Numerical Analysis Report 89-2
Department of Mathematics, M.I.T.
January 1989

SCPACK USER’S GUIDE

Description of a collection of Fortran programes
for Schwarz-Christoffel conformal mapping

Lloyd N. Trefethen

Dept. of Mathematics, M.L.T.
Cambridge, MA 02139 USA
(617) 253-4986
Int@math.mit.edu

=

This user’s guide is an update of an earlier (1983) ICASE internal report.
The SCPACK program itself has not changed.

Contents

1. INTRODUCTION, 3
2. HOW TO OBTAIN SCPACK, 5

3. DESCRIPTION OF SCPACK, 6
3.1. Capabilities and speed, 6
3.2. Fortran environment, 6
3.3. History, 7
3.4. Routines included, 7
3.5. Machine-dependent constants, 8
3.6. Common blocks, 8

4. USE OF SCPACK, 9
4.1. Outline, 9
4.2. ANGLES: compute exterior turning angles, 10
4.3. QINIT: initialization for Gauss-Jacobi quadrature, 11
4.4. SCSOLV: solution of parameter problem, 12
4.5. WSC and NEARZ: evaluation of the forward map, 14
4.6. ZSC and NEARW: evaluation of the inverse map, 15
4.7. COUNTO and COUNT, 16
4.8. Limitations, bugs, and remarks, 17

5. EXAMPLES, 18
5.1. EX1: map a few points back and forth, 18
9.2. EX2: half-plane with slit, 20
5.3. EX3: call RESIST to compute a resistance, 22

6. REFERENCES, 23

7. PROGRAM LISTING (excluding library routines), 24
7.1. SCPACK, 24
7.2. RESIST (conformal modulus of a quadrilateral), 38

—\ —

—————————

1. Introduction

SCPACK is a collection of Fortran programs for computing the Schwarz-Christoffel
transformation, a conformal map of the unit disk in the complex plane onto a polygon

with vertices wy, ..., wy. Here is the geometry, illustrated for a simple polygon with
N =5:
z1 w3
w(z)
) w9
zs=1
W4 wC:-zw(O)
24
And here is the Schwarz-Christoffel formula:
s N
w(z) = we + C/(; 11 =2 /z) 7Pk, (%)
k=1
or in the notation of SCPACK variables,
z N
W(Z) = wc+c/o I1 (1 —2'/z(k))BETAM®K) 41 (¥)
K=1

There are three computational problems associated with (*): (1) evaluation of the
integral; (2) the “parameter problem” of determining the unknown “prevertices” z,
which are the preimages on the unit circle of the vertices wg; and (3) inversion of
the map to compute values z(w). SCPACK aims to deal with these problems effi-
ciently, robustly, and conveniently. Given the vertices {wi} and corresponding angle
parameters —f), SCPACK first determines parameters for compound Gauss-Jacobi
quadrature in subroutine QINIT, and then solves the parameter problem in subroutine
SCSOLV. After this the functions WSC and ZSC can be called to evaluate the forward
and inverse maps w(z) and z(w).

.7 Somne of the vertices w; may lie at infinity, so the “polygon” is really any simply-

connected region in the plane whose boundary consists of a finite number of straight
lines or line segments.

Schwarz-Christoffel maps can be applied to a variety of problems involving polygo-
nal domains, such as: solving Laplace’s equation with Dirichlet, Neumann, oblique, or
mixed boundary conditions; solving Poisson’s equation; determination of resistances,
capacitances, and conformal moduli; finding eigenvalues of the Laplace operator; grid
generation; approximation in the complex plane via interpolation in Fejér points;
computing ideal free-streamline flows.

The algorithms of SCPACK are described along with some elementary applications
in

(1] L.N. Trefethen, “Numerical computation of the Schwarz-Christoffel transforma-
tion,” SIAM J. Sci. Stat. Comput. 1 (1980), 82-102.

A survey of more interesting applications of Schwarz-Christoffel mapping, and of
variations of the standard Schwarz-Christoffel formula for other related conformal
mapping problems, can be found in

(2] L.N. Trefethen, “Schwarz-Christoffel mapping in the 1980’s,” Numerical Anal-
ysis Report 89-1, Dept. of Mathematics, M.LT., 1989 (available from L.N.T.).

Further references are given in Section 6.

The use of SCPACK is unrestricted, except that references to [1] and to this User’s
Guide should be included in any publications that make use of it. I would be pleased
to receive reprints of such publications, or less formal descriptions of applications of
SCPACK. I would also be grateful for suggestions of improvements in the program
or its documentation.

2. How to obtain SCPACK

The easiest way to obtain SCPACK is by electronic mail via the “Netlib” facility
created by Jack Dongarra (Argonne National Laboratory) and Eric Grosse (AT&T
Bell Laboratories): :

(3] J. J. Dongarra and E. Grosse, “Distribution of mathematical software via elec-
tronic mail,” Communications of the ACM 30 (1987), 403-407.

For example, send the following three-line e-mail message to netlib@anl-mcs. arpa:

send scpdbl from conformal
send sclibdbl from conformal
send index from conformal

If all goes well, you will receive three responses within a few minutes or hours consist-
ing of SCPACK itself (scpdbl), three library routines required by SCPACK (sclib-
dbl, described in 3.4 below), and an up-to-date index of Netlib software for conformal
mapping (index). Unfortunately, not much conformal mapping software is currently
available in Netlib or anywhere else, although many good algorithms have been de-
veloped over the years.

If you cannot obtain SCPACK by computer mail, then contact me to arrange for
a magnetic tape. Contact me also for copies of this User’s Guide.

There are no charges associated with SCPACK or the User’s Guide (and no guar-
antees either!). The User’s Guide may be copied at will.

3. Description of SCPACK

3.1. Capabilities and speed

SCPACK contains routines to solve the “parameter problem” associated with the
Schwarz-Christoffel map (subroutines QINIT and SCSOLV) and then to evaluate the
map w(z) (WSC) and its inverse z(w) (2SC). A typical computation on a Sun 3/50
Workstation requires a few seconds for a polygon with 6 or 7 vertices, or a few minutes
for a polygon with 20 vertices; the total time for an N-vertex polygon is roughly

proportional to N3, See reference [1] for a more detailed discussion of execution
speed.

The bottleneck in all SCPACK computations is a calculation of a complex log-
arithm within subroutine ZPROD (p. 34 of this User’s Guide; see also Section 4.7).
Some optimization here might speed up the package at particular installations.

For high-accuracy conformal mapping of a polygon, the Schwarz-Christoffel ap-
proach is extremely satisfactory because it handles the singularities at corners exactly
and reduces the map to a finite number of parameters. On the other hand SCPACK
is not recommended for mapping curved domains by means of polygonal approxima-
tions; the O(N?) running time and the introduction of spurious singularities make
this approach frighteningly inefficient in some circumstances. Many superior methods
exist for such problems; see the references in Section 6.

3.2. Fortran environment

SCPACK is written in a subset of Fortran 77 — almost. The exception is the
use of complex double precision variables, which are not prescribed in the Fortran 7
standard but are provided by most compilers anyway.

All real numbers in SCPACK are double precision and all complex numbers are
complex double precision. (A single precision version of SCPACK also exists, and can
be obtained from Netlib, but because of the phenomenon of “crowding” mentioned
below in Section 4.8, it is not recommended except for machines with 64-bit words.)
Computations involving complex quantities are always performed in complex arith-
metic, and variables whose names begin with C, W, or Z are always complex. Each
routine (other than those in the library routines described below) begins with the
statements

IMPLICIT DOUBLE PRECISION (A-B,D-H,0-V,X-Y)
IMPLICIT COMPLEX*16(C,W,Z)

to make these type conventions automatic. On some machines the syntax of these
statements may have to be modified.

3.3. History

My work on Schwarz-Christoffel mapping began in 1978 at the suggestion of Peter
Henrici. SCPACK was developed originally during 1979-1980 on an IBM 370 instal-
lation at the Stanford Linear Accelerator Center, and then in 1983 on a VAX 750 and
a Cyber 173 at the Institute for Computer Applications in Science and Engineering
(ICASE), NASA Langley Research Center. So far as | know, all versions of SCPACK
currently in use date from the latter period and carry the label Version 2. Despite
this Updated User’s Guide, the SCPACK program is the same as in 1983.

Many others besides me have calculated numerical Schwarz-Christoffel maps over
the years, with the most robust and efficient algorithms beginning to appear in 1979,
particularly noteworthy has been the work of Reppe, Davis and Sridhar, Floryan
and Zemach, Hoekstra, and Dias. References can be found in [2]. Some of these
algorithms are more general than SCPACK, permitting curved boundary segments
by way of the “continuous Schwarz-Christoffel formula.” On the other hand some
of them are less robust in the treatment of complicated regions and less efficient for
high-accuracy calculations. So far as I know, SCPACK is the only publicly available
software package for Schwarz-Christoffel mapping.

3.4. Routines included

SCPACK consists of twenty-one subroutines, four of which are most important for
the user:

QINIT computes Gauss-Jacobi quadrature nodes and weights
SCSOLV solves the mapping problem for a given polygon

WSC evaluates the forward map w(z)

Zsc evaluates the inverse map 2z(w)

Depending on the application, the user may also wish to call:

ANGLES computes angles, given vertices wy

RPROD computes |w'(z)|? at a point 2

NEARZ returns the number of the nearest prevertex 2k, etc.
NEARW returns the number of the nearest vertex wg, etc.

ZQUAD computes the S-C integral between two points

COUNTO initializes the log counter for machine-independent timing
COUNT prints the current log count

Here are the other internal routines of SCPACK, to which the user will not normally
need direct access:

CHECK SCFUN SCTEST ZQUAD1 ZQSUM
YZTRAN SCOUTP ZFODE DIST ZPROD

In addition, three sets of library routines are required. NSO1A, by M.J.D. Powell,
solves a nonlinear system of equations whose solution is required for the Schwarz-
Christoffel parameter problem. NSO1A comes with six linear algebra routines from
LINPACK for inverting a matrix. All together:

7

NSO1A SGEFA SGEDI SSWAP
SAXPY SSCAL - ISAMAX

QINIT requires GAUSSJ by G.H. Golub and J.H. Welsch, together with three subrou-
tines from EISPACK, to compute nodes and weights for Gauss-Jacobi quadrature:

GAUSSJ CLASS IMTQL2* GAMMA*

Finally and least essentially, ZSC requires ODE and three associated subroutines, by
Shampine and Gordon, to solve an ordinary differential equation:

ODE DE* STEP* INTRP

These codes can be deleted from the SCPACK collection (or replaced by dummies

to prevent compiler complaints) if the user is prepared always to call ZSC with
IGUESS = 1 (see Section 4.6).

The user is free to experiment with other comparable routines to replace these three
library packages; SCPACK should still work satisfactorily after such substitutions.
However, all of the routines listed above are included in the Netlib file sc1ibdbl
and are known to have worked for thousands for conformal mapping problems. They
are all in the public domain. (Subroutine GAMMA in the single precision version of
SCPACK is an adaptation from the proprietary IMSL library, but it may be freely
called as part of the GAUSSJ group provided it is not separated for general use.)

3.5. *Machine-dependent constants

The routines marked with asterisks above contain machine-dependent constants,
as follows:

IMTQL2: MACHEP = ¢

DE: FOURU =4 x ¢

STEP: FOURU =4 x¢, TWOU = 2% ¢
GAMMA: various quantities

where ¢ is “machine epsilon”, the smallest floating point number such that 1 +¢ > e.
In the standard version of SCPACK these numbers are set to generous values that
should give satisfactory although not ideal performance on many machines.

Subroutine GAMMA (actually DGAMMA in the double precision version of SCPACK)
contains many machine-dependent constants and should be replaced by a locally
available gamma function routine if convenient.

3.6. Common blocks

SCPACK makes use of three labeled common blocks, /PARAM1/, /PARAM2/, and
/LOGCNT/. The first two are needed for getting information to the functions SCFUN
and ZFODE called by NSO1A and ODE, respectively, whose calling sequences are fixed.
The last saves logarithm counts for the purpose of machine-independent timing by
subroutines COUNTO and COUNT (see Section 4.7).

8

4, Uso of SCPATK

4.1. Outline
To compute the Schwarz-Christoffel transformation from the unit disk to a given
polygon, here is what to do:

1) Set N (N, the number of vertices), W(K) (wg, the vertices), NPTSQ (the number
of quadrature points per subinterval), and BETAM(K) (—f;, the exterior turning
angle at wy divided by —r; see the figure on p. 3). Each parameter BETAM(K)

can be computed by subroutine ANGLES if the vertices W(K-1),W(K),and W(K+1)
are all finite.

