalent form 

(6.15) w;-  w,"-I = ( - l ) q W l j + , -  wl,+*l ,  - N + 2 S j s - l ,  n = 0 , 1 .  

It is readily verified from (6.13) and (6.14) that (6.15) holds (with n =0, 1) not 
just for j S  -1, but for all j in the range - N + 2 S  j 5  N. We claim further that, 
in fact, (6.15) holds for all j , n  satisfying O ~ n S N , ~ j - l ~ S m i n ( N - l , N - n } .  
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364 L. N. 'I'REFETIIEN 

The proof is again an induction based on (6.2): 

w , "+~  - w,"!+,' = w,"-' - w,":,' + A - w,"-, - w," + Wy-2) 

= ( - l ) '+ ' (  w'!,:, - ~ ! ! ; 2 2 ) + A ( - l )  ] + I  ( - wz, + wn,+, + wn_1+2 - w:,+3) 

= ( - l ) '+ ' (  w":,', - w 7 , ) .  

In particular, (6.15) applies with j =  1 for 0 2 n s N,  where it reduces to the 
boundary condition of Q: 

w,"= w ;  O S n S N .  

Therefore the restriction of w to j 2 0 equals u for n 5 N, 

(6.16) w; = u,", j 2 0 ,  0 4 n S N .  

Now for each j in the range - N  + 1 S j S -1, we have, by (6.14) and the 
discrete Holder inequality, 

which implies 
- 1  

,= -N+I  
h 1 J w y ) 2 5 4 N ( N - l ) l l u " l l f . ,  u=o ,  1,  

and therefore 

( l w U ( ( S ( 4 N ( N - 1 ) +  1)1 '2( (Uu((+s2N((u"( ( ,  . 

( I U N ( ( +  ~IlwNII~;M(IIw"II+IIw'II) 5 2~~(11~"11++11~111+), 

Combining this with (6.6) and (6.16) gives 

which implies (6.12). 

We turn now to sharpness theorems for stability with respect to boundary 
data. We have already seen inLemma 4.2 that, for any model 0, the operators 
S g '  can grow no faster than JnS",  so our first two results, which assert nothing 
stronger than this, are consequences of the corresponding theorems already 
established for !'-stability. 

THEOREM 4b. There exists a model 0 admitting a rightgoing steady-state 
solution (i.e., GKS-unstable) for which 

(6.17) 11 ~ 6 : ' l l ~  const. J;; for all n 2 1. 

Proof: The proof of Theorem l b  exhibited a model 0 with IIS"I(5const. 
Applying Lemma 4.2 shows that (6.17) must hold for the same 0. 
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INSTABILITY OF DIFFERENCE MODELS 365 

THEOREM 5b. There exists a model Q admitting a strictly rightgoing steady- 
state solution for which 

IlSg'llsconst. n for all n t 1. 

Proof: Apply Lemma 4.2 to the example of Theorem 2b, which satisfies - 
( ( ~ " 1 1  s const. J n .  

Our final theorem (which includes Theorem 5b as a restricted case) is not 
trivial likeJhe last two, since the growth rate in question is no longer larger by 
a factor J n  than that for the initial data problem (Table I). 

THEOREM 6b. There exists a model Q admitting a strictly rightgoing steady- 
state solution with infinite reflection coefficient for which 

(6.18) IlSb:'llsconst. n for all n B  1. 

Proof: We repeat the trick of the proof of Theorem 3b, combining it with 
the discrete Duhamel principle. Consider for 0 the leap frog formula (6.2) with 
homogeneous initial data p = f' = 0 and the boundary condition 

(6.19) v;+' = v;+1+ g", n t l .  

From the proof of Theorem 3b, we know that 0 has an infinite reflection 
coefficient at K /  = - K ,  = -1. Given g and some N 2 2, let us construct distributions 
f2,. . ,fN for all j E  Z according to the formulas f ' = O  and 

-Ag"-', j = 0, 1 ,  
f, - -2Ag"-', - N + 3 S j S - 1 ,  2 S n S N - 1 ,  (6.20) 

Now each f" satisfies f; = f; , and moreover it is easy to verify that iff " is inserted 
as initial data at step n for (6.2) applied on (--oo,-oo), this equality will persist 
for N - 3  time steps, hence through time step N. (Each f" satisfies (6.15) for 
( j -  11 5 N - 3.) Adding all of these solutions together, consider the distribution 
{ w " }  defined by wo= w' = O  and 

w,"+' = w,"-' + A (  w,"+, - +fy+ ' ,  n 2 1 .  

" + I  -G otherwise. 

By construction we have 

(6.21) v," = w," + soj gn-' 2 S n S N ,  j Z 0  

because the sum on the right, like v", satisfies (6.2) for j 2  1 (the case j =  1 must 
be checked separately) and (6.19) for j = 0. 

On the other hand, we compute 

Ilf"+'llg = hA2(4N - 10)lg"-'1*, 
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366 1.. N. TREFETHEN 

and, by applying the discrete Holder inequality to the Cauchy stability bound 
(6.61, 

IIWN112sM2(11f311+. . *+/lfNll)% M2(N-2)(11f3112+* * *+llfN112). 

Combining these two results and applying (4.8) yields 

“= 1 

hence 
I( W”l s 2MNJh((gll,. 

llUNll 5 ( 2 M N J i +  l)llgll,, 

Together with (6.21) this implies 

which establishes (6.1 8). 
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