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Abstract. A method is presented for the computation of Schwarz–Christoffel maps to polygons
with tens of thousands of vertices. Previously published algorithms have CPU time estimates of the
order O(N3) for the computation of a conformal map of a polygon with N vertices. This has been
reduced to O(N logN) by the use of the fast multipole method and Davis’s method for solving the
parameter problem. The method is illustrated by a number of examples, the largest of which has
N ≈ 2× 105.
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1. Introduction. Conformal mapping has been long recognized as a useful tool
in the solution of partial differential equations. Many numerical methods have been
developed for the construction of conformal maps between a canonical domain, e.g.,
the unit disk or the half-plane, and a physical domain, a more or less arbitrary simply
connected domain Ω. Some requirements are normally placed on the physical domain
to ensure the practicality of the method: some methods require ∂Ω to be smooth,
others require it to be piecewise smooth, etc. The method presented here assumes
that ∂Ω is a polygon; it is able to deal with a very large number of vertices, making
it applicable also in the cases mentioned above. For this special case a semiexplicit
formula has been known for many years, the Schwarz–Christoffel (SC) formula, named
after its independent discoverers E. B. Christoffel (1867) and H. A. Schwarz (1869).

Around 1980 the second author developed a robust computer package called
SCPACK, written in FORTRAN, for the computation of SC maps [35, 36]. The
SC toolbox for MATLAB by Driscoll is a descendent of SCPACK with wider capa-
bilities and is able to compute mappings to polygons with a hundred or so vertices
[8]. Detailed descriptions of algorithms implemented in these packages and of many
applications of SC mapping can be found in the recent book [9]. In both these im-
plementations the cost of evaluating the conformal map at a single point, once all
the unknowns in the SC formula have been computed, is O(N), where N is the num-
ber of vertices of the polygon, and the cost of computing these unknowns, using a
quasi-Newton iteration, is O(N3). In this paper these times have been reduced to
O(logN) and O(N logN), respectively (these figures represent typical behavior for
most polygons, not guaranteed behavior for all polygons). The improvements in the
time complexity are due to the use of the fast multipole method (FMM) developed
by Carrier, Greengard, and Rokhlin [4, 16, 34] and the use of a simple iteration for
finding the unknown parameters in the SC formula due to Davis [7]. At present our
algorithm is restricted to bounded polygons, although extensions to the unbounded
case could certainly be considered.
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FAST SCHWARZ–CHRISTOFFEL MAPPING 1043

This is not the first time that the FMM has been applied to numerical conformal
mapping. O’Donnell and Rokhlin [29] modified an algorithm [25, 37] for computing
conformal maps of smooth domains via the Szegö kernel. Each iteration of their
process requires that an N×N matrix, where N is the number of discretization points
of the boundary, be applied to a vector, which is normally an O(N2) procedure, but
by exploiting the FMM and the particular structure of the matrix they were able to
reduce this to O(N).

A generalized SC transformation was developed by Floryan and Zemach [13]. In
particular they consider conformal maps of infinite polygons with periodic boundary.
Their method also allows for curved segments of the boundary without the need to
approximate these segments with a large number of sides.

Another notable predecessor to our work is the celebrated computation of millions
of zeros of the Riemann zeta function near z = 1

2 + i1020 by Odlyzko, using an
algorithm of Schönhage [30, 31, 32], which formed the basis of a careful comparison
of the spacings of Riemann zeros with those of eigenvalues of random matrices. This
algorithm was not precisely a multipole algorithm, but it made use of similar ideas of
recursive expansion in the complex plane.

2. Fast multipole method for SC mapping. In this paper we consider only
conformal maps from the unit disk to the interior of a polygon; exterior maps can be
treated by similar methods. The SC formula for the interior map of the unit disk to
a polygon is

f(z) = A+ C

∫ z N∏
k=1

(ζ − zk)
αk−1dζ,(2.1)

where αkπ are the interior angles of the polygon, zk are the prevertices, and A and
C are constants. The lower integration limit is left unspecified since it affects only
the constant A. We want to be able to evaluate this function at M points in time
O(M logN + N). To do this we consider the logarithm of the integrand and use a
fast multipole-type method to achieve our goal. We will consider sums of the type

G(z) =
L∑

j=1

βkj
log(z − zkj

),(2.2)

where βkj
= αkj

− 1 and L ≤ N . In the FMM such sums are considered for clustered
groups of zkj so that, for z distant to the cluster, G(z) could be accurately evaluated
using compressed information about the prevertices. Hence the sums we consider
most often consist only of a subset of all the N prevertices.

First, we state and prove a theorem which allows us to apply the FMM to the
problem at hand. Once we have this result we can show how the FMM can be used
to evaluate (2.2) efficiently.

2.1. Expansion of the integrand and error bounds. In this section T de-
notes the unit circle |z| = 1 and D(z0, r) the closed disk centered at z0 of radius r.

