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Note

One day I hope to write a book on numerical Schwarz-Christoffel mapping. In the meantime,
this document is the closest I have come to preparing a survey of the field. It consists of the
transparencies (slightly edited) from my talk “Schwarz-Christoffel mapping in the 1980’s”
delivered at the Conference on Computational Aspects of Complex Analysis organized by Al
Marden and Burt Rodin in Phoenix, Arizona, 11-14 January 1989. The material is based
on ten years of experience with solving conformal mapping problems, often brought to me’
by users or would-be users of my Fortran package SCPACK.

My chief purpose here is to outline the wide range of variations on the theme of Schwarz-
Christoffel mapping that arise in practical problems — for only rarely does one encounter
precisely the “standard” problem of mapping a disk or half-plane onto a prescribed poly-
gon. Details are omitted, but can be found in the references. My emphasis is entirely on
algorithmic and numerical matters, and the references are heavily biased in that direction.
Undoubtedly they are also biased towards my own contributions, and I apologize to others
whom I may have accidentally slighted.

I would like to highlight two themes that arise repeatedly in Schwarz-Christoffel mapping:

o Modified Schwarz-Christoffel integrals. The standard Schwarz-Christoffel integrand is
a product f' = [] fx, where each fi is an elementary conformal map (z—z;)7P%. By
modifying the choice of fi in appropriate ways, this same prescription can be adapted
to many different mapping problems, including exterior polygons, polygonal Riemann

surfaces, doubly-connected polygons, maps of an infinite strip, and the maps that arise
in ideal 2D free-streamline flows.

e Generalized parameter problems. Almost any Schwarz-Christoffel map requires the
solution of a parameter problem; in the simplest case one has to determine unknown
“prevertices” {z;} such that the corresponding vertices {wy} are separated by the
correct side lengths |wy41 —wk|, and this amounts to a nonlinear system of equations to
be solved numerically. Surprisingly often, however, this paradigm needs to be enlarged
to a “generalized parameter problem” — which, fortunately, is often no harder to
solve. For example, in an inverse problem one may wish to delete one of the side
length conditions and replace it by a global condition involving the conformal module
(see p. 25). To put it generally: not all the conditions that define a Schwarz-Christoffel
map need be geometric. Often the geometry is only incompletely specified, or specified
partly in the domain and partly in the range; and indeed, sometimes polygons do not
enter into the problem at all except implicitly.

My work on Schwarz-Christoffel mapping began in 1978 at the suggestion of Peter Henrici,
who died, too soon, in 1987.

Nick Trefethen
20 January 1989
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1. Fundamentals of S-C Mapping



The Schwarz-Christoffel Idea

H = upper half-plane
P = polygonal region with n vertices
f = conformal map from H to P

{wi} = vertices of P, {2z} = “prevertices” z; = f~(wy,)

o & - — S
—r

2k Zk+1

Idea: arg f’ is piecewise constant on the real axis.

Therefore f’ can be written as a product of functions fr:

F&=0fi fe),  fie) = emm

Each fi introduces a jump in arg f’ at z.



The Schwarz-Christoffel Formula

Integration gives

Reminder:

(B, = turning angle at kth vertex wy — known

zr = kth prevertex — unknown

The same formula works for a disk as well as a half-plane, and vertices
at oo are permitted.

For maps of the half-plane, one prevertex may lie at co and is then
omitted from the S-C product (e.g. z, = 00).

Refs: Z. Nehari, Conformal Mapping, 1952.
W. Koppenfels & F. Stallmann, Praxis der konf. Abbildung, 1959.
P. Henrici, Applied & Computational Complex Analysis I, 1974.
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Numerical S-C Mapping

To apply the S-C formula, two obstacles must be overcome:

“PARAMETER PROBLEM”
Given vertices {wy}, the prevertices {2;} are unknown.