2) Call QINIT to compute nodes and weights for Gauss-Jacobi quadrature.

3) Set WC (w. = w(0), a point interior to the polygon) and the other input pa-
rameters to SCSOLV, and call SCSOLV to solve the parameter problem for the
constant C (C) and the prevertices Z(K) ().

4) Map individual points as desired from the disk to the polygon with routine WSC
and from the polygon to the disk with routine ZSC.

More complicated problems may require other sequences of computations. For ex-
ample, two Schwarz-Christoffe] maps can be composed by calling QINIT and SCSOLV
twice, using distinct variables in the calling sequences. This is necessary whenever

one polygon is mapped onto another with the disk as an intermediate domain. See
Section 5.3 below for an example.

4.2. ANGLES: compute exterior turning angles

Most SCPACK routines require as input the vector BETAM(1),... BETAM(N) of
angle parameters. Each value BETAM(K) is equal to the exterior turning angle'in the
polygon at vertex W(K) divided by —r; see the figure on p. 3. The subroutine ANGLES
computes these angle parameters from the vertices. Here is the calling sequence:

» SUBROUTINE ANGLES(N,W,BETAM)

N Number of vertices of the polygon (input). Must be < 20.
See additional comments in the documentation for SCSOLV.

W Complex array of vertices W(1),... W(N) of the polygon (input).
See additional comments in the documentation for SCSOLV.

BETAM Real array of angle parameters (output).
See additional comments in the documentation for SCSOLV.

If all N vertices W(K) are finite, ANGLES will compute N values BETAM(K). If some of
them are infinite, then BETAM(K) is meaningful only for those vertices W(K) such that
W(K-1), W(K), and W(K+1) are all finite. See the listing of ANGLES on p. 36 for more
details.

W41

Wk-1

10

4.3. QINIT: initialization for Gauss-Jacobi quadrature

QINIT must be called before SCSOLV, WSC, or ZSC. Tt computes the Gauss-Jacobi
quadrature nodes and weights that make integration of the Schwarz-Christoffel for-
mula possible.

> SUBROUTINE QINIT(N,BETAM,NPTSQ,QWORK)

N

BETAM

NPTSQ

QWORK

Number of vertices of the polygon (input). Must be < 20.
See additional comments in the documentation for SCSQLV.

Real array of angle parameters (input).
See additional comments in the documentation for SCSOLV.

Number of points per subinterval in Gauss-Jacobi quadrature (input).
Recommended value: equal to the number of digits of accuracy desired in
the answer, e.g. NPTSQ = 6 if you want about 6-digit accuracy. Must be
2 2. Total SCPACK computation time increases linearly with NPTSQ.

Real work array dimensioned at least NPTSQ* (2N+3) (output).

On output, QWORK will contain quadrature nodes and weights correspond-
ing to the vertices of the polygon; SCPACK users can ignore the details.
The same array with the same value NPTSQ must be given later as input
to SCSOLV, WSC, or ZSC. If more than one Schwarz-Christoffel map is to be
composed, then more than one copy of QWORK must be filled by QINIT and
kept for SCSOLV, WSC, or ZSC.

11

4.4. SCSOLV: solution of the parameter problem

SCSOLV solves the parameter problem for the constant C and the prevertices Z (K)
of the Schwarz-Christoffel map (*). If the problem involves a map of the disk onto a
prescribed polygon, SCSOLV must be called before this map is evaluated with WSC or
Z5C. In rarer applications where the prevertices Z(K) are prescribed rather than the
vertices W(K), SCSOLV is not needed. This occurs below in the example of Section 5.3.

» SUBROUTINE SCSOLV(IPRINT, IGUESS ,TOL,ERREST,N,C,Z,WC, W, BETAM,NPTSQ, QWORK)
IPRINT -2, —1,0, or 1 for increasing amounts of diagnostic output (input).
IGUESS 1 if an initial guess for Z is being supplied, otherwise 0 (input).

TOL Desired accuracy in solution of nonlinear system (input).
Recommended value: 10~ NPTSQ+1) typical size of vertices W(K).

ERREST Estimated error in solution (output).
N Number of vertices of the polygon (input). Must be < 20.
C Complex scale factor in formula (%) (output).

Z Complex array of prevertices 2(1),...,Z(N) on the unit circle (output).
Dimension at least N. If an initial guess is being supplied it should be in
Z on input, with Z(N) = 1. In any case the correct prevertices will be in Z
on output.

WC Complex image of 0 in the polygon, as in formula (*) (input).
It is safest to pick WC to be as central as possible in the polygon in the sense
that as little of the polygon as possible is shielded from WC by reentrant
edges.

W Complex array of vertices W(1),...,W(N) of the polygon (input).
Dimension at least N. It is a good idea to keep W(K) roughly on the scale
of unity. W(K) will be ignored when the vertex lies at infinity as defined by
BETAM, below. Each connected boundary component must include at least
one vertex W(K), even if it has to be a degenerate vertex with BETAM(K)
= 0. W(N) and W(1) must be finite.

BETAM Real array of angle parameters (input).

Each BETAM(K) is equal to the exterior turning angle in the polygon at
vertex W(K) divided by —r (see the figure on p. 3). Dimension at least
N. Permitted values lie in the range —3 < BETAM(K) < 1. Examples: BE-
TAM(K) is —1 for a parallel channel extending to oo, —1/2 at each corner
of a rectangle, —2/3 at each corner of an equilateral triangle, 4+1 at the
end of a slit. The sum of the numbers BETAM(K) will be —2 if they have
been set correctly, and SCPACK will complain if the sum differs from —2
by more than TOL. BETAM(N-1) may not be 0 or 1. W(K) is assumed to
lie at infinity if and only if BETAM(K) < — 1.

12

NPTSQ

QWORK

Number of points per subinterval in Gauss-Jacebi quadrature (input).
Recommended value: equal to the number of digits of accuracy desired in
the answer, e.g. NPTSQ = 6 if you want about 6-digit-accuracy. Must be
22, and must be the same as in the call to QINIT which filled the vector
QWORK.

Real quadrature work array (input).

Dimension at least NPTSQx (2N+3) but no greater than 460. Before calling
SCSOLV, QWORK must have been filled by subroutine QINIT.

/

13

4.5. WSC and NEARZ: evaluation of the forward map

Once the parameter problem has been solved, the function WSC is available to
evaluate the forward map: w = w(z). WSC is a complex function with calling sequence
» FUNCTION WSC(ZZ,KZZ,ZO,WO,KO,N,C,Z,BETAM,NPTSQ,QWORK)
The value returned will be the image of ZZ in the polygon.
2Z Point in the disk at which W(ZZ) is desired (input).
K2Z =Kif ZZ = Z(K) for some K, otherwise 0 (input).
Z0 Nearby point in the disk at which W(Z0) is known and finite (input).
WO W(Z0) (input).
KO =K if 20 = Z(K) for some K, otherwise 0 (input).
N,C,Z,BETAM,NPTSQ,QWORK. As in SCSsOLV ﬁnpuU.

20 should not be too far from zZ. A simple and adequate choice is the nearest prevertex
Z2(K) with W(K) finite, or 0 if 0 is closer than any Z(K). This choice of Z0 can be
determined automatically by the function NEARZ, with the following calling sequence:

» SUBROUTINE NEARZ(ZZ,ZO,WO,KO,N,Z,HC,H,BETAM)

Thus a common way to compute W(ZZ) for an arbitrary value ZZ is with the following
sequence of commands:

CALL NEARZ(ZZ,ZO,WO,KO,N,Z,WC,H,BETAM)
WW = HSC(ZZ,O,ZO,HO,KO,N,C,Z,BETAM,NPTSQ,QWORK)

See Section 5.1 for an example. However, sometimes this pair of commands is not the
most efficient way to proceed — for example, if you are calculating successive points
along a curve, where a good choice of 20 is simply the previous point on the curve
— and that is why NEARZ and WSC are separate programs. For further information
about NEARZ, see its listing on p. 35.

WSC(zz,...)
®

14

4.6. ZSC and NEARW: evaluation of the inverse map

Z5C is analogous to WSC but evaluates the inverse map z = z(w):

» FUNCTION ZSC(WH,IGUESS,ZINIT,ZO,WO,KO,EPS,IER,N,C,Z,WC,W,BETAM,NPTSQ,QWORK)
The value returned will be the preimage of WW in the disk.
¥W Point in the polygon at which Z(WW) is desired (input).

IGUESS (input).
=1: Initial guess is supplied as parameter ZINIT.

#1: Get initial guess from program ODE (slower). For this the line segment
from WC to WW must lie within the polygon.

ZINIT Initial guess if IGUESS=1, otherwise ignored (input). May not be a pre-
vertex Z(K).

Z0 Point in the disk near Z(WW) at which W(Z0) is known and finite (input).

WO W(Z0) (input). The line segment from WO to WW must lie in the interior of
the polygon.

KO =K if Z0 = Z(K) for some K, otherwise 0 (input).
EPS Desired accuracy in answer Z(WW) (input).

IER Error flag (input and output).
On input, give IER # 0 to suppress error messages.
On output, IER # 0 indicates unsuccessful computation — try again with
a better initial guess.

N,C,Z,WC,W,BETAM,NPTSQ,QWORK. As in SCSOLV (input).

As with WSC, here WO should not be too far from WW. In analogy to NEARZ, the routine
NEARW selects WC or the nearest vertex W(K) for WO, a choice that should be suitable
for many applications:

> SUBROUTINE NEARW(WW,Z0,W0,KO0,N,Z,WC,W,BETAM)

Thus a common way to compute Z(WW) for some specified value WZ is with the
following sequence of commands:
CALL NEARH(WW,ZO,HO,KO,N,Z,HC,W,BETAM)
IER = 0
22 = ZSC(WH,O,ZO,ZO,WO,KO,TOL,IER,N,C,Z,WC,W,BETAM,NPTSQ,QWORK)
IF (IER.NE.O) PRINT *, ’ERROR IN ZSC’

For further information about NEARW, see its listing on p. 36.

Note that the segment WO-WW must lie in the interior of the polygon. In treating
non-convex polygons the user must bear this in mind when calling ZSC — it may
occasionally be necessary first to find the preimage of an intermediate point WO'.

15

4.7. COUNTO and COUNT

As mentioned in Section 3.1, the bottleneck in SCPACK computations is the
calculation of a complex logarithm in subroutine ZPROD (p. 34 of this User’s Guide).
A significant proportion of the computer time in an SCPACK run may be spent
simply evaluating this logarithm. This unfortunate fact has a fortunate consequence:
by counting complex logarithms, we can obtain a rough estimate of execution time
that is machine-independent. COUNTO and COUNT are designed to do the counting.

» SUBROUTINE COUNTO

» SUBROUTINE COUNT

These subroutines take no arguments. A call to COUNTO (re)sets the counter to zero.
Subsequent calls to COUNT generate a report of the number of logarithms since the
last call and in total. The output might look like this:

------- NO. LOGS: SINCE LAST COUNT 32442, TOTAL 862219

An example appears in Section 5.3. It is also easy to access these numbers for uses
other than printing; see the listings on p. 37.

16

. 4.8, Limitations, bugs, and remarks

I do not know of any bugs in SCPACK, though undoubtedly there are soimne.
However, here are some features to watch out for:

The “crowding” phenomenon. Beware of elongated polygons! For well-understood
reasons related to the exponential decay of boundary information in analytic func-
tions, they can be very difficult to treat numerically. For example, SCPACK will
probably fail if you ask it to map a rectangle of aspect ratio 20. This limitation has
proved to be the principal shortcoming of SCPACK in practical applications. To get
around the problem one normally has to subdivide the polygon or dispense with the
use of a disk (or half-plane) as a fundamental domain. Polygons that are highly elon-
gated in one direction only can be effectively mapped by a Schwarz-Christoffel formula
based on an infinite strip [9], but SCPACK does not provide this option; contact me
or Louis H. Howell for information about an experimental computer program.

N <£20. As mentioned above, the number of vertices N must be <20. This is an
artificial restriction imposed because NSOIA happens to be dimensioned that way.

The user who wants to treat larger polygons can do so by modifying a few DIMENSION
statements,

Disk vs. half-plane. Despite a remark to the contrary in [1], SCPACK could
equally well have been designed to map a half-plane rather than a disk. The disk has
the advantages of symmetry and finiteness of all numbers. The half-plane has the
advantage that most of the integrals involved in solving the parameter problem can
be reduced to real variables with a resulting speed-up of a factor of 2 or so.

User-specified point w. = w(0). SCPACK squanders another factor of 2 or so by
fixing one interior point (we = w(0)) and one boundary point (Z(N) =1) rather than
three boundary points. As a result the parameter problem involves N — 1 unknowns
rather than N — 3 — a significant difference since this number gets cubed. If I were
writing SCPACK again now I would do it differently.