Lemma 2.1. Let z1 ∈ T and z, z0 ∈ C be such that | z1−z0
z−z0

| < 1. Then

log(z − z1) = log(z − z0)−
∞∑
k=1

1

k

(
z1 − z0
z − z0

)k

.(2.3)
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1044 LEHEL BANJAI AND L. N. TREFETHEN
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Fig. 1. The set-up for Lemma 2.2.

Proof. Since log(z − z1) = log(z − z0) + log(1 − z1−z0
z−z0

), the lemma follows from
the expansion

log(1− w) = −
∞∑
k=1

wk

k
,

which is valid for |w| < 1.
Lemma 2.2. Let βi ∈ [−1, 1], i = 1, . . . , L, be such that for all j with 1 ≤

j ≤ L, |∑j
i=1 βi| ≤ C, where C is a constant. Let z1, z2, . . . , zL be points on T in

counterclockwise order such that arg(zL) − arg(z1) < π. Also let z0 = z1+zL
2 and

r = |z1−zL|
2 (see Figure 1). Then for any k ≥ 1,

∣∣∣∣∣
L∑

i=1

βi(zi − z0)
k

∣∣∣∣∣ ≤ (1 + kπ)Crk.(2.4)

Proof. Let νi = zi − z0. This implies |νi| ≤ r and arg(νL)− arg(ν1) < π. Rotate
the x- and y-axes so that all the νi’s are in the first two quadrants of D(0, r) (see
Figure 2). This will not change the size of the sum we are trying to estimate. Notice
that

L−1∑
j=1

|νj+1 − νj | ≤ rπ.(2.5)

Define sequences ω, b, and w by

ωi = νki , bi =

i∑
j=1

βj , wi = ωi − ωi−1,

for i = 1, . . . , L, with boundary cases b0 = w1 = 0.
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FAST SCHWARZ–CHRISTOFFEL MAPPING 1045

ν
1
 ν

L
 

0 

Fig. 2. Circle centered at (0, 0) with radius r. Points ωi are shown for k = 1.

Two facts to notice are that

||b||∞ ≤ C(2.6)

and

||w||1 =
L−1∑
j=1

|ωj+1 − ωj | =
L−1∑
j=1

|νkj+1 − νkj |

=

L−1∑
j=1

|νj+1 − νj |
∣∣∣∣∣

k∑
i=1

νk−i
j+1ν

i−1
j

∣∣∣∣∣ ,
and hence by (2.5) and the fact |νj | ≤ r,

||w||1 ≤ krk−1
L−1∑
j=1

|νj+1 − νj |

≤ krkπ.(2.7)

We now follow an argument of summation by parts. Since

biωi − bi−1ωi−1 = (bi − bi−1)ωi + (ωi − ωi−1)bi−1 = βiωi + bi−1wi,

we have

βiωi = biωi − bi−1ωi−1 − bi−1wi.

Adding up a series of such terms, we find that the cross-terms cancel and we are left
with

L∑
i=1

βiωi = bLωL −
L∑

i=1

bi−1wi.(2.8)

Using (2.6), (2.7), the above expression, and the fact |ωL| = rk, by Hölder’s inequality
we obtain the required bound∣∣∣∣∣

L∑
i=1

βi(zi − z0)
k

∣∣∣∣∣ ≤ ||b||∞(rk + ||w||1) ≤ (1 + kπ)Crk.(2.9)
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1046 LEHEL BANJAI AND L. N. TREFETHEN

The following is the main result. It shows how to construct the Laurent expansion,
plus a term involving a logarithm, of the logarithm of the SC integrand. Also it
provides an estimate of the error when this expansion is approximated by a truncated
expansion of p terms.

Theorem 2.3. Let zi, βi, r, i = 1, . . . , L, and z0 be as in Lemma 2.2. Then for
all z ∈ C such that |z − z0| > r, the function G(z) = log(

∏L
i=1(z − zi)

βi) can be
expressed as

G(z) = a0 log(z − z0) +

∞∑
k=1

ak
(z − z0)k

,(2.10)

where

a0 =

L∑
i=1

βi and ak = −
L∑

i=1

βi
(zi − z0)

k

k
.(2.11)

Furthermore, for any p ≥ 1,∣∣∣∣∣G(z)− a0 log(z − z0)−
p∑

k=1

ak
(z − z0)k

∣∣∣∣∣ ≤
(

A

c− 1

)
c−p,(2.12)

where

A = (1 + π)C and c =
|z − z0|

r
.(2.13)

Proof. The form of (2.10) is obtained from Lemma 2.1 and the fact that

G(z) =

L∑
i=1

βi log(z − zi).