1) Formulate the problem as a system of constrained nonlinear
equations involving the side lengths |wy 1 — wy;

2) Change variables to eliminate the constraints zr < Zh41;

3) Solve the system iteratively by standard optimization software

(e.g. NSO1A or MINPACK);

NUMERICAL INTEGRATION
The S-C integral cannot be evaluated analytically.
1) Gauss-Jacobi quadrature (for endpoint singularities):

2) Adaptive subdivision (to combat “crowding”).

Refs: K. Reppe, Siemens Forsch. u. Entwickl. Ber., 1979.
R.T. Davis, 4th AIAA Comp. Fluid Dynamics Conf., 1979.
L.N.T., SIAM J. Sci. Stat. Comp., 1980.
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History

GAUSS (1820’s) — idea of conformal mapping
RIEMANN (1851) — Riemann mapping theorem
CHRISTOFFEL (1868)

SCHWARZ (1869,1870) — independent

POLOZKII (1955)

KANTOROVICH & KRYLOV (1958)

SAVENKOV (1963,1964)

GAIER (1964) — book on numerical conformal mapping
FILCHAKOV (1961,1968,1969,1975)

HAEUSLER (1966)

LAWRENSON & GUPTA (1968)

BEIGEL (1969)

HOFFMAN (1971,1974)

HOWE (1973)

VECHESLAVOV, TOLSTOBROVA, KOKOULIN (1973,1974)
CHEREDNICHENKO & ZHELANKINA (1975)

SQUIRE (1975)

MEYER (1976,1979) — comparison of algorithms

NICOLAIDE (1978)

HOPKINS & ROBERTS (1979) — solution by Kufarev’s method
BINNS, REES, & KAHAN (1979)

VOLKOV (1979)

REPPE (1979) — first fully robust algorithm

DAVIS, SRIDHAR (1979,1982,1983) — curved boundaries, channel maps
TREFETHEN (1980-1988) — Fortran package SCPACK
BROWN (1981)

TOZONI (1983)

PROCHAZKA (1978,1982,1983)

HOEKSTRA (1983,1986) — curved boundaries, annuli
FLORYAN, ZEMACH (1985-1988) — channel maps, periodic domains
BJORSTAD & GROSSE (1987) — circular polygons

DIAS (1987-1989) — hydrodynamics applications

DAPPEN (1988) — doubly-connected S-C

HOWELL (1989) — elongated polygons, circular polygons



SCPACK

Fortran package for S-C mapping (L.N.T., 1982)
Polygons may be unbounded (i.e., vertices permitted at oo)

Available by tape or by e-mail (via “Netlib”):

mail netlibQanl-mcs.arpa

send index from conformal
send scpdbl from conformal
send sclibdbl from conformal

The User’s Guide can be obtained by contacting L.N.T.

Refs: L.N.T., SCPACK User’s Guide, M.I.T. report, 1989.
(Netlib:) J.J. Dongarra & E. Grosse, Commun. ACM, 1987.
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Examples

Map to disk:

Map to half-plane:

Map to rectangle:

i | ] ! |
[ I
1 i

;
|
]
I

Map to infinite strip:

—w/”f

e S
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2. Generalizations of the S-C formula

Refs: Schwarz and Christoffel, 1868-1870.

J.M. Floryan & C. Zemach, J. Comp. Phys., 1987.
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Riemann Surfaces

Idea: f' is still piecewise constant on the real axis, but may have
zeros (y in the upper half-plane.

Each (¢ introduces a factor

bi(z) = (2= G )(2— Gk )

in the S-C formula:

— . ,\

no branch points one branch point

No numerical implementations as yet.

Refs: D. Gilbarg, Proc. National Academy of Sciences, 1949.
A. W. Goodman, Trans. Amer. Math. Soc., 1950.
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Exterior polygons

Problem: map the upper half-plane to the exterior of a
polygon, with f(¢) = oco.

Solution: analogous to Riemann surface case. f/(z) is piecewise
constant on the real axis, with a double pole at z = 1:

f(z) = C 7 T (s—2) 7% (s+1) 2 ds

k=1

\\\\i\\\i |

g ////

Ref: L.N.T., unpublished memo, 1987.

13



Doubly-Connected Polygons

Idea: write f' = C'II f&, with
k

A 4

Zk 0

fr can be expressed in terms of theta functions.