Rectangles and elliptic functions. Maps of a polygon to a rectangle come up fre-
quently in applications, and can be treated by composing two SCPACK maps. One
of these is a Jacobian elliptic function, and could be treated very quickly by spe-
cial methods based on the arithmetic-geometric mean iteration (see the Appendix to
[9]). However, since the other half of the composition is usually more time-consuming
anyway, I have not considered it worthwhile to include such an option in SCPACK.

Adaptive contour plotting. Plotting contours (e.g. equipotentials or streamlines)
is often more time-consuming than solving the parameter problem. Here are three tips
to speed up the process: 1) set NPTSQ=2or 3, even if a higher value was used in solving
the parameter problem; 2) calculate each new point along a curve by integration with
WSC or ZQUAD along the short line segment from the previous point; 3) most important,
write yourself a curve plotting routine that spaces points adaptively according to the
local curvature.

The inverse map ZSC. This is the least carefully designed part of SCPACK, and
the most likely to fail to perform as a reliable black box.

17

5. Examples

5.1. EX1: map a few points back and forth

Our first example maps the disk onto a finite polygon input online. After solving
the parameter problem, the program enters an infinite loop in which it alternately

computes

Of course,

c

w(z) and z(w(z)) for specified z, then z(w) and w(z(w)) for specified w.
such an example is more fun if you can input points with a mouse.

PROGRAM EX1
IMPLICIT REAL*8(A-B,D-H,0-V,X-Y), COMPLEX*16(C,W,2Z)

DIMENSION Z(20),W(20),BETAM(20),QWORK(460)

C SPECIFY GEOMETRY:

c

PRINT *, ’ALL COMPLEX NUMBERS SHOULD BE INPUT AS PAIRS (x,v)’

PRINT *, 'NUMBER OF VERTICES?’

READ *, ¥

PRINT *, ’'VERTICES?'
READ *, (W(K),K=1,K)

PRINT *, ’CENTRAL POINT WC = W(0)?’
READ *, WC

PRINT *, ’NUMBER OF DIGITS DESIRED?’
READ *, NDIG

C SOLVE PARAMETER PROBLEM:

C MAP

C MAP

EPTSQ = KDIG

TOL = 10.*#*(-NDIG-1)

CALL ANGLES(N,W,BETAM)

CALL QINIT(N,BETAM,NPTSQ,QWORK)

CALL SCSOLV(0,0,TOL,ERREST,H,C,Z,WC,H,BETAH,HPTSQ,QVORK)

A POINT FORWARD AND THEN BACK:

PRINT *, 'POINT 2Z TO BE MAPPED?’

READ =, 2Z

CALL NEARZ(2Z,Z0,%0,KO,N,Z,WC,W,BETAM)

WW = USC(ZZ,O,ZO,HO,KO,H,C,Z,BETAH,NPTSQ,QVORK)
CALL NEARW(WW,Z0,W0,K0,N,Z,WC,W,BETAM)

IER = 0

222 = ZSC(VH,O,ZO,ZO,VO,KO,TOL,IER,N,C,Z,VC,H,BETAH,NPTSQ,QHORK)
IF (IER.NE.O) PRINT *, ’ERROR IN 2SC’

PRINT =, ° w(zz) =, ww

PRINT =, ° Z(w(z2z)) =, 22z

’ » ’

A POINT BACK ARD THEN FORWARD:

PRINT *, 'POINT WW TO BE INVERSE MAPPED?’

READ *, ww

CALL NEARW(WW,Z0,W0,K0,N,Z,WC,W,BETAM)

IER = 0

27 = ZSC(VU,O,ZO,ZO,UO,KO,TOL,IER,B,C,Z,WC,H,BETAH,HPTSQ,QHORK)
IF (IER.NE.O) PRINT *, ’ERROR IN ZS5C’

CALL NEARZ(2Z,Z0,W0,KO,N,Z,WC,W,BETAN)

WWW = wsc(Zz,0,20,W0,K0,N,C,Z,BETAM,NPTSQ, QWORK)

PRINT *, ’ z(ww) =2, 2z
PRINT *, °’ W(Z(WW)) =2, wWww
GOTO 1

END

18

Here is a sample run:

ALL COHPLEX WUMBERS SHOULD BE INPUT A4S PAIRS (X,Y)
HUHMBER OF VERTICES?

4
VERTICES?
(2,-1)
(1.5,1)
(-2,1)
(-2,-1)
CENTRAL POINT
(0,0)

HC = W(0)?

RUMBER OF DIGITS DESIRED?

6

THE SUM-OF-
THE SUM-OF-
THE SUM-OF-
THE SUM-OF-
THE SUM-OF~-
THE SUM~-OF-
THE SUM-OF-
THE SUM-OF-
THE SUM-OF-
THE SUM-OF-SQUARES ERROR AT STEP
THE SUM-OF-
THE SUM-OF-SQUARES ERROR AT STEP
THE SUM-OF-
THE SUM-OF-
THE SUM~OF-SQUARES ERROR AT STEP
THE SUM-OF-
THE SUM-OF-

SQUARES ERROR AT STEP
SQUARES ERROR AT STEP
SQUARES ERROR AT STEP
SQUARES ERROR AT STEP
SQUARES ERROR AT STEP
SQUARES ERROR AT STEP
SQUARES ERROR AT STEP
SQUARES ERROR AT STEP
SQUARES ERROR AT STEP

vy
o

SQUARES ERROR AT STEP

[
[

[y
N

SQUARES ERROR AT STEP
SQUARES ERROR AT STEP

[
w

H
o

[y
[¢2d

SQUARES ERROR AT STEP
SQUARES ERROR AT STEP

-
o]

-
~

PARAMETERS DEFINING MAP:

K W(K) TH(K)/PI

.500,

W N

WC
C

.000,-1.000) 0.87295887

1.000) 1.04402175
1.000) 1.89051229

-2.000,-1.000) 2.00000000

(0.00000000E+00, 0.00000000E+00)
(-0,12387514E+01,-0.21538050E+00)

ERREST: 0.1B535E-07

POINT 2Z TO BE
(.86,.8)
W(zz)
Z(W(22))
POINT WW TO BE
(1,1)
Z(WW)
W(Z(WW))
POINT ZZ TO BE

MAPPED?

(-0.31247286254467,
(0.60000000897326,
INVERSE MAPPED?

(-0.95991116379178,
(1.00000000000000,
MAPPED?

fl

19

Is
Is
Is
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
Is
IS
IS
Is

0 ~N O TR W N

0

(¥ =

0.3141E+01
0.3141E+01
0.3141E+01
0.3141E+01
0.6309E+00
0.4330E+00
0.1165E+00
0.6782E-01
.1643E-02
.8306E-03
.7683E-04
.2125E-05
.1037E-09
.5897E-12
.1217E-13
.1074E-11
.1105E-15

O OO O 00 OO OO

4) (¥PTSQ = 6)

BETAK(K) Z(K)

-0.57798 (-0
-0.42202 (~0.99045201,-0,13785798)
-0.50000 (o
-0.50000 (1

-0
0

=-0.
1.

.92140664, 0.38859980)

.94142472,-0.33722323)
.00000000, 0.00000000)

.99599999683141)
.799999999114786)

28030440347903)
00000000000000)

5.2, EX2: half-plane with slit

The next example pro
analytically: onto a half-
map WSC are then compared with the exact answe

with a vertex at infinity.

c

PROGRAM EX2

IMPLICIT REAL*8(A-B,D-H,0-Y), COMPLEX*16(C,W,2)
DIMENSION Z(20),W(20),BETAM(20),QWORK (344)

ZERO = (0.D0,0.D0)

I = (0.D0,1.D0)

C SPECIFY GEOMETRY:

C

gram computes a Schwarz-Christoffe]l map that is known
plane with a slit. A few calculated values for the forward
rs. This is an example of a polygon

C SOLVE PARAMETER PROBLENM:
(INITIAL GUESS IS PROVIDED TO PREVENT ACCIDENTAL EXACT SOLUTION)

c

c

NPTSQ = 8
CALL QINIT(N,BETAM,NPTSQ,QWORK)
IPRIKT = 0
IGUESS = 1
DO 1K-=1,4

Z(K) = EXP(ZI*(K-4))

TOL = 1.D-9
CALL SCSOLV(IPRINT,IGUESS,TOL,ERREST,H,C,Z,
& WC,W,BETAM,NPTSQ,QWORK)

C COMPARE WSC(Z) TO EXACT VALUES FOR VARIOUS Z:

C

10

DO 10 I = 1,4

ZZ = .3DO * DCMPLX(I-2.DO,.2D0*I+.5D0)

WW = VSC(ZZ,O,ZERO,HC,O,N,C,Z,BETAH,NPTSQ,QHORK)
ZTMP = -2I * (ZZ-21) / (2Z+ZI)

WWEX = ZI * SQRT(-ZTMP**2 + 1.D0)

ERR = ABS(WW-WWEX)

WRITE (6,201) ZZ,WW,WWEX,ERR

CONTINUE

201 FORMAT (’ 2Z,W,WEX,ERR: ’,3('(’,F8.3,’,",F8.3,") *),D11.4)
END

20

= 4
WC = ZI * SQRT(2.D0) we=12

W(1) = 21 ‘ =0
W(2) = ZERO w)=1 w3
W(3) = (1.D20,1.D20)

W(4) = ZERO

BETAM(1) = 1.0

BETAM(2) = -0.5 Wi=wz2=0

BETAM(3) = -2.0

BETAM(4) = -0.5

A Bun 3/50 Worketation produced the following output in about 6 seconds of
elapsed t:me: :

THE SUM-OF-SQUARES ERROR AT STEP

1 IS 0.4628E+00
THE SUM-OF-SQUARES ERROR AT STEP 2 IS 0.4628E+00
THE SUM-OF~SQUARES ERROR AT STEP = 3 IS 0.4628E+00
THE SUM-OF-SQUARES ERROR AT STEP 4 IS 0.4628E+00
THE SUM-OF-SQUARES ERROR AT STEP 6 IS 0.3428E+00
THE SUM-OF~SQUARES ERROR AT STEP 6 IS 0.2393E-01
THE SUM-OF-SQUARES ERROR AT STEP 7 IS 0.1367E+00
THE SUM-OF-SQUARES ERROR AT STEP 8 IS 0.1084E-02
THE SUM-OF-SQUARES ERROR AT STEP 9 IS 0.1240E-04
THE SUM-OF-SQUARES ERROR AT STEP 10 IS 0.2607E-05
THE SUM-OF-SQUARES ERROR AT STEP 11 IS 0.1611E-06
THE SUM-OF-SQUARES ERROR AT STEP 12 IS 0.1487E-09
THE SUM-OF~SQUARES ERROR AT STEP 13 IS 0.3594E-12
THE SUM-OF-SQUARES ERROR AT STEP 14 IS 0.1277E-16
THE SUM-OF-SQUARES ERROR AT STEP 15 IS 0.3803E-21
PARAMETERS DEFINING MAP: (R = &) (NPTSQ = 8)
K W(K) TH(X)/PI BETAM(K) Z(K)
1 (0.000, 1.000) 0.50000000 1.00000 (0.00000000, 1.00000000)
2 (0.000, 0.000) 1.00000000 -0.50000 (-1.00000000, 0.00000000)
3 IKFINITY 1.50000000 ~2.00000 (0.00000000,-1.00000000)
4 (0.000, 0.000) 2.00000000 -0.50000 (1.00000000, 0.00000000)
WC = (0.00000000E+00, 0.14142136E+01)
C = (-0.14142136E+01,-0.18626164E-10)

ERREST: 0.1806E-10

Z,¥,¥EX,ERR: (-0.300, 0.210) (0.196, 1.095) (0.196, 1.095) 0.1843D-10
Z,W,WEX,ERR: (0.000, 0.270) (0.000, 1.183) (0.000, 1.1563) 0.9080D-11
Z,¥,¥WEX,ERR: (0.300, 0.330) (-0.133, 1.048) (-0.133, 1.048) 0.9255D-11
Z,W,WEX,ERR: (0.600, 0.390) (-0.126, 0.887) (-0.126, 0.887) 0.9350D-11

21

5.3. EX3: call RESIST to compute a resistance

Our final example illustrates how two Schwarz- Christoftel maps can be composed,
and it also illustrates the use of COUNTO and COUNT. The problem is to compute the
resistance (conformal modulus) of an L-shaped hexagon, assuming that a voltage
difference is applied between the top and the bottom edges. In other words the
question is, what is the length-to-width ratio of a rectangle which is conformally
equivalent to the L-shaped region, provided that the four distinguished vertices map to
the corners? The exact answer is v/3 & 1.732050807569. The basis of the computation
is a subroutine RESIST, a driver for SCPACK that composes two Schwarz-Christoffel
maps in such a way as to map a polygon conformally onto a rectangle and thereby
determine the dimensions of a rectangle which is electrically equivalent to a given
polygonal resistor. RESIST is listed in Section 7.2, and to understand this example,
please take a look at it.