To obtain the error bound (2.12) we proceed as follows:
∣∣∣∣∣G(z)− a0 log(z − z0)−

p∑
k=1

ak
(z − z0)k

∣∣∣∣∣ =
∣∣∣∣∣∣

∞∑
k=p+1

ak
(z − z0)k

∣∣∣∣∣∣

=

∣∣∣∣∣∣
∞∑

k=p+1

L∑
i=1

βi
k

(
zi − z0
z − z0

)k
∣∣∣∣∣∣

≤
∞∑

k=p+1

1

k|z − z0|k
∣∣∣∣∣

L∑
i=1

βi(zi − z0)
k

∣∣∣∣∣ .(2.14)

Then by Lemma 2.2 we conclude that∣∣∣∣∣∣
∞∑

k=p+1

ak
(z − z0)k

∣∣∣∣∣∣ ≤
∞∑

k=p+1

(1 + kπ)C

k

(
r

|z − z0|
)k

≤
∞∑

k=p+1

(1 + π)C

(
r

|z − z0|
)k

= A

∞∑
k=p+1

c−k

=

(
A

c− 1

)
c−p.
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FAST SCHWARZ–CHRISTOFFEL MAPPING 1047

Theorem 2.3 ensures that the FMM can be applied for efficient evaluation of SC
maps with a large number of prevertices. When implementing these results one needs
to be careful that the branch cuts of the logarithms involved point away from the unit
disk.

Note that Lemma 2.2 could be proved much more easily if we were satisfied with
the estimate

∣∣∣∣∣
L∑

i=1

βi(zi − z0)
k

∣∣∣∣∣ ≤
L∑

i=1

|βi|rk ≤ Lrk.

This error bound is fine if L is not much larger than p; see (2.14). For example,
if p = L + 1, the truncation error in Theorem 2.3 would be bounded by a simple
expression:

error ≤
∞∑

k=p+1

rk

|z − z0|k =

(
1

c− 1

)
c−p.

For L � p, however, results of Theorem 2.3 as written have to be used. Still, for some
polygons both methods give an error bound that depends on L. This happens when a
long sequence of parameters βi have the same sign. For example, this can happen for a
spiral polygon, or indeed for the Koch snowflake. These considerations are especially
necessary if in the future we intend to consider generalizations to polygons with an
infinite number of prevertices.

To see what advantage can be gained from expressing the effect of prevertices as a
truncated expansion, let us consider a simple example. Suppose we are in the situation
of Theorem 2.3 and we want to evaluate the integrand at M points y1, . . . , yM such
that |yi − z0| > r. To do this directly would take O(LM) operations, but to form
the multipole expansion and then evaluate it M times takes O(Lp+Mp) operations,
which is a big savings if M and L are much greater than p.

2.2. Modified FMM algorithm. In our algorithm the prevertices are all po-
sitioned on the unit disk, and the function is evaluated only inside the disk, so the
computational cell is the unit circle instead of a square as in the standard FMM
algorithm. We could ignore this fact and just place the unit disk inside a square
computational cell and use the adaptive version of the FMM. Still, using a nonstan-
dard shape of the computational cell and choosing an appropriate division result in a
simpler and faster code.

What we have done is developed an adaptive procedure for the subdivision of the
computational cell into cells of different shapes and into different levels of refinement.
At level 0 there is only one cell; at level 1 the computational cell is subdivided into
9 cells: b0, b1, . . . , b8, where b0 = {z : |z| ≤ 0.3742} and bk = {reiθ : 0.3742 < r ≤
1, 2π(k−1)/8 < θ ≤ 2πk/8} for k = 1, 2, . . . , 8; see Figure 4. The reason for choosing
this particular subdivision will be explained later. Going from level l to level l + 1,
only cells containing more than some fixed number s of prevertices are subdivided.
Hence the circular cell b0 never gets subdivided.

A general nonempty cell is bounded by two straight lines whose continuations
intersect at the origin and two circular arcs centered at the origin of which one is at
distance 1 from the origin. A cell like this is subdivided into four cells by a straight line
connecting the midpoints of the circular arcs and a circular arc centered at the origin
and connecting the midpoints of the straight sides (see Figure 3). For a complete
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1048 LEHEL BANJAI AND L. N. TREFETHEN

Fig. 3. Subdivision of a parent cell.

b
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1
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2
 b
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b
5
 

b
6
 

b
7
 

b
8
 

Fig. 4. Cells b0, . . . , b8 at level one.

Fig. 5. Complete adaptive mesh with s = 3.

adaptive mesh of the unit disk, see Figure 5. We say that two cells at the same level
of refinement are well separated if they are not adjacent. For a cell b we define the
center zb to be the point equally spaced from all the corners of the cell and the radius
rb to be the distance from the center to the corners.
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FAST SCHWARZ–CHRISTOFFEL MAPPING 1049

4

4

1

1

1

2

b

1

2

1 1 

3 3 

Fig. 6. A subset of the computational cell is shown. Each cell is labeled according to which list
associated with the cell b it belongs to.

2.2.1. Notation. Before stating the algorithm we introduce several definitions.
These definitions, with only a few changes, are taken from the work of Carrier, Green-
gard, and Rokhlin [4].

• For any subset A of the computational cell, T (A) denotes the set of prevertices
contained in A.