N —
— =
/ v

e —

Regions with higher connectivity: no S-C methods exist.

Refs: P. Henrici, Applied & Computational Complex Analysis III, 1986.
M. Hoekstra, in Numerical Grid Generation, 1986.
H.D. Dappen, PhD thesis, ETH Zurich, 1988.
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Free boundaries with |f/| = const.

Standard S-C:

arg f' = piecewise constant on real axis

S-C for free-boundary problems:
arg f' = piecewise constant on [—1, 1],

| f'| = const. elsewhere on real axis
Applications: wakes, jets, cavities; area minimization (see p. 30)

Idea: write f' = C'II f&, with
k

— By
filz) = ( — )

1 — zjz +/(1—22)(1—2)

Refs: A.R. Elcrat & L.N.T., J. Comp. Appl. Math., 1986.
D. Gaier, Results in Mathematics, 1986.
F. Dias, A.R. Elcrat & L.N.T., J. Fluid Mech., 1987,
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Gearlike Domains

“Gearlike” domain G: bounded by radial line segments and concen-
tric circular arcs

Idea: P =log G is a polygon (possibly periodic) with
horizontal and vertical sides

Apply S-C type formula to P

capacity = 1.08184

capacity = 1.72442

Refs: A.W. Goodman, Univ. Nat. Tucuman, 1960.
L.N.T., unpublished memo, 1983.

K.P. Jackson & J.C. Mason, in Algorithms for Approximation, 1987.
K. Pearce, to appear.

16



Channels and Elongated Polygons

Mapping elongated regions via a disk or half-plane is too ill-conditioned
to be feasible (the “crowding phenomenon”).

Idea: use an infinite strip instead as fundamental domain.

Fe)=C H fulz),  fulz) = (~isinh(z—z)) "%

& —
. . 0 1
2k

Examples:

Refs: K.P. Sridhar & R.T. Davis, J. Fluids Engr., 1985.
J.M. Floryan, J. Comp. Phys., 1985.
L.H. Howell and L.N.T., SIAM J. Sci. Stat. Comp., to appear.

L. Greengard, “Potential flow in channels,” to appear.
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Periodic Domains

Ref: J. M. Floryan, J. Comp. Phys., 1986.
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Fractals

Polygonal fractal « S-C map with n = oo
Applications in diffusion-limited aggregation, etc.”

Algorithms not yet developed

I s )
i M

Example: (self-similar; map onto infinite strip)

Ref: L. H. Howell & L.N.T., SIAM J. Sci. Stat. Comp., to appear.
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Circular Polygons

“Circular polygon”: bounded by circular (or straight) arcs
The S-C integral becomes a 3rd-order o.d.e.

Fully robust implementations not yet available.

Refs: P. Bjgrstad & E. Grosse, SIAM J. Sci. Stat. Comp., 1987.
L.H. Howell, in preparation.
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General Curved Boundaries

Standard S-C — turning angle 73 at vertex z:

fz) = C Il (z=2) ™ = Cexp| =3 filog(s=2)]

k=1
Continuous S-C — turning density function w3(2):

vf’(z) = C’exp[ / B(t) log(z— t)dt}

Integration gives:

f(z) = c/zexp[ — [ B(t)log(s—t) dt | ds ()

\\\\\\\*'

There are dozens of integral equations for numerical conformal map-
ping besides (), most of them simpler. Nevertheless, (*) has proved
very useful for some problems.