PROGRAM EX3
IMPLICIT REAL*8(A-B,D-H,0-Y), COMPLEX*16(C,W,Z)
DIMENSION W(10),IBRK(4),QWORK(300)

N =6
w(1)
w(2)
w(3)
w(4)

(0.D0,0.D0)
(2.D00,0.00)
(2.D0,1.D0)
(1.D0,1.D0)
w(s) (1.D0,2.D0)

L | I (I | N { I 1]

w(6) = (0.D0,2.D0)
WC = (.5D0,.5D0)

IBRK(1)
IBRK(2)
IBRK(3)
IBRK(4)

R TN

c
C MAIN LOOP: DIFFERENT ACCURACY SPECIFICATIONS: l

CALL COUNTO

DO 10 NDIG = 2,10,2

R = RESIST(N,W,WC,IBRK,NDIG,ERREST,QWORK)
10 WRITE (6,201) NDIG,R,ERREST

CALL COUNT

c

201 FORMAT (EDIG =’,13,’:’,> R =’,D020.13,", ERREST =’,D9.2)

END l

After about 80 seconds on the Sun 3/50, here is the output:

——————— LOG COUNTER SET TO ZERO

¥DIG = 2: R = 0.1732597161966D+01, ERREST = 0.12D-02
NDIG = 4: R = 0.1732040998624D+01, ERREST = 0.15D-04
NDIG = 6: R = 0.1732050829623D+01, ERREST = 0.55D-07
KDIG = 8: R = 0.1732050807808D+01, ERREST = 0.76D-09
NDIG = 10: R = 0.1732050807573D+01, ERREST = 0.23D-10

------- ¥O. LOGS: SINCE LAST COUNT 75880, TOTAL 75880

22

6. References

As mentioned in the Introduction, the design of SCPACK is described in

(1] L.N. Trefethen, “Numerical computation of the Schwarz-Christoffel transforma-
tion,” SIAM J. Sci. Stat. Comput. 1 (1980), 82-102,

and a survey of various applications of Schwarz-Christoffel mapping, and of variations
on the Schwarz-Christoffel theme, can be found in

[2] L.N. Trefethen, “Schwarz-Christoffel mapping in the 1980’s,” Numerical Anal-
ysis Report 89-1, Dept. of Mathematics, M.L.T., 1989 (available from L.N.T.).

Here again is the Netlib reference:

[3] J. J. Dongarra and E. Grosse, “Distribution of mathematical software via elec-
tronic mail,” Communications of the ACM 30 (1987), 403-407.

The report [2] contains many references, including a fairly complete list of other
authors who have published on the subject of numerical Schwarz-Christoffel map-
ping. Among the Schwarz-Christoffel variations it discusses are the treatment of
exterior polygons, circular arc polygons, periodic polygons, polygonal Riemann sur-
faces, doubly-connected polygons, and “gearlike domains”. The extension to doubly-
connected polygons is particularly noteworthy:

(4] H. Dappen, Die Schwarz-Christoffel-Abbildung fiir zweifach zusammenhingende
Gebiete mit Anwendungen, PhD dissertation, Dept. of Mathematics, ETH-
Zurich, 1988.

For numerical conformal mapping in general (mainly integral equation methods for
domains with curved boundaries) there are three references in book form,

(5] D. Gaier, Konstruktive methoden der Konformen Abbildung, Springer, 1964,

(6] P. Henrici, Applied and Computational Complex Analysis, v. 3, Wiley, 1986,

(7] L. N. Trefethen, ed., Numerical Conformal Mapping, North-Holland, 1986,
and various survey articles, such as

(8] D. C. Ives, “Conformal grid generation,” in J. F. Thompson, ed., Numerical
Grid Generation, Elsevier, 1982.

The survey article by Gutknecht in [7] should also be mentioned. The extension of
Schwarz-Christoffel mapping for highly-elongated polygons mentioned in Section 4.8
— to avoid the problem of “crowding” — is described in

(9] L. H. Howell and L. N. Trefethen, “A modified Schwarz-Christoffel transforma-
tion for elongated regions,” SIAM J. Sci. Stat. Comput., to appear.

23

7. Program listing (excluding library routines)

7.1. SCPACK

CC
cC
cc
cC
cc
cc
cC
CcC
cC
cc
cc
cc
cc
ccC
cc
cc
CcC
cc
cC
cc
ccC
ccC

Cx
C=
Cx

aaoaoaaagaoaaaoa

Qo

##% SCPACK VERSION 2 %as LLOYD NICHOLAS TREFETHEN

HISTORY:
SCPACK 1 - OCT. 1979
SCPACK 2 - JULY 1983

SCPACK IS A FORTRAN PACKAGE FOR THE NUMERICAL IMPLEMENTATION
OF THE SCHWARZ-CHRISTOFFEL CONFORMAL MAP FROM A DISK TO

A POLYGON, WHICH MAY CONTAIN VERTICES AT INFINITY. SEE
TREFETHEN, "NUMERICAL COMPUTATION OF THE SCHWARZ-CHRISTOFFEL
TRANSFORMATION", SIAM J. SCI. STAT. COMP. 1 (1980), 82-102.
THE PACKAGE MAY BE FREELY COPIED AND USED, BUT REFERENCE TO
THE ABOVE PAPER SHOULD BE GIVEN IN ANY PUBLICATIONS ARISING
FROM ITS USE.

COMMENT CARDS DESCRIBE THE PRINCIPAL FEATURES OF THE PACKAGE.
ADDITIONAL DOCUMENTATION IS AVAILABLE IN THE "SCPACK USER’S
GUIDE".

THE PACKAGE REQUIRES LIBRARY ROUTINES NSO1A, GAUSSJ, AND ODE,
AND THESE CONTAIN MACHINE DEPENDENT CONSTANTS. SEE THE SCPACK
USER’S GUIDE.

hhihddeaeadedddid di s Ll Il

QINIT PRIMARY SUBROUTINE #=

ttttttt#tt#t‘#t*##‘#t‘t‘t##t‘tttttttttt#tttttt*ttt#tt#tt#t#tt**t*t
SUBROUTINE QINIT(N,BETAM,NPTSQ,QWORK)

COMPUTES NODES AND WEIGHTS FOR GAUSS-JACOBI QUADRATURE
CALLING SEQUENCE PARAMETERS: SEE COMMENTS IN SCSOLV

THE WORK ARRAY QWORK MUST BE DIMENSIONED AT LEAST NPTSQ * (2N+3).
IT IS DIVIDED UP INTO 2N+3 VECTORS OF LENGTH NPTSQ: THE FIRST
N+1 CONTAIN QUADRATURE NODES ON OUTPUT, THE NEXT N+1 CONTAIN
QUADRATURE WEIGHTS ON OUTPUT, AND THE FINAL ONE IS A

SCRATCH VECTOR NEEDED BY GAUSSJ.

IMPLICIT DOUBLE PRECISION (A-B,D-H,0-V,X-Y)
IMPLICIT COMPLEX*16(C,W,Z)
DIMENSION QWORK(1),BETAM(N)

FOR EACH FINITE VERTEX W(K), COMPUTE NODES AND WEIGHTS FOR
ONE-SIDED GAUSS-JACOBI QUADRATURE ALONG A CURVE BEGINNING AT Z(K):
ISCR = NPTSQ#(2%N+2) + 1
DO 1 K =1,N
INODES = NPTSQ#*(K-1) + 1
IWNTS = NPTSQ*(N+K) + 1
1 IF (BETAM(K).GT.-1.D0) CALL GAUSSJ(NPTSQ,0.DO0,BETAM(K),
QHDRK(ISCR),QUORK(INODES),QVORK(IHTS))

COMPUTE NODES AND WEIGHTS FOR PURE GAUSSIAN QUADRATURE:
INODES = NPTSQ#N + 1
IWTS = NPTSQ#(2#N+1) + 1
CALL GAUSSJ(NPTSQ,O.D0,0.DO,
I 3 QHORK(ISCR),QHORK(INODES),QHORK(IHTS))

RETURN
END

G b el e Qs A A A R IR 005 R 0 e
C+ SCSOLV PRIMARY SUBROUTINE =%
C#t#t*t*tttt#&t*t*t#t*t*t#*$¢*tttttt$$¢¢$¢$$$¢*$&é#ﬂﬁ##ﬂ$******#a#*#
c

SUBROUTIKE SCSOLV(IPRINT,IGUESS,TOL,ERREST,N,C,Z,¥WC,

& V,BETAM,NPTSQ,QWORK)

THIS SUBROUTINE COMPUTES THE ACCESSORY PARAMETERS C AND
Z(K) FOR THE SCHWARZ-CHRISTOFFEL TRANSFORMATION

WHICH SENDS THE UNIT DISK TO THE INTERIOR OF THE POLYGON
W(1),...,W(N). THIS MAPPING IS OF THE FORM:

Z N
W = WC + C = INT PROD (1-Z/Z(K))*%BETAM(K) DZ . (1.2)
0 K=1

THE IMAGE POLYGON MAY BE UNBOUNDED; PERMITTED ANGLES LIE IN THE
RANGE -3.LE.BETAM(K).LE.1. W(N) AND W(1) MUST BE FIRITE.
WE NORMALIZE BY THE CONDITIONS:

Z(N) = § (2.1)
W(0.0) = WC (A POINT IN THE INTERIOR OF THE POLYGON) (2.1)

CALLING SEQUENCE:
IPRINT -2,-1,0, OR 1 FOR INCREASING AMOUNTS OF OUTPUT (INPUT)

IGUESS 1 IF AN INITIAL GUESS FOR Z IS SUPPLIED, OTHERWISE 0
(INPUT)

TOL DESIRED ACCURACY IN SOLUTION OF NONLINEAR SYSTEM
(INPUT). RECOMMENDED VALUE: 10.#%(-NPTSQ-1) * TYPICAL
SIZE OF VERTICES W(K)

ERREST ESTIMTATED ERROR IN SOLUTION (OUTPUT). MORE
PRECISELY, ERREST IS AN APPROXIMATE BOUND FOR HOW FAR
THE TRUE VERTICES OF THE IMAGE POLYGON MAY BE FROM THOSE
COMPUTED BY NUMERICAL INTEGRATION USING THE
NUMERICALLY DETERMINED PREVERTICES Z(K).

N NUMBER OF VERTICES OF THE IMAGE POLYGON (INPUT).
MUST BE .LE. 20

c COMPLEX SCALE FACTOR IN FORMULA ABOVE (OUTPUT)

Z COMPLEX ARRAY OF PREVERTICES ON THE UNIT CIRCLE.

DIMENSION AT LEAST K. IF AN INITIAL GUESS IS
BEING SUPPLIED IT SHOULD BE IN Z ON INPUT, WITH Z(N)=1.
IN ANY CASE THE CORRECT PREVERTICES WILL BE IN Z ON OUTPUT.

WeC COMPLEX IMAGE OF O IN THE POLYGON, AS IN ABOVE FORMULA
(INPUT). IT IS SAFEST TO PICK WC TO BE AS CENTRAL AS
POSSIBLE IN THE POLYGON IN THE SENSE THAT AS FEW PARTS
OF THE POLYGON AS POSSIBLE ARE SHIELDED FROM WC BY
REENTRANT EDGES.

W COMPLEX ARRAY OF VERTICES OF THE IMAGE POLYGON
(INPUT). DIMENSION AT LEAST N. IT IS A GOOD IDEA
TO KEEP THE W(K) ROUGHLY ON THE SCALE OF UNITY.
W(K) WILL BE IGNORED WHEN THE VERTEX LIES AT INFINITY;
SEE BETAM, BELOW. EACH CONNECTED BOUNDARY COMPONENT
MUST INCLUDE AT LEAST ONE VERTEX W(K), EVEN IF IT
HAS TO BE A DEGENERATE VERTEX WITH BETAM(K) = 0.
W(N) AND W(1) MUST BE FINITE.

BETAM REAL ARRAY WITH BETAM(K) THE EXTERNAL ANGLE IN THE
POLYGON AT VERTEX K DIVIDED BY MINUS PI (INPUT).