• A child cell is a cell resulting from a subdivision of a cell.
• A cell that has been subdivided is called a parent cell. Otherwise the cell is
said to be childless.

• Colleagues are adjacent cells at the same level.
With each cell b we associate four different lists of cells:
1. Ub contains b and all childless cells adjacent to b.
2. Vb contains all the children of b’s parents that are well separated from b (note

this can only happen at level 1) and the children of the colleagues of b’s
parents that are well separated from b.

3. Wb contains all the descendants of b’s colleagues whose parents are adjacent
to b but who are not adjacent to b themselves.

4. Xb contains all cells c such that b ∈ Wc.
For a visual description of these lists, see Figure 6.

Prevertex zk is said to be distant from a cell b if zk �∈ T (Ub) ∪ T (Wb). Also we
define four types of expansions associated with a cell b:

• Φb denotes the p-term multipole expansion due to T (b).
• Ψb denotes the p-term local (Taylor) expansion, valid inside the cell b, repre-
senting the effect of distant prevertices.

• Γb denotes the p-term local expansion due to all the prevertices in T (Vb).
• ∆b denotes the p-term local expansion due to all the prevertices in T (Xb).

2.2.2. Translation operators. To complete the mathematical apparatus needed
for the FMM we need to define three translation operators. We give only an informal
description here, together with error bounds. The details can be found in [15].

• T1 is a translation operator that shifts the center of a multipole expansion.
There is no loss of precision due to this operation. The error is the same as
that of the initial truncated expansion.

• T2 converts a multipole expansion Φb into a Taylor series valid in a cell b1
well separated from b. If p is the number of terms in the expansion, the error
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1050 LEHEL BANJAI AND L. N. TREFETHEN

behaves as

error < K
(p+ c)(c+ 1) + c2

c(c− 1)
c−p−1,(2.15)

where K is a constant independent of c and p. This bound is valid for p ≥
max{2, 2rb1c

rb1c−rb
}, where c = |zb−zb1 |−rb

rb1
.

• T3 shifts the center of a Taylor expansion within the region of analyticity. No
error is introduced by this translation operator.

2.2.3. Informal description of the algorithm. First of all, the closed unit
disk is recursively subdivided into a hierarchy of meshes. Each cell at level l that
contains more than s prevertices is subdivided into four child cells which are added to
the level l+1, and then the same procedure is applied to the level l+1. When there
are no more childless cells at a certain level L that contain more than s prevertices,
the recursion terminates.

In the next stage, for each nonempty childless cell b, a multipole expansion Φb

is constructed using Theorem 2.3. Starting from level L and going up to level 1,
for every parent cell B the multipole expansion ΦB is constructed. This is not done
directly using Theorem 2.3, which would have cost O(N), but by using the translation
operator T1 to shift the centers of the multipole expansions of its children to the center
of B and then merging these expansions to obtain ΦB , which has cost O(p2). At this
stage of the algorithm we can evaluate the integrand at a point z inside the unit disk
by including the effect of distant prevertices (i.e., prevertices outside T (Ub)∪ T (Wb))
by evaluating the appropriate multipole expansions and by including the effect of
nearby prevertices directly. Still, we want to do more. We want to have associated
with every childless cell a single local expansion that gives the effect of all the distant
particles on the cell. This is made possible by the second part of the algorithm.

By definition, each cell in Vb is well separated from b, so the translation operator
T2 can be applied to convert the multipole expansion of each cell in Vb into a local
expansion about the center of b and to merge them together to obtain Γb. We also
want to include the effect of prevertices in Xb, but since cells in Xb are not well
separated from b, we have to transform the effect of each single prevertex in T (Xb)
into a local expansion about the center of b and merge these expansions to obtain ∆b.
This is done for all cells b.

Finally, to obtain local expansions due to distant prevertices for each cell b at level
1, we define Ψb = Γb +∆b. Then, using the translation operator T3 for every parent
cell B at level l, starting from level 1 and going down to level L − 1, the expansion
ΨB is shifted to each child cell b and added to Γb and ∆b to obtain Ψb. With this the
algorithm is complete.

Let us see how the resulting expansions can be used to evaluate the integrand at
a point z inside the closed unit disk. First we find the childless cell b containing z.
The sum (2.2) can then be evaluated at z by evaluating the expansion Ψb at z, which
gives the effect of distant prevertices, and directly adding to the result the effect of
each prevertex in T (Ub) ∪ T (Wb).