Refs: L.C. Woods, The Theory of Subsonic Plane Flow, 1961.
R.T. Davis, 4th AIAA Comp. Fluid Dynamics Conf., 1978.
J.M. Floryan, J. Comp. Phys., 1985.
M. Hoekstra, in Numerical Grid Generation, 1986.
P. Henrici, Applied & Computational Complex Analysis I1I, 1986.
L.N.T., ed., Numerical Conformal Mapping, 1986.
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3. Applications
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~Electrical Resistance
Problem: find resistance (conformal module) of a “quadrilateral”

1) Map the resistor conformally onto a rectangle

2) Resistance = Length/Width

V=0
—_— N
<,
\
-
Examples:
' \
| ] —
— ‘
S |
NN |
R = 1.11575250227 R = 4.55872841596

Refs: D. Gaier, Numer. Math., 1972.
L.N.T., Z. Angew. Math. Phys., 1984.
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Inverse Problems, Side Conditions

Standard S-C:
geometry fully specified (e.g., n side lengths)

S-C with side conditions:
geometry partly specified (e.g., n—1 side lengths)

+ additional constraints (e.g., specified conformal module)

— “Generalized parameter problem”

Example — slit resistors with R = 2:

slit length = 0.727775151589

]

11
slit length = 0.330164529743

Ref: L.N.T., Z. Angew. Math. Phys., 1984.
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Piecewise Constant B.C.’s

Resistance problem (p. 24) — rectangle of unknown aspect ratio

Laplace problems with a larger number of piecewise constant b.c.’s
— rectilinear domain with slits of unknown dimensions

— generalized parameter problem (linear, hence easy)

Example:

V=0

Refs: R.F. Wick., J. Appl. Phys., 1954.
L.N.T. & R.J. Williams, J. Comp. Appl. Math., 1986.
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Oblique Derivative B.C.’s

Problem: V?u = 0 on a polygon, oblique Neumann b.c.’s

1) Find map f to another polygon with “vertical b.c.’s™:
2) u := Ref.

Z4 w3
.,
/>23
!
Z1 29 wp W2
4

w

Examples:

/

. C/la/ssical Hall /e/ffect | "/ &@%

AVAVAN
N\

-
AVAN

\' A Reflected

y Brownian motio

ANBNAN
ANANAVAN
ANANDVAVANAY

AN

(tandem queues

ANAVAN

ANANAVANANANAVAVAY

AVAVAVAVAAVAY
ANAVAN

AV

ANAAVAVATAN
ANANANAN
ANAAVAVAN
\NANANAN

\
AN

ANAVAVANAVAVAVANAVAVA

TSR
ARV

Refs: R.F. Wick., J. Appl. Phys., 1954.
L.N.T. & R.J. Williams, J. Comp. Appl. Math., 1986.
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Vortex Methods in Fluid Dynamics

Viscous flow at high Reynolds number
Simulation via point (or “blob”) vortices
Boundary conditions imposed by method of images

Conformal map to half-plane ensures one image per vortex

Example:
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Ref: A.F. Ghoniem & Y. Gagnon, J. Comp. Phys., 1987.
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- Complex Approximation;
Soution of Ax=Db

Given: domain {2 with boundary I'

Fejér Points on I': images of roots of unity under conformal map
of exterior of unit disk to exterior of 2. “Uniformly distributed,”
hence good for polynomial interpolation.

Application to iterative solution of Az = b (nonsymmetric):

1) Determine estimate {2 of spectrum of A
2) Calculate Fejér points for ) via conformal map

3) Construct iteration based on interpolation of z~!

Refs: J.L. Walsh, Interpolation and Approximation. .., 1935.

D. Gaier, Lectures on Complex Approximation, 1987.
B. Fischer & L. Reichel, Numer. Math., to appear.
H. Tal-Ezer, SIAM J. Sci. Stat. Comp., submitted.

L.N.T., Algorithms for Approximation II, to appear.
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Jets, Wakes, and Cavities

(Ideal 2D flow, no gravity... see p. 15)

T -
T H
— —
\ D B
?&\
1
\

,.‘

Refs: A.R. Elcrat & L.N.T., J. Comp. Appl. Math., 1986.
F. Dias, A.R. Elcrat & L.N.T., J. Fluid Mech., 1987.
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Summary

e Most S-C problems can be solved to full machine precision
in seconds or minutes (work = O(n?))

e S-C variants — “modified S-C integrands” f' =TT f
k

e Often not all conditions are geometric
— “generalized parameter problems”

e All exactly-solvable conformal mapping problems are S-C'!
(well, almost all... sometimes in disguise)
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