QQOQQOOOQQOOQOQQQQQOQOOQOOOQOOGOQQOOOOQOQOOOQOQOOOOOGOOOQOQOO

25

OQOOOQQOQOOQOOOOQQQQOOOQQOOOQOQOOOQOOGOOOO

QaQ

aaan

DIMENSION AT LEAST N.- PERMITTED VALUES LIE IN

THE RANGE -3.LE.BETAM(K).LE.1. (EXAMPLES: EACH
BETAM(K) IS -1/2 FOR A RECTANGLE, -2/3 FOR AN EQUI-
LATERAL TRIAKGLE, +1 AT THE END OF A SLIT.) THE
SUM OF THE BETAM(K) WILL BE -2 IF THEY HAVE BEEN
SET CORRECTLY. BETAM(N-1) SHOULD NOT BE 0 OR 1.
W(K) LIES AT INFINITY IF AND ONLY IF BETAM(K) .1E.-1,

NPTSQ THE NUMBER OF POINTS TO BE USED PER SUBINTERVAL
IN GAUSS-JACOBI QUADRATURE (IKPUT). RECOMMENDED
VALUE: EQUAL TO ONE MORE THAN THE NUMBER OF DIGITS
OF ACCURACY DESIRED IN THE ANSWER. MUST BE THE SAME
AS IN THE CALL TO QINIT WHICH FILLED THE VECTOR QWORK.

QWORK REAL QUADRATURE WORK ARRAY (INPUT). DIMENSION
AT LEAST NPTSQ = (2N+3) BUT NO GREATER THAN 460.
BEFORE CALLING SCSOLV QWORK MUST HAVE BEEN FILLED
BY SUBROUTINE QINIT.

THE PROBLEM IS SOLVED BY FINDING THE

SOLUTION TO A SYSTEM OF N-1 NONLINEAR EQUATIORS IN THE N-i
UNKNOWNS Y(1),...,Y(N-1), WHICH ARE RELATED TO THE POINTS
Z(K) BY THE FORMULA:

Y(K) = LOG ((TH(K)-TH(K—i))/(TH(K+1)—TH(K))) 2.7)

WHERE TH(X) DENOTES THE ARGUMENT OF Z2(K).

SUBROUTINE SCFUN DEFINES THIS SYSTEM OF EQUATIONS.

THE ORIGINAL PROBLEM IS SUBJECT TO THE CONTRAINTS TH(K) < TH(K+1),
BUT THESE VANISH IN THE TRANSFORMATION FROM ZTOY.

REFERENCE: L. N. TREFETHEN, "NUMERICAL COMPUTATION OF THE
SCHWARZ-CHRISTOFFEL TRANSFORMATION," SIAM J. SCI. STAT. COMP. 1
(1980), 82-102. EQUATION NOS. ABOVE ARE TAKEN FROM THIS PAPER.

LLOYD N. TREFETHEN

DEPARTMENT OF MATHEMATICS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
CAMBRIDGE, MA 02139

(617) 253-4986 / LNTGMATH.MIT.EDU

OCTOBER 1979 (VERSION 1); JULY 1983 (VERSION 2)

IMPLICIT DOUBLE PRECISION (A-B,D-H,0-V,X-Y)
IMPLICIT COMPLEX#*16(C,W,Z)

COMMON /PARAM1/ KFIX(20),KRAT(20).NCOHP,NPTSQ2,C2,
[4 QWORK2(460) ,BETAM2(20) ,Z2(20) ,WC2,W2(20)
DIMENSION Z(N),W(N) ,BETAM(N),QWORK (1)

DIMENSION AJINV(20,20),SCR(900) ,FVAL(19),Y(19)
EXTERNAL SCFUN

NM = N-1

CHECK INPUT DATA:
CALL CHECK(TOL,N,W,BETAM)

DETERMINE NUMBER OF BOUNDARY COMPONENTS, ETC.:
PASS 1: ONE FIXED POINT FOR EACH INFINITE VERTEX:
NCOMP = 0
DO 1 K = 2,NM
IF (BETAM(K).GT.-1.D0) GOTO 1
NCOMP = NCOMP + 1
KFIX(NCOMP) = K - 1|
IF (NCOMP.EQ.1) KFIX(NCOMP) = 1
1 CONTINUE
IF (NCOMP.GT.0) GOTO 2
NCOMP = |
KFIX(NCOMP) = 1
PASS 2: ONE RATIO FOR EACH LINE SEGMENT:

26

Q

aQ

aaaaan

2 CONTINUE
HEQ = 2sHCOMP
DD 3 K= 1{,NH
IF (NEQ.EQ.BK-1) GOTO 4

IF (BETAM(K).LE.-1.D0.0R.BETAM(K+1).LE.~1.D0) GOTO 3

HEQ = NEQ + 1 ’
KRAT(NEQ) = K

3 CONTINUE

4 Z(H) = (1.D0,0.D0)

INITIAL GUESS, CASE IGUESS.EQ.O:
(VERTICES EQUALLY SPACED AROUND CIRCLE):
IF (IGUESS.NE.0) GOTO 11
DO 5 K = 1,NH
5 Y(K) = 0.D0
GOTO 12

INITIAL GUESS, CASE IGUESS.NE.O:
(VERTICES SUPPLIED ON INPUT):
11 CONTINUE
DO 9 K = 1,NM
KM = K-1
IF (KM.EQ.0) KM = N
THP1 = DIMAG(LOG(Z(K+1)/Z(K)))
IF (TMP1.LT.0.D0) THP1 = TMP1 + 2.D0 = AC0S(-1.D0)
THP2 = DIMAG(LOG(Z(K)/Z(KM)))
IF (TMP2.LT.0.D0) TMP2 = TMP2 + 2.D0 * AC0S(-1.D0)
9 Y(K) = LOG(TMP2) - LOG(TMP1)
12 CONTINUE

NSO1A CONTROL PARAMETERS:
DSTEP = 1.D-6
DHAX = 20.DO
MAXFUN = (N~1) = 15§

COPY INPUT DATA TO /PARAM1/ FOR SCFUN:
(THIS IS NECESSARY BECAUSE NSO1A REQUIRES A FIXED CALLING
SEQUENCE IN SUBROUTINE SCFUN.)
NPTSQ2 = NPTSQ
WC2 = ¥WC
DO 6 K = 1,N
Z2(K) = Z(K)
BETAM2(K) = BETAM(K)
6 W2(K) = W(K)
NWDIM = NPTSQ * (2%N+3)
DO 7 I = 1,RWDIK
7 QWORK2(I) = QWORK(I)

SOLVE NONLINEAR SYSTEM WITH NSO1A:
CALL HSOlA(HH,Y,FVAL,AJINV,DSTEP,DHAX,TOL,HAXFUN,
& IPRINT,SCR,SCFUN)

COPY OUTPUT DATA FROM /PARAM1/:
C = C2
DO B K = 1,NM
8 Z(K) = 22(K)

PRINT RESULTS AND TEST ACCURACY:
IF (IPRINT.GE.O0) CALL SCOUTP(N,C,Z,WC,¥W,BETAM,NPTSQ)
CALL SCTEST(ERREST,N,C,Z,¥C,W,BETAM,NPTSQ, QWORK)
IF (IPRINT.GE.-1) WRITE (6,201) ERREST
201 FORMAT (’ ERREST:’,E12.4/)
RETURN

END

27

~C#t#t*g‘#tttttttﬂtttt#ttttlt*ttttttt‘t‘tt##t‘ttt*#tittt#ttt*tttttt#t
Cx WSC PRIMARY SUBROUTINE #=

Cttttt#tttmttatt:t-tttttttttttcmttttttttt*t*tttt:ttrttttﬂvttttta*tt*
¢ FUNCTION HSC(ZZ,KZZ,ZO,HO,KO,H,C,Z,BETAH.NPTSQ,QVORK)
COMPUTES FORWARD MAP W(ZZ)
CALLING SEQUENCE:

zZ POINT IN THE DISK AT WHICH W(2ZZ) IS DESIRED (INPUT)

KZZ K IF ZZ = Z(K) FOR SOME K, OTHERWISE 0 (INPUT)

Z0 NEARBY POINT IN THE DISK AT WHICH W(ZO) IS KNOWN AND
FINITE (INPUT)

WO w(zZ0) (INPUT)

KO K IF 20 = Z(K) FOR SOME K, OTHERWISE 0 (INPUT)

N,C,Z,BETAM,NPTSQ, QWORK AS IN SCSOLV (INPUT)

CONVENIENT VALUES OF Z0, WO, AND KO FOR MOST APPLICATIONS CAN BE
SUPPLIED BY SUBROUTINE NEARZ.

aooaoaaoaoacaacacaacacacaacacacaaaa aaa

IMPLICIT DOUBLE PRECISION (A-B,D-H,0-V,X-Y)
IMPLICIT COMPLEX*16(C,W,Z)
DIMENSION Z(N),BETAM(N),QWORK (1)

c

WSC = W0 + C = ZQUAD(ZO,KO,ZZ,KZZ,N,Z,BETAH,NPTSQ,QHORK)
C

RETURN

END

C‘l*“‘#“#‘““t“‘t‘#““#t‘t‘#“*titltt#t*#‘#ltt**t#tt#t#*#**t‘##

Cs ZSC PRIMARY SUBROUTINE =**
C‘tttttt*ttttt#ttttttttttittttt#t&tt#t#t#tt*tt‘#t#ttt#t*t#t##t#t*t*t
c

FUNCTION ZSC(HH,IGUESS.ZINIT.ZO,VO,KO,EPS,IER,H,C,
&t Z,WC,W,BETAM,NPTSQ,QWORK)

COMPUTES INVERSE MAP Z(WW) BY NEWTON ITERATION
CALLING SEQUENCE:
wW POIRT IN THE POLYGON AT WHICH 2(WW) IS DESIRED (INPUT)
IGUESS (INPUT)
-EQ.1 - INITIAL GUESS IS SUPPLIED AS PARAMETER ZINIT
-NE.1 - GET INITIAL GUESS FROM PROGRAM ODE (SLOWER).
FOR THIS THE SEGMENT WC-WW MUST LIE WITHIN
THE POLYGON.

ZINIT INITIAL GUESS IF IGUESS.EQ.1, OTHERWISE IGNORED (INPUT).
MAY NOT BE A PREVERTEX Z(K)

Z0 POINT IN THE DISK NEAR Z(WW) AT WHICH W(Z0) IS KNOWN AND
FINITE (INPUT).

wo W(Z0) (INPUT). THE LINE SEGMENT FROM WO TO WW MUST
LIE ENTIRELY WITHIN THE CLOSED POLYGON.

KO K IF Z0 = Z(K) FOR SOME K, OTHERWISE 0 (INPUT)

o000 aao0acacac0oaaaaaaa aaQa

EPS DESIRED ACCURACY IN ANSWER Z(WW) (INPUT)

28

IER ERROR FLAG (IKPUT ARD OUTPUT).
’ OF IKPUT, GIVE IER.NE.O TO SUPPRESS ERROR MESSAGES.
OR OUTPUT, IER.NE.O INDICATES UNSUCCESSFUL COMPUTATION --
TRY AGAIN WITH A BETTER INITIAL GUESS.

N,C,Z,9C,¥,BETAM,NPTSQ, QWORK AS IN SCSOLV (INPUT)

CONVERIENT VALUES OF Z0, WO, AND KO FOR SOME APPLICATIONS CAN BE
SUPPLIED BY SUBROUTIKE NEARW.

IMPLICIT DOUBLE PRECISION (A-B,D-H,0-V,X-Y)
IMPLICIT COMPLEX#16(C,W,Z)

DIMENSION SCR(142),ISCR(5)

DIMENSION Z(N),¥(¥) ,BETAM(N),QWORK (1)
EXTERNAL ZFODE

LOGICAL ODECAL

COMMON /PARAM2/ CDWDT,Z2(20),BETAM2(20) ,N2

ODECAL = ,FALSE.