2.2.4. Geometry of the computational cell. Since the error bounds in The-
orem 2.3 and the error bounds for translation operators T1 and T2 depend on the
geometry of cells involved, we need to consider the geometry more closely, especially
since the geometry of a cell changes depending on the level of refinement. Also, we
need to justify our choice of the first step of the refinement. We shall look at this first
step more generally.
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FAST SCHWARZ–CHRISTOFFEL MAPPING 1051

Table 1
Optimum value of parameter a giving largest c for a fixed k. Based on such data we made the

choice k = 8 for the initial subdivision.

k a c

2 0.9999 0.9099
3 0.9999 1.2925
4 0.9999 1.6110
5 0.9086 1.7577
6 0.8011 1.8228
7 0.7030 1.8497
8 0.6258 1.8694
9 0.5636 1.8844
10 0.5125 1.8962
11 0.4698 1.9056
12 0.4336 1.9134
13 0.4026 1.9200
14 0.3756 1.9255
15 0.3521 1.9302

In the first level of refinement we subdivide the unit disk into k + 1 child cells
b0, b1, . . . , bk, where b0 = {z : |z| ≤ 1−a} and bj = {reiθ : 1−a < r ≤ 1, 2π(j−1)/k <
θ ≤ 2πj/k} for j = 1, 2, . . . , k, where 0 < a < 1. Let us, for the moment, fix the
numbers k and a and consider how this choice affects the error bounds.

We wish to find a value c that can be used in both Theorem 2.3 and the error
estimate for the translation operator T2 (2.15). Since child cells differ in size and
shape and are not just scaled copies of their parents, the value of c will depend on
the level of the hierarchy. This value does not vary much with the level, however, so
we just take the minimum over all the levels to obtain a universally applicable lower
bound for the constant c.

The larger the value of c is, the better the asymptotic error bound is in Theo-
rem 2.3 and (2.15). Hence for a fixed k we now vary a to find the optimal value giving
the largest lower bound for c. Data obtained in such a way is displayed in Table 1.

This leaves us with the algorithmic question of what is the best choice of k, the
number of child cells along the circle into which the disk is subdivided at the first
step. We reason as follows. The only requirement on the constant c is that it be
greater than 1. Hence we can choose any k ≥ 3. The question is, which is the optimal
choice? Since we choose p so that p ∼ − logc(ε) and the running time is proportional
to p, it is natural to choose k so as to maximize c. By increasing k, a is decreasing;
i.e., the cell b0 is increasing in size, and cells bj , j = 1, . . . , k, are decreasing. The
latter means that there are fewer levels in the hierarchy, but the former has a bad
effect, since evaluation of the sum (2.2) at a point z ∈ b0 has cost of order O(k(s+p));
hence as we increase k, these evaluations become more costly and the subset of the
unit disk, in which this kind of an evaluation is necessary, grows. Hence we need to
find a compromise, and thus choose k appropriately. As stated earlier, we have chosen
k = 8.

2.2.5. Algorithm analysis. In [4] the FMM is used to evaluate the potential
due to N charges at the positions of these N charges, whereas in our application we
need to be able to evaluate the SC integrand at any point inside the unit disk. Still,
the same argument shows that the cost of constructing all the expansions is O(N).
The number of levels in the mesh hierarchy grows as O(log(N/s)). To evaluate the
integrand at a single point z, first the childless cell containing it needs to be found,
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1052 LEHEL BANJAI AND L. N. TREFETHEN

which takes O(log(N/s)) time, and then the expansions need to be evaluated at z
and the effect of nearby prevertices taken into account directly, which takes O(p+ s)
time. Hence the time to evaluate the function at a single point is O(logN).

3. Parameter problem. If the positions of the prevertices are known a priori,
then FMM is excellent for the application to conformal mapping since once all the
expansions are formed the map can be evaluated very quickly. If we want to solve
the parameter problem iteratively, then at every iteration a new refinement and new
expansions need to be formed.1 The cost of doing this is O(N) at each iteration. Since
we want to deal with systems where N is large, the nonlinear solver used to solve the
parameter problem should minimize the number of times the refinement needs to be
recreated and avoid costly operations in terms of N . In particular, inverting an N×N
matrix at each iteration would be unacceptable.

Driscoll and Trefethen [9, 35] formulate the problem as an unconstrained system
of nonlinear equations that can be solved by various standard optimization algorithms
such as quasi-Newton methods. As they carry this out, however, the work is O(N3).
If one pursued this approach, one would have to turn to large-scale iterations that
avoid dense linear algebra.

Another method has been suggested by Davis [7], an iterative method based on
geometrical assumptions on the problem. As is well known, if the prevertices are
chosen incorrectly, the resulting polygon will have the correct turning angles at the
vertices but incorrect side lengths. Davis suggests that in the case of the map from
the half-plane, the prevertices should simply be rescaled according to the scalings
indicated by the errors in the side lengths. He implements this idea for symmetric
polygons and reports very good results. Similar methods have been investigated by a
number of authors [6, 14], including some earlier than Davis (see [2]).

This method has the property that it does not require any expensive calculations
at each iteration; the work needed to find a new guess from the old one is O(N logN).
But it is not obvious whether this method converges in general and whether many
iterations are needed for high accuracy when it does converge. We have found that in
practice, Davis’s method is usually excellent, though not infallible. We illustrate the
capabilities of this method when applied to the problem of mapping the unit disk to
the inside of polygons approximating the Koch snowflake fractal.