IF (IGUESS.KE.1) GOTO 1
ZI = ZINIT

GOTO 3

C GET INITIAL GUESS ZI FROM PROGRAM ODE:
1 H2 =N
DO 2K = 1,K
Z2(K) = Z(K)
2 BETAM2(K) = BETAM(K)
ZI = (0.D0,0.DO)
T =0.D0
IFLAG = -1
RELERR = 0.D0O
ABSERR = 1.,D-4
CDWDT = (WW-WC)/C
CALL ODE(ZFODE,2,2I,T,1.D0,RELERR,ABSERR,IFLAG,SCR,ISCR)
IF (IFLAG.NE.2.AND.IER.EQ.0) WRITE (6,201) IFLAG
ODECAL = .TRUE,
c
C REFINE ANSWER BY NEWTOK ITERATIOR:
3 COKTINUE
DO 4 ITER = 1,10
ZFNWT = WW - WsC(ZI,0,Z0,%0,X0,N,C,Z,BETAM,NPTSQ,QWORK)
2I = ZI + ZFNWT/(C%ZPROD(ZI,0,N,Z,BETANM))
IF (ABS(ZI).GE.1.1D0) ZI = .5D0 * ZI/ABS(ZI)
IF (ABS(ZFHNWT) .LT.EPS) GOTO 5
4 CONTINUE
IF (.NOT.ODECAL) GOTO 1
IF (IER.EQ.0) WRITE (6,202)
IER = 1
6 ZSC = ZI

201 FORMAT (/’ »«* NONSTANDARD RETURN FROM ODE IN ZSC: IFLAG =’,12/)
202 FORMAT (/’ ##= POSSIBLE ERROR IN ZSC: NO CONVERGENCE IN 100/
& ’ ITERATIONS. MAY NEED A BETTER INITIAL GUESS ZINIT’)
RETURN
END

Coteaktaa ok oo oo oo oo o Ak A R oo oo o ok o ok ook ok
C= ZFODE SUBORDINATE (ZSC) SUBROUTINE *x
i L T D T T P PP
c

SUBROUTINE ZFODE(T,ZZ,ZDZDT)
c
C COMPUTES THE FUNCTION ZDZDT NEEDED BY ODE IN ZSC.
¢ .

29

IMPLICIYT DOUBLE PRECISION (A-B,D-H,0-V,X-Y)
IMPLICIT COMPLEX*16(C,VW,Z)
COMHON /PARAN2/ CDWDT,Z(20) ,BETAM(20) ,N

C

ZDZDT = CDWDT / ZPROD(ZZ,0,N,Z,BETAM)
C

RETURN

END

C‘ttt##*t!#ll‘ttt*‘t‘*‘*‘!**t#*#ttt‘# bl A AT P LTI T2 2 papneraranpay

C» CHECK SUBORDINATE (SCSOLV) SUBROUTINE ##
ot o o AR A AR o ko

c
SUBROUTINE CHECK(EPS,N,W,BETAM)

CHECKS GEOMETRY OF THE PROBLEM TO MAKE SURE IT IS A FORM USABLE
BY SCSOLV.

aaogaa

IMPLICIT DOUBLE PRECISION (A-B,D-H,0-V,X-Y)
IMPLICIT COMPLEX*16(C,W,Z)
DIMENSION W(N),BETAM(N)

SUM = 0.D0
DO 1 X = 1,N
1 SUM = SUM + BETAM(K)
IF (ABS(SUM+2.DO).LT.EPS) GOTO 2
WRITE (6,301)
2 IF (BETAM(1).GT.-1.D0) GOTO 3
WRITE (6,302)
STOP
3 IF (BETAM(N).GT.-1.D0) GOTO 4
WRITE (6,303)
STOP
4 IF (ABS(BETAM(N-1)).GT.EPS) GOTO &
WRITE (6,304)
WRITE (6,306)
5 IF (ABS(BETAM(N-1)-1.D0).GT.EPS) GOTO 6
WRITE (6,305)
WRITE (6,306)
STOP
6 DO 7K = 2,8
IF (BETAM(K).LE.-1.D0.0R,BETAM(K-1).LE.-1.D0) GOTO 7
IF (ABS(W(K)-W(K-1)).LE.EPS) GOTO 8
7 CONTINUE
IF (ABS(W(1)-W(N)).GT.EPS) GDTO 9
8 WRITE (6,307)
STOP
9 IF (N.GE.3) GOTO 10
WRITE (6,309)
STOP
10 IF (N.LE.20) GOTO 11
WRITE (6,310)
. STOP
11 CONTINUE
RETURN

301 FORMAT (/’ ==+ ERROR IN CHECK: ANGLES DO NOT ADD UP TO 2°/)
302 FORMAT (/’ #*% ERROR IN CHECK: W(1) MUST BE FINITE’/)

303 FORMAT (/> #«* ERROR IN CHECK: W(N) MUST BE FINITE’/)

304 FORMAT (/’ w*% WARNING IN CHECK: W(N-1) NOT DETERMINED’ /)
305 FORMAT (/’ #*» ERROR IN CHECK: W(N-1) NOT DETERMINED’)

306 FORMAT (/’ RENUMBER VERTICES SO THAT BETAM(N-1) IS NOT 0 OR 1°)
307 FORMAT (/’ #»« ERROR IN CHECK: TWO ADJACENT VERTICES ARE EQUAL’/)

309 FORMAT (/’ *s» ERROR IN CHECK: N MUST BE NO LESS THAN 3/
310 FORMAT (/’ **+ ERROR IN CHECK: N MUST BE NO MORE THAN 20°/)
END

30

Cnniuh:#ﬁk%lﬂxwmkta*s'a*ttu$¢$$Q¢$$k‘:*$*#&$i‘f$tt##$*****t#t**#&**#***t#*****

C* YZTRAHN SUBORDINATE (SCSOLV) SUBROUTINE %%

Cw#*****i*tw&:&t#tk*#*!»::2:'4’-':5mtz::;:::-mi:#t$i%***#**##****t*tt*t**###***#*****
c

- SUBROUTINE YZTRAN(K,Y,Z)

¢

TRANSFORMS Y(K) TO Z(K). SEE COMMENTS IN SUBROUTINE SCSOLV.

aaoa

IMPLICIT DOUBLE PRECISION (A-B,D-H,0-V,X-Y)
IHPLICIT COMPLEX#16(C,¥,Z)

DIMENSION Y(H),Z(N)

NM = § -1

PI = ACOS(-1.D0)

DTH = 1.D0
THSUM = DTH
DO 1 K= 1,8H
DTH = DTH / EXP(Y(K))
1 THSUM = THSUM + DTH

DTH = 2.D0 * PI / THSUM
THSUM = DTH
Z(1) = DCHPLX(COS(DTH),SIN(DTH))
DO 2 K = 2,NH
DTH = DTH / EXP(Y(K-1))
THSUM = THSUM + DTH
2 Z(K) = DCMPLX(COS(THSUM) , SIN(THSUM))

RETURN
END

ot skt ool A A A 00 oo o
C¥ SCFUN SUBORDINATE(SCSOLV) SUBROUTINE ==
et

SUBROUTINE SCFUN(NDIM,Y,FVAL)
C
C THIS IS THE FUNCTION WHOSE ZEROD MUST BE FOUND IN SCSOLV.
C

IMPLICIT DOUBLE PRECISION (A-B,D-H,0-V,X-Y)

IMPLICIT COMPLEX#*16(C,W,Z)

DIMENSION FVAL(NDIM),Y(NDIM)

COMMON /PARAM1/ KFIX(ZO),KRAT(QO),HCOHP,HPTSQ,C,

& (QWORK(460),BETAM(20),2(20),WC,W(20)
N = NDIM+1

Qo

TRANSFORM Y(K) TO Z(K):
CALL YZTRAN(N,Y,Z)

(]

SET UP: COMPUTE INTEGRAL FROM 0 TO Z(N):
WDENOM = ZQUAD((O.D0,0.DO),O,Z(H),N,N,Z,BETAH,NPTSQ,QHDRK)
C = (W(N)-WC) / WDENOM

Qo

CASE 1: W(K) AND W(K+1) FINITE:
(COMPUTE INTEGRAL ALONG CHORD Z(K)-Z(K+1)):
NFIRST = 2«NCOMP + 1
IF (NFIRST.GT.N-1) GOTO 11
DO 10 NEQ = NFIRST,NDIM
KL = KRAT(NEQ)
KR = KL+1
ZINT = ZQUAD(Z(KL),KL,Z(KR),KR,N,Z,BETAH,NPTSQ,QHORK)
FVAL(NEQ) = ABS(W(KR)-W(KL)) - ABS(C*ZINT)
10 CONTINUE

Q

(o]

CASE 2: W(K+1) INFINITE:
(COMPUTE CONTOUR INTEGRAL ALONG RADIUS 0-Z(K)):
11 DO 20 NVERT = 1,NCOMP

aQa

31

KR = KFIX(NVERT) RS
ZINT = 2QUAD((0.D0,0.D0),0,Z(KR) ,KR,N,Z,BETAM,NPTSQ, QNORK)
ZFVAL = W(KR) - WC '~ CxZINT :
FVAL(2#NVERT-1) = DREAL(ZFVAL)
FVAL(2¢NVERT) = DIMAG(ZFVAL)
20 CONTINUE
RETURN

END

C*‘t**#‘#i*t**t*#t#*t**t#t#‘t#t#t*“ttt*t#t####tt#t#*t*tt*t###t#*t*#

C* SCOUTP SUBORDINATE(SCSOLV) SUBROUTINE #*»
C#tt##*#tt*ttt#*t*#tt#tt##tttttt#tt#tt#tit##tt#!tt##t#tttt##t#tt#t#t
C

SUBROUTINE SCOUTP(N,C,Z,WC,W,BETAM,KPTSQ)

PRINTS A TABLE OF K, W(K), TH(K), BETAM(K), AND Z(K).
ALSO PRINTS THE CONSTANTS N, NPTSQ, WC, C.

aaoaa

IMPLICIT DOUBLE PRECISION (A-B,D-H,0-V,X-Y)
IMPLICIT COMPLEX*16(C,W,Z2)
DIMENSION Z(N) ,W(N),BETAM(N)

WRITE (6,102) N, NPTSQ
PI = ACOS(-1.D0)
DO 1 K = 1,N
THDPI = DIMAG(LOG(Z(X))) / PI
IF (THDPI.LE.0.DO) THDPI = THDPI + 2.DO
IF (BETAM(K).GT.-1.D0) WRITE (6,103) K,W(K),THDPI,BETAM(X),Z(K)
1 IF (BETAM(K).LE.-1.D0) WRITE (6,104) K,THDPI,BETAM(K) ,Z (K)
WRITE (6,105) WC,C
RETURN

102 FORMAT (/’ PARAMETERS DEFINING MAP:’,15X,’ (N =,
I3,’)’,6X,’(NPTSQ =*,I3,°)?//
’ K’,10X,’H(K)’,IOX,’TH(K)/PI’,SX,’BETAH(K)’,
13X,°Z(X)’/
’ "",SX,’--‘-’,].OX,’ ’,8X,” -3
13X, ====2/)
103 FORMAT (I3,’ (’.FG.S,’,’.FG.S,’)’,F14.8,F12.5,

+ 3X,’(’,F11.8,’,’,F11.8,7)?)
104 FORMAT (I3, INFINITY ’,F14.8,F12.5,

¢ 3Xx,°(’,F11.8,’,’,F11.8,7)°)
105 FORMAT (/’ WC = (’,E15.8,’,’ ,E15.8,°) "/

F 4 > €= (’,E15.8,’,’,E15.8,°)"/)

END

LN 2% 2 ¥ 4

C!*‘#*#*t‘**t.t#*‘#*#t#**#*###**t*#*#*#‘#*#*‘*#‘#t#*tt*#*t*ttttt#**#

C* SCTEST SUBORDINATE(SCSOLV) SUBROUTINE #x
C!t****t#*##t#tt#t##*##t##‘##t#*ttt*ti*t#tt###*####*#t*#*i*t*t*#t#tt
c

SUBROUTINE SCTEST(ERREST,H,C,Z,HC,H,BETAH,HPTSQ,QUORK)

c

C TESTS THE COMPUTED MAP FOR ACCURACY.

c
IMPLICIT DOUBLE PRECISION (A-B,D-H,0-V,X-Y)
IMPLICIT COMPLEX*16(C,W,Z)
DIMENSION Z(N),W(N),BETAM(N),QWORK (1)

c

C TEST LENGTH OF RADII:
ERREST = 0.D0
DO 10 K = 2N
IF (BETAM(K).GT.-1.D0) RADE = ABS(WC -
4 HSC((O.D0,0.DO),O,Z(K).V(K),K,N,C,Z,BETAH,NPTSQ,QHORK))
IF (BETAM(K).LE.-1.D0) RADE = ABS(WSC((.1D0,.1D0),0,
3 Z(K-l),V(K—i),K-l,N,C,Z,BETAH,NPTSQ,QWORK)

32

K’ - USC((. 110, . 1D0Y,0,Z(R+1) ,W(K+1) ,K+1,
& H,C,2,BETAK;HPTSQ,QWORK))
ZRREST =" HAX (ERREST,RADE)
10 CONTINUE
RETURN
EED

C***##*t##‘**#**#t****#**tt##**t**tt*#*###tt**tt***ttt**t**##**t*l&#i

C= ZQUAD ‘ PRIMARY SUBROUTINE %=
C#t*ttt*#*#ttt#ttt#*ttt#tt*t**#tt*#tt*t***tt*ttttt***#t**tt*tt*****t
C

FUNCTION ZQUAD(ZA,KA,ZB,KB,N,Z,BETAH,NPTSQ,QVORK)

c
C COMPUTES THE COMPLEX LINE INTEGRAL OF ZPROD FROM ZA TO ZB ALONG A
C STRAIGHT LINE SEGMENT WITHIN THE UNIT DISK. FUNCTION ZQUAD1 IS
C CALLED TWICE, ONCE FOR EACH HALF OF THIS INTEGRAL.
c
IMPLICIT DOUBLE PRECISION (A-B,D-H,0-V,X-Y)
IMPLICIT COMPLEX=*16(C,W,Z)
DIMENSION Z(N),BETAM(N),QWORK(1)
c

IF (ABS(ZA).GT.1.1D0.0R.ABS(ZB).GT.1.1D0) WRITE (6,301)
301 FORMAT (/’ s+« WARNING IN ZQUAD: Z OUTSIDE THE DISK’)

ZMID = (ZA + ZB) / 2.DO

ZQUAD = 2QUAD1(2A,ZMID,KA,N,Z ,BETAM, NPTSQ, QWORK)
& - ZQUADI(ZB,ZHID,KB,H,Z,BETAH,NPTSQ,QHORK)
RETURN

END

C*t*ttttttttt*#tktt*ttt#t*ttttmttt-ttttt*t&*#ttt#*#t*t**tttttttt**t*
Ce ZQUAD1 SUBORDINATE (ZQUAD) SUBROUTINE s«
Ctt*tttttttt*tt#tt**t*ttt*t*t#t*ttt*t*tt*#t*tt*t**t*#***#**#**t*tttk
c

FUNCTION ZQUAD1(ZA,ZB,KA,N,Z,BETAM,NPTSQ, QWORK)

COMPUTES THE COMPLEX LINE INTEGRAL OF ZPROD FROM ZA TO ZB ALONG A
STRAIGHT LINE SEGMENT WITHIN THE UNIT DISK. COMPOUND ONE-SIDED
GAUSS-JACOBI QUADRATURE IS USED, USING FUNCTION DIST TO DETERMINE
THE DISTANCE TO THE NEAREST SINGULARITY Z(K).

aaaaaaan

IMPLICIT DOUBLE PRECISION (A-B,D-H,0-V,X-Y)
IMPLICIT COMPLEX*16(C,W,Z)

DIMENSION Z(N),BETAM(N),QWORK (1)

DATA RESPRM /1.D0/

aaQ

CHECK FOR ZERO-LENGTH INTEGRAND:
IF (ABS(ZA-ZB).GT.0.D0) GOTO 1
2QUAD1 = (0.D0,0.D0)

RETURN

C STEP 1: ONE-SIDED GAUSS-JACOBI QUADRATURE FOR LEFT ENDPOINT:
1R = HIN(i.DO,DIST(ZA,KA.N,Z)tRESPRH/ABS(ZA-ZB))
ZAA = ZA + R« (ZB-ZA)
ZQUAD1 = ZQSUM(ZA,ZAA,KA,N,Z,BETAM,NPTSQ, QWORK)

C STEP 2: ADJOIN INTERVALS OF PURE GAUSSIAN QUADRATURE IF NECESSARY:
10 IF (R.EQ.1.DO) RETURN
R = MIN(1.DO,DIST(ZAA,0,N,2)*RESPRM/ABS (ZAA-ZB))
ZBB = ZAA + R*(ZB-ZAA)
ZQUADY = ZQUAD1 + ZQSUM(ZAA,ZBB,0,N,Z ,BETAM, NPTSQ, QWORK)

ZAA = ZBB
GOTO 10
END

33

Ct‘*#t##‘t##*#‘#‘i#"t#‘*#‘*‘#i‘tkt#*i“it#*“i$##t##*t*ttﬁtw*t*itt#

C* DIST SUBORDINATE (ZQUAD) SUBRUITTINE »x
Gtk s o ok Ao A A Ao oo o o o o oo oo o
C

FUNCTION DIST(ZZ,KS,N,Z)

DETERMINES THE DISTANCE FROM ZZ TO THE NEAREST SINGULARITY Z(X)
OTHER THAN Z(KS).

aaaa

IMPLICIT DOUBLE PRECISION (A-B,D-H,0-V,X-Y)
IMPLICIT COMPLEX*16(C,W,Z)
DIMENSION Z(N)

DIST = 99.D0
DO 1 K = 1,N
IF (K.EQ.KS) GOTO 1
DIST = MIN(DIST,ABS(ZZ-Z(K)))
1 CONTINUE ’
RETURN
END

C*#*#t*t#‘#*t*‘#t#i‘*‘#*#*#*##t#*#t##t##*#‘t#“-#t*‘#“#####‘#t‘*t#t
C+ ZQSUM SUBORDINATE(ZQUAD) SUBROUTINE ##
C*#**t**‘#*#*‘#*#**#**ﬁ#*t#t“#**#**‘*i#‘#***###***##*t*****#t******
c

FUNCTION ZQSUM(ZA,ZB,RA,N,Z,BETAM,NPTSQ, QWORK)
c
C COMPUTES THE INTEGRAL OF ZPROD FROM ZA TO ZB BY APPLYING A
C ONE-SIDED GAUSS-JACOBI FORMULA WITH POSSIBLE SINGULARITY AT ZA.
c

IMPLICIT DOUBLE PRECISION (A-B,D-H,0-V,X-Y)

IMPLICIT COMPLEX*16(C,W,Z)

DIMENSION Z(N),BETAM(N),QWORK(1)

ZS = (0.D0,0.D0)

ZH = (ZB-ZA) / 2.DO

ZC = (ZA+ZB) / 2.DO

K = KA

IF (K.EQ.0) K = N+1

INT1 = NPTSQ#(K-1) + 1

IWT2 = IWT1 + NPTSQ - 1

IOFFST = NPTSQ*(N+1)

DO 1 I = IWT1,IWT2
1 2S5 = 728 + QHORK(IOFFST+I)#ZPROD(ZC+ZH*QHORK(I),KA,N,Z,BETAH)

ZQSUM = ZS*ZH

IF (ABS(ZH).NE.0.DO.AND.K.NE.N+1)
& ZQSUM = ZQSUM#*ABS (ZH) **BETAM(K)

RETURN

END

C‘**ﬁ*‘i#‘t‘*#*#‘t‘i“l*#tt‘#tttt**t##t#**##*t#t*##*ttt#****#*****t*

C* ZPROD SUBORDINATE(ZQUAD) SUBROUTINE #=
Corammmb bbb b d ko bk kK R A ko ok kKR ko o
c

FUNCTION ZPROD(ZZ,KS,N,Z,BETAM)
4
COMPUTES THE INTEGRAND
N
PROD (1-2Z/Z(K))**BETAM(K)
K=1
TAKING ARGUMENT ONLY (NOT MODULUS) FOR TERM K = KS.

*** NOTE -- IN PRACTICE THIS IS THE INNERMOST SUBROUTINE

c
c
C
c
C
C
C
c
c
C #*x IN SCPACK CALCULATIONS. THE COMPLEX LOG CALCULATION BELOW

34

C % HAY ACCOUNT FOR AS MUCH AS HALF OF TH: TOTAL EISCOTION TIME.
C

IMPLICIT DOUBLE PRECISION (A-B,D-H,0-V,X-Y)

IHPLICIT COMPLEX*16(C,¥,Z)

DIMERSION Z(N),BETAM(N)

COMMON /LOGCNT/ NCOUNT,NCNT1

ZSUM = (0.D0,0.D0)
DO1K=1,K
ZTMP = (1.D0,0.D0) - ZZ/Z(K)
IF (K.EQ.KS) ZTHP = ZTMP / ABS(ZTMP)
1 ZSUM = ZSUM + BETAM(K)=LOG(ZTMP)
ZPROD = EXP (ZSUM)
RCOUNT = NCOUNT + N
RETURN
ERD

C*#***#*t#**t***t*tt***i***t***t****t****#*****ti**t#*****it‘*tt*t**

Cx RPROD PRIMARY SUBROUTINE =x
sttt o oo o o A A oo o oo oo ool o oo o
c

FUNCTION RPROD(ZZ,N,Z,BETAM)

COMPUTES THE ABSOLUTE VALUE OF THE INTEGRAND
H

PROD (1-ZZ/Z(K))=*=BETAM(K)
K=1

aaaaoaoaan

IMPLICIT DOUBLE PRECISION (A-B,D-H,0-V,X-Y)
IMPLICIT COMPLEX=%16(C,W,Z)
DIMENSIOR Z(N),BETAM(N)

SUM = 0.D0
DG i1 K = 1,N
ZTMP = (1.D0,0.D0) - ZZ/Z(K)
1 SUM = SUM + BETAM(K)*LOG(ABS(ZTMP))
RPROD = EXP (SUM)
RETURN
END

C*#tt###tt#t#t#tt#t*#tt*tt#*t#*#*‘ti*#‘#t*t*t*t*t!#*tttt#**#*#*#****

C+ NEARZ PRIMARY SUBROUTINE *=
Comdkdd g kMRS A R R A A B R A A ok o
c

SUBROUTINE NEARZ(ZZ,ZN,WN,KN,N,Z,WC,W,BETAM)

RETURNS INFORMATION ASSOCIATED WITH THE NEAREST PREVERTEX Z(X)
TO THE POINT ZZ, OR WITH O IF 0 IS CLOSER THAN ANY Z(K).
ZH = PREVERTEX POSITION, WN = W(ZN), KN = PREVERTEX NO. (0 TO N)

aaoaaa

IMPLICIT DOUBLE PRECISION (A-B,D-H,0-V,X-Y)
IMPLICIT COMPLEX#*16(C,W,Z)
DIMENSION Z(N),W(N),BETAM(N)

DIST = ABS(ZZ)

KN =0

ZN = (0.D0,0.D0)

WN = WC

IF (DIST.LE..5D0) RETURN

DO 1K= 1,N
IF (BETAM(K).LE.-1.D0) GOTO 1
DISTZK = ABS(ZZ-Z(K))
IF (DISTZK.GE.DIST) GOTO 1
DIST = DISTZK
KN = K

35

1 CONTINUE
IF (XKN.EQ.0) RETURN
ZN = Z(XN)
WN = W(EN)
RETURN
END

C#*itittt*t##ttt*ttttttt*tt##*tt*tt‘t##ttt*t#**t*#tt#tt##t#*t**###t#
C* NEARW PRIMARY SUBROUTINE *x
Ctt*tttt*t#**tttt#*t##tttttt##*t#t‘*tt**‘tt#*ttt#tt*tt#####tt*##t*#*
c

SUBROUTINE NEARW (WW,ZN,WN,KN,N,Z,WC,W,BETAM)

RETURNS INFORMATION ASSOCIATED WITH THE NEAREST VERTEX W(K)
TO THE POINT WW, OR WITH WC IF WC IS CLOSER THAN ANY W(K).
ZN = PREVERTEX POSITION, WN = W(ZN), KN = VERTEX ND. (0 TO N)

aaaoaaaaa

IMPLICIT DOUBLE PRECISION (A-B,D-H,0-V,X-Y)
IMPLICIT COMPLEX#*16(C,W,Z)
DIMENSION Z(N),W(N) ,BETAM(N)

DIST = ABS(WW-WC)

KN = 0

ZN = (0.D0,0.D0)

WN = WC

DO 1 K= 1,N
IF (BETAM(K).LE.-1.D0) GOTO 1
DISTWK = ABS(WW-W(K))
IF (DISTWK.GE.DIST) GOTO 1
DIST = DISTWK
KN = K

1 CONTINUE

IF (KN.EQ.0) RETURN

ZN = Z(KN)

WN = W(KN)

RETURN

END

Ct*t##tt‘tt‘t‘.t‘#tt*t#ttt*tt#ttttt#tttt#i##ttt‘ttttttttt#tt#tttt##*
Cx ANGLES PRIMARY SUBROUTINE x=
C##tti‘tt#t##tt**#*##t‘t*tttt#t#t#tt#ttt#*#tt##ttt*t*##*#t‘###tttt##
c

SUBROUTINE ANGLES(N,W,BETAM)

c
C COMPUTES EXTERNAL ANGLES -PI*BETAM(K) FROM KNOWLEDGE OF
C THE VERTICES W(K). AN ANGLE BETAM(K) IS COMPUTED FOR EACH
C K FOR WHICH W(K-1), W(K), AND W(K+1) ARE FINITE.
C TO GET THIS INFORMATION ACROSS ANY VERTICES AT INFINITY
C SHOULD BE SIGNALED BY THE VALUE W(K) = (99.,99.) ON INPUT.
c
IMPLICIT DOUBLE PRECISION (A-B,D-H,0~V,X-Y)
IMPLICIT COMPLEX*16(C,W,Z)
DIMENSION W(N),BETAM(N)
C9 = (99.D0,99.D0)
c