3.1. Davis’s method and the Koch snowflake. First we define the polygons
approximating the fractal. Let P1 be an equilateral triangle. Construct polygon Pm+1

by dividing each side of Pm into three equal parts, adding a vertex where these parts
meet and adding another vertex in the exterior of Pm such that the three new vertices
form an equilateral triangle of side length a third of the original side (see Figure 7).

Fig. 7. Step performed on each edge of Pm to construct the Koch snowflake polygon Pm+1.

Both the fractal and the polygonal approximations, if centered at the origin and
rotated as in Figure 8, are symmetric in radial lines at angles that are integer multiples
of π/6. Hence, to find a map from the unit disk to the inside of the polygon, we need

1One might attempt some speed-ups here, but we have not done so.
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only to find the positions of prevertices with argument between 0 and π/6; the others
can be obtained by reflection. Suppose that there areM+1 prevertices with argument

in [0, π/6]. We set up an iteration involving the arguments of the prevertices θ
(n)
j ,

where we fix θ
(n)
0 = 0 and require θ

(n)
j ≤ θ

(n)
j+1 for all n ≥ 1. Let wi be the vertices of

the target polygon and let w
(n)
i be the corresponding vertices of the polygon obtained

as the image of the unit disk at the nth iteration. At each iteration, the constants A
and C in (2.1) are kept fixed (usually A = 0 and C = 1); at the end of the iteration
they can be adjusted to rotate, translate, and scale the image of the unit disk to
match the target polygon. Thus we set up the following Davis iteration:

θ
(n+1)
j+1 := θ

(n+1)
j + k

(
θ
(n)
j+1 − θ

(n)
j

) |wj+1 − wj |
|w(n)

j+1 − w
(n)
j |

, j = 0, . . . ,M − 1,(3.1)

where k is chosen so that θ
(n+1)
M = π/6. A more stable version of the algorithm is

obtained if the iteration is done on the differences of prevertices φ
(n)
j = θ

(n)
j+1 − θ

(n)
j

instead:

φ
(n+1)
j := kφ

(n)
j

|wj+1 − wj |
|w(n)

j+1 − w
(n)
j |

, j = 0, . . . ,M − 1.(3.2)

The method is easy to implement and gives good results. We have been able to solve
the parameter problem of size 16,384 to a satisfactory accuracy for the polygon P9

with 196,608 vertices in 2.3 hours on a Pentium III 800MHz processor; see Figures 8–
10. More detailed results of experiments can be seen in Table 2 and Figures 11–12. In
Figure 12 we can see that the time appears to be growing linearly with the number of
vertices. Similar results were obtained for all the symmetric polygons we have tried.
Some of these will be described in the next section.

We are not the first to carry out numerical computations on the Koch snowflake.
For example, Lapidus et al. calculated beautiful images of eigenmodes of Koch snowflake
drums via finite difference methods [26]; these results have been realized as mathe-
matical sculptures by the artist Helaman Ferguson [12].

3.2. Davis’s method for general polygons. In the previous example only
one solution of the parameter problem exists. When a polygon has no symmetry or
just a single symmetry, it is not obvious how best to force the map to be unique. One

possibility is to fix three prevertices, say θ
(n)
0 = θ0, θ

(n)
1 = θ1, and θ

(n)
N−1 = θN−1, and

set up iteration (3.2) for j = 1, . . . , N − 2, choosing k so that θ
(n+1)
N−1 =

∑N−2
j=0 φ

(n)
j is

equal to θN−1.
Suppose that the iteration converges to some values φ∗

j . Assuming that these
values are nonzero, we get

|w∗
j+1 − w∗

j | = k|wj+1 − wj |, j = 1, . . . , N − 2.

If this relation could be proved for cases j = 0 and j = N−1, with wN = w0, this
would mean that w∗

j are vertices of a polygon that is a scaled, rotated, and translated
copy of the target polygon. Choosing appropriate constants A and C, we see that
the solution of the parameter problem would also have been found. Indeed, these two
cases are implied by a more general result; see Lemma 3.1.

Unfortunately, in practice the above method performs poorly. The most reliable
method we have found is that of fixing three prevertices θi0 , θi1 , and θi2 and performing
three partial Davis iterations on the prevertices that lie between the three fixed ones. If
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1054 LEHEL BANJAI AND L. N. TREFETHEN

Fig. 8. Conformal map of the unit disk to the Koch snowflake polygon P9 with 196,608 vertices.
The curves are the images of 24 equally spaced radii in the unit disk and of concentric circles of
radii 0.2, 0.4, 0.6, 0.8, 0.9, 0.95, 0.99. The map is accurate to 5 or more digits everywhere.