PI = ACOS(-1.D0O)

DO 1K= 1,N
KM = MOD(K+N-2,N)+1
KP = MOD(K,N)+1
IF (V(KH).EQ.CQ.UR.V(K).EQ.CS.OR.H(KP).EQ.CQ) GOTO 1
BETAM(K) = DIMAG (LOG((W(KM)-W(K))/(W(KP)-W(K))))/PI - 1.D0
IF (BETAM(K).LE.-1.D0) BETAM(K) = BETAM(K) + 2.D0

1 CONTINUE
RETURN
END

36

Ct*mﬁi*I&#t&#k*tt##*tat#ﬁtt*###t*m&vvstwxak&sn':i:", SRS S S R e e e e ot o e e ok

C+ COUNTO PRIMARY SUBROUTINE wx
Cttt##ttt#***t*t#ttv*#t#etk&&t&#t*#tt**ﬁ*e#m*ﬂ*&&t*w##*¢*#t*t*&ﬁ#ﬁ#*

Y
C INITIALIZES THE LOGARITHM COUNTER (SEE FUNCTION ZPROD)
C

SUBROUTINE COUNTO

COMMON /LOGCNT/ NCOUNT,NCNT1

NCOUNT = 0

NCNT1 = 0 °

WRITE (6,1)

1 FORMAT (° =w-=ee- LOG COUNTER SET TO ZERO’)
RETURK
END

C*tt*#*t***ttt*t#tt**t**ttt**tt#tt*tt**##*##t####*tt#t*ttttt#tttttt*
Cx COUNT PRIMARY SUBROUTINE #=
C*#**t***##ttt*t***t*tt#*#*****#*t******t**t**t*t*ttt**#ttt**#tttt*t
c
C PRINTS THE NUMBER OF LOGARITHMS SINCE THE LAST CALL
c

SUBROUTINE COUNT

COMMON /LOGCNT/ NCOUNT,NCNT1

NCDIFF = NCOUNT - NCNTi

WRITE (6,2) NCDIFF,NCOUNT

2 FORMAT (? ====--- NO. LOGS: SINCE LAST COUNT’,I7,’, TOTAL’,I8)

NCNT1 = NCOUNT

RETURN

END

37

7.2. RESIST (conformal modulus of a quadrilateral)

QGOGOOGGOQQOQOﬁOQO0QQOQQGOOQOOQOOOOQOQOOOOQQQOOOOOOOQQQOOQGQOGQ

FUNCTION RESIST(N,W,WC,IBRK,NDIG,ERREST, QWORK)

THIS FUNCTION RETURNS THE RESISTANCE (CONFORMAL MODULUS)

OF A POLYGONALLY SHAPED RESISTOR ("QUADRILATERAL") .

COMPUTATIONS ARE BASED ON THE SCHWARZ-CHRISTOFFEL TRANSFORMATION.
WE NORMALIZE BY ASSUMING THAT A SQUARE HAS RESISTANCE 1,

INPUT PARAMETERS:

N NUMBER OF VERTICES OF THE POLYGON. N MUST SATISFY
4 .LE. N .LE. 20.

L COMPLEX ARRAY OF DIMENSION AT LEAST N CONTAINING
THE POSITIONS OF THE VERTICES, VIEWED AS COMPLEX NUMBERS.
THE VERTICES MUST BE LISTED IN COUNTERCLOCKWISE ORDER
AROUND THE POLYGON. IT IS A GOOD IDEA TO KEEP THE
W(K) ROUGHLY ON THE SCALE OF UNITY.

WwC A POINT IN THE INTERIOR OF THE POLYGON. TRY TO
PICK WC AS CENTRAL AS POSSIBLE IN THE SENSE THAT
AS LITTLE OF THE POLYGON AS POSSIBLE IS SHIELDED
FROM IT BY REENTRANT EDGES.

IBRK ARRAY OF DIMENSION AT LEAST 4 CONTAINING INDICES OF
THE VERTICES WHICH DEFINE THE BREAKS
BETWEEN CONSTANT-VOLTAGE AND INSULATED PORTIONS
OF THE BOUNDARY. THE PROGRAM WILL ASSUME THAT
THE VOLTAGE IS APPLIED BETWEEN SIDE W(IBRK(1))-W(IBRK(2))
AND SIDE W(IBRK(3))-W(IBRK(4)), WITH THE OTHER TWO
SIDES INSULATED. THE BREAK VERTICES MUST BE NUMBERED
IN COUNTERCLOCKWISE ORDER; THUS THE INTEGERS IBRK(I)
MUST INCREASE WITH I, EXCEPT THAT THEY MAY WRAP
ONCE AROUND N.

NDIG INPUT INTEGER GIVING THE DESIRED NUMBER OF DIGITS
OF ACCURACY IN THE RESULT. NDIG MUST BE AT LEAST 2,
IT SHOULD BE NO GREATER THAN A COUPLE OF DIGITS LESS
THAN FULL-WORD PRECISION.

OUTPUT PARAMETER:

ERREST ROUGH BUT CONSERVATIVE ESTIMATE OF THE SIZE OF
THE ERROR IN THE VALUE RETURNED.

WORK SPACE PARAMETER:

QWORK REAL WORK ARRAY. DIMENSION AT LEAST (NDIG+1)*(2N+3),
BUT NO MORE THAN 460,

SOME ADVICE:

THE PROGRAM IS NOT INFALLIBLE. IF IT YIELDS STRANGE

MESSAGES ABOUT NOT CONVERGING, IT’S PROBABLY BEST TO

TRY A SIMPLER GEOMETRY. BECAUSE OF THE PROBLEM OF '"'CROWDING",
THE CALCULATION WILL PROBABLY FAIL FOR REGIONS WITH RESISTANCE
MUCH GREATER THAN 10,

THE AMOUNT OF TIME REQUIRED IS ROUGHLY PROPORTIONAL TO NDIG
AND ALSO ROUGHLY PROPORTIONAL TO N¥#3.

THUS PROBLEMS WITH MANY CORNERS CAN

TAKE QUITE A WHILE -- SEVERAL MINUTES OF CPU TIME ON

THE IBM 370-168 FOR A PROBLEM WITH N = 20.

38

C LLOYD K. TREFETHER
C DEPARTHEHT OF MATHEMATICS
C HMASSACHUSETTS INSTITUTE OF TECHNOLOGY
C NOVEMBER 1979, REVISED JULY 1983
C
IMPLICIT COMPLEX*16(C,W,Z), REAL#8(A-B,D-H,0-V,X-Y)
c MAP FROM DISK TO RESISTOR:
DIMENSION Z(20),W(1),IBRK(1),BETAM(20),QWORK(1)
C HMAP FROM DISK TO RECTANGLE WITH EQUAL RESISTANCE:
DIMENSION Z2(4),W2(4) ,BETAM2(4)
c
ZERO = (0.D0,0.D0)
PI = ACOS(-1.D0)
C
C COMPUTE ANGLES AND CHECK INPUT PARAMETERS:
CALL AKGLES(N,W,BETAM)
IF (NDIG.LT.2) WRITE (6,101)
IF (NDIG.LT.2) STOP
IF (N.LT.4) WRITE (6,102)
IF (N.LT.4) STOP
DO 1K=1,4
IF (IBRK(K).GT.N .OR. IBRK(K).LT.1) GOTO 2
1 COKTINUE
GOTO 3
2 WRITE (6,103)
STOP
3 CONTIKUE

C SET UP FIRST HMAP:
NPTSQ = KDIG
TOL = MAX(1.E-12, 10.DO%%(-NPTSQ-1))
CALL QINIT(N,BETAM,NPTSQ,QWORK)
CALL SCSOLV(-2,0,TOL,EEST,N,C,Z.HC,V,BETAH,NPTSQ,QUORK)

SET UP MAP TO RECTANGLE:
(QWORK IS OVERWRITTEN TO SAVE SPACE)
N2 = 4
C2 = (1.D0,0.D0)
DO 9K = 1,4
BETAM2(K) = ~.5D0
9 Z2(K) = Z(IBRK(K))
NPTSQ2 = NDIG + 1
CALL QINIT(N2,BETAM2,NPTSQ2,QWORK)
DO 12 K = 1,4
12 U2(K)=VSC(22(K),K,ZERO,ZERD,O,N2,C2,Z2,BETAH2,NPTSQ2,QVDRK)

aQ

(o]

COMPUTE LENGTH, WIDTH, RESISTANCE, AND ERROR ESTIMATE:
XLEN1 = ABS(W2(2)-W2(3))
XLEN2 = ABS(W2(4)-W2(1))
ERRL = MAX(ABS(XLEN1-XLEN2),2.DO%EEST) / XLEN1
XWID1 = ABS(W2(2)-W2(1))
XWID2 = ABS(W2(4)-W2(3))
ERRW = MAX(ABS(XWID1-XWID2),2.DO#EEST) / XWID1
RESIST = (XLEN1+XLEN2) / (XWID1+XWID2)
ERREST = RESIST # (ERRL + ERRW)

RETURN

101 FORMAT (’ #*x ERROR IN RESIST #%* NDIG SHOULD BE AT’
& LEAST 2.°/)

102 FORMAT (’ «x* ERROR IN RESIST #x* N MUST BE NO’,
& ’ GREATER THAN 20°/’ AND NO SMALLER THAN 4’)

103 FORMAT (’ #*x ERROR IN RESIST *** EACH IBRK(I) MUST’,
¢ ’ BE IN THE’,/,’ RANGE FROM 1 TO N)
END

39

- RECENTMIT NUMERICAI; };\NAL‘{SEIS R;EPO'RT?S .

encal Ana]ysxs, to appear ; .

. - 887 f;Lioyd N. Trefethen;
_ Mason and M G
4 ,a.ppea,r . ‘

“Approxxma,tlon theory and numenca.l hneat a.lgebra » In J C .
eds., Algonthms t’or Approx:mat:on II Chapman, 1989 to .

. 59 1Lloyd N Trefethen, “Schwarz Chr;stoﬁ'el ma,ppmg in the 1980 s No}; fo; pubﬁga,; . .
89-2 leoyd N Trefethen; “SCPACK User s Guxde 7 Not for pubhca.tlon

= 89—5 ;Lotha,r Relchel “Newten mterpolatlon in Leja pomts 2 BIT to appear

. : 89 4 ‘\ ;Ala.n Edelmaﬂ, f‘The dxstnbutlon and oments of the smallest exgenva.lue of a ra.n- ‘:
 dom matrix of Wlshart type . Submltted to SIAf “ Jouma.l on Saentzﬁc and Sta-
. ‘,t1stzca.l C’omputmg . . i ‘ .

- 8{9;5: ;Lothar Relchel “Fast QR decomposmon of Vandermonde-hke ma.tnces and polyno- . .
. . mial least squares apprommatlon > Subrmtted to SIAM Joumai on Matnx Analyszs
. gand Apphcatzons . ~ .

. 89-6 ‘Benjamm Charny, “Recurswe formulas for transformmg ODE’s to a polynomxal -
- form » Submltted to Nonlmear Analyszs, Theory, Metbods and Apphcat:ons

. 89-7 fAla.n Edelman, E1geuva1ues and C’ondmou Numbers of Random Matnces PhD f .
- dlssertatxon Dept of Mathematxcs MIT May 1989 .. -

. 898 :Sa,tlsh C Reddy and Lloyd N Trefethen, “La,x sta,bxhty of fully dxscrete spectral E; .

. terom eds Proc Intematxonal C’onference on .S'pectral and Hnger Order Methods, ‘ 1

. . 895:9; ’Gllbert Stra.ng, “Wavelets and dllatxon equatlons a bnef mtroductlon z SIAM .
. Rewew 31 (1989), 614—627 ‘ ~ . . |

:89 10 Asanobu Ya.masa.ki, “New precondltxoners based on low-rank ehmmatxon J Submlt- . .
ted to SIAM Joumal on Sc:entzﬁc and Statzstzca] Computmg .

: L _ "j 90 1 LOU!S H Howe]l Computatxon of Conformal Maps by Modlﬁed Schwa.rz-Cbnstoﬂ'eI\: 1

; ‘ .. Transformatxons, PhD dlsserta.tlon Dept of Mathema.tlcs, MIT Januaxy 1990 .

f ::For further mformatlon contact Prof L N. Trefethen Depaxtment of Mathematlcs M I T .
‘ Ca.mbndge, MA 02139 tEI (617) 253 4986, e- maal lnt@math mit. edu,