−1 0 1

−1

−0.5

0

0.5

1

−1.8 −1.6 −1.4 −1.2 −1 −0.8

−0.4

−0.2

0

0.2

0.4

−1.6 −1.5 −1.4 −1.3

−0.1

−0.05

0

0.05

0.1

−1.54 −1.52 −1.5 −1.48 −1.46 −1.44

−0.04

−0.02

0

0.02

0.04

Fig. 9. Repetition of Figure 8 with map shown at increasingly finer scales. Each successive plot
is of the area indicated by the dashed box in the previous plot. The curves in the first plot are the
images of concentric circles of radii 0.4, 0.8, 0.95, and 0.995. In each of the three successive plots,
an image of one more concentric circle is added; the radii are 0.9995, 0.9999, and 0.99999.

the iteration converges to some φ∗
j and these are nonzero, then, assuming i0 = 0, we

have
|w∗

j+1 − w∗
j | = k0|wj+1 − wj |, j = 0, . . . , i1 − 1,

|w∗
j+1 − w∗

j | = k1|wj+1 − wj |, j = i1, . . . , i2 − 1,

|w∗
j+1 − w∗

j | = k2|wj+1 − wj |, j = i2, . . . , N − 1,
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Table 2
Results for Koch snowflake polygons. The columns represent the number of vertices, time spent

during 30 iterations constructing the adaptive mesh and the expansions, total time spent for 30
iterations, and maximum error of the map after 30 iterations.

N Mesh time(s) Time(s) Max error

192 2.2 7.2 2.6e− 07
768 11.8 28.5 3.1e− 07
3072 54.0 116.0 4.1e− 07
12288 224.0 486.5 6.1e− 07
49152 927.0 1982.3 8.6e− 07
196608 3844.2 8248.2 5.2e− 07

Fig. 10. Image of a shifted circle, centered at a point z0 with |z0| = 0.01 and radius 0.99, under
the conformal map of the unit disk to the Koch snowflake polygon P9.

where wN = w0 and w∗
N = w∗

0 . The following result shows that k0 = k1 = k2 and
hence that a solution of the parameter problem has been obtained.

Lemma 3.1. Let P ∈ C be a polygon with vertices v0, v1, . . . , vN−1, and let Q be a
polygon with vertices w0, w1, . . . , wN−1 such that the angles at corresponding vertices
vi and wi are the same. If for some k0, k1, k2 ∈ (0,∞) and some i1 and i2 such that
0 < i1 < i2 < N and v0, vi1 , and vi2 are not collinear,

|wj+1 − wj | = k0|vj+1 − vj |, j = 0, . . . , i1 − 1,

|wj+1 − wj | = k1|vj+1 − vj |, j = i1, . . . , i2 − 1,(3.3)

|wj+1 − wj | = k2|vj+1 − vj |, j = i2, . . . , N − 1,

then k0 = k1 = k2.
Proof. Because v0, vi1 , and vi2 are not collinear, these three points are the vertices

of a triangle. By the assumption of equal angles and the assumption (3.3), the three
points w0, wi1 , and wi2 form a triangle that is similar to the first one. The result now
amounts to the statement that if two triangles are similar, then their side lengths are
related by a fixed ratio.

In practice we would often choose i0 = 0, i1 = �N/3�, i2 = �2N/3�. In most
cases this choice would suffice, but in some cases different values have to be used to
guarantee convergence. We have not found a polygon for which some choice of i0, i1,
and i2 does not give convergence, unless heavy crowding occurs.
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Fig. 11. Convergence of Davis’s iteration for Koch snowflake polygons P5, P7, P9.
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Fig. 12. Time needed to compute 30 iterations for Koch snowflake polygons. Lines O(N logN)
and O(N) are drawn for comparison.

As an example we consider the problem of computing the conformal modulus
(resistance) of a circular L-shaped region; see Figure 13. This problem is equivalent
to the problem of determining the ideal flow past an infinite square array of cylinders,
and it was introduced by Rayleigh [33] and further studied by a number of authors
[3, 24, 28].

By approximating the circular section of the boundary with a large number of
polygonal sides, and then by mapping the region conformally to a rectangle, we can
find the conformal modulus, which is the ratio of the sizes of two consecutive sides of
the rectangle. This was done using the SC FMM and Davis’s algorithm to find the
prevertex arrangement for a map from the unit disk to the L-shaped region and then
using the SC toolbox to find the appropriate rectangle and hence the resistance.

The single symmetry of the polygon was not used. The above algorithm was used
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FAST SCHWARZ–CHRISTOFFEL MAPPING 1057

Fig. 13. Conformal map of a circular L-shaped region onto a rectangle. The circular arc is
approximated by a large number of straight line segments.

with the choices i0 = 0, i1 = 2, and i2 = 4, where the vertices are numbered in
counterclockwise order with the bottom left corner being the initial vertex. Vertices
w0, w1, w2, and w3 are mapped to the corners of the rectangle. For values of M
larger than 60 we were able to obtain a good initial guess from the previous solution;
with this guess Davis’s iteration converged rapidly. For the data obtained using this
method see Table 3 and Figure 14. This problem is also well suited for the application
of Symm’s integral equation [19]. This method has been implemented by Hough in his
Fortran package CONFPACK [20]. Using the double precision version of this package,
the number is 1.4889206978953, which is estimated to be correct in all but perhaps
the final digit [21]. This agrees to all 13 digits with a number computed years ago by
Moler by expanding in a series the solution of an equivalent Laplace problem [28]. Our
solution matches this solution to 9 digits. In 1964, Keller and Sachs computed this
number using finite differences for the same problem and obtained the figure 1.489
[24]. Bjørstad and Grosse solved this problem by means of their conformal mapping
program for circular polygons and obtained the figure 1.48892070 [3].

We do not recommend SC mappings with huge numbers of sides as a competitive
technique for regions like this with such simple curved boundaries; rather, its virtue
is its great flexibility in being applicable to more complicated regions.

Table 3
Convergence of the conformal modulus of the circular L-shaped region to 1.488920697895 . . . as

the number of discretization points increases.

M Discretization error Modulus
60 8.6e− 05 1.4888513003
120 2.1e− 05 1.4889033153
240 5.4e− 06 1.4889163472
480 1.3e− 06 1.4889196088
960 3.3e− 07 1.4889204025
1920 8.4e− 08 1.4889206296
3840 2.1e− 08 1.4889206802
7680 5.2e− 09 1.4889206929
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Fig. 14. Convergence of the conformal modulus of the circular L-shaped region as the number
of sides M approximating the circular boundary is increased.

4. Further examples.

4.1. Koch curves. Koch curves are fractals that can be defined recursively—
generalizations of the Koch snowflake; see [27]. The initial polygon, the initiator, is
often taken to be an equilateral triangle or a square. At each step of the recursion,
each side of the current polygon is replaced by a curve called the generator. We have
already used the equilateral triangle as the initiator for the Koch snowflake. Since
both these initiators have rotational symmetries, the fractals have the same rotational
symmetries. Also it can be easily shown that the prevertices of an SC conformal map
that sends 0 to the center of the rotational symmetry also have these symmetries.
This can be used to reduce the size of the parameter problem.

We have used Davis’s algorithm to find the map f such that f(0) = 0. All fractals
are centred at 0, and we fix one prevertex to make the map unique.

Fractal A. The initiator is the unit square, and the generator is the following:

� �

� �

�

� �

� � Hausdorff dimension =
3

2
.

A plot of the map and the convergence can be seen in Figures 15 and 16. The poly-
gon has 16,384 vertices, and the time needed for the parameter problem was 1.8 hours.
As can be seen in Figure 16 the convergence stops after reaching a relatively low ac-
curacy. The reason for this is that at that point of the solution, the closest two
prevertices are 6.7× 10−15 apart.

Fractal B. Again the initiator is the square, and the generator is

� �✔✔
�

❚❚� � Hausdorff dimension =
log 4

log 3
.

A plot of the map and the convergence can be seen in Figures 17 and 18. The polygon
has 4096 vertices, and the time needed for the parameter problem was 12.5 minutes.
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Fig. 15. Conformal map of the unit disk to the fractal A (see section 4.1). The curves
are the images of 16 equally spaced radii in the unit disk and of concentric circles of radii
0.2, 0.4, 0.6, 0.8, 0.9, 0.95, and 0.99.

0 5 10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

10
0

10
1

no. of iterations

er
ro

r

Fig. 16. Convergence for fractal A.

4.1.1. Regions with smooth sides. Let us first consider an example of a
region consisting of joined circular arcs (Figure 19). We use the symmetry of the
region, and Davis’s algorithm converges rapidly and cleanly. See Figure 19 for the
map and Figure 20 for a plot of the convergence. Such convergence is often seen when
only a few corners exist and the rest of the boundary is smooth. For the plots we
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Fig. 17. Conformal map of the unit disk to fractal B (see section 4.1). The curves
are the images of 16 equally spaced radii in the unit disk and of concentric circles of radii
0.2, 0.4, 0.6, 0.8, 0.9, 0.95, and 0.99.
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Fig. 18. Convergence for fractal B.

used 250 sides to approximate each smooth arc (discretization error 3.5× 10−6).
If we add six slits to the region the situation changes. The convergence is not as

fast as before and, due to crowding, it stops once some of the prevertices are too close
to each other. See Figure 21 for the map and Figure 22 for a plot of the convergence.
These results were obtained by approximating each smooth arc by 30 sides (more
sides result in too much crowding). At the last iteration the closest two prevertices
were 5× 10−10 apart.

Since we have noticed that smooth regions tend to behave well for Davis’s
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Fig. 19. A domain with piecewise smooth boundary has been approximated by a polygon with
250 sides approximating each curved subarc. The curves are the images of 16 equally spaced radii
in the unit disk and of concentric circles of radii 0.2, 0.4, 0.6, 0.8, 0.9, and 0.95.
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Fig. 20. Convergence for the piecewise smooth region in Figure 19.

algorithm, let us consider a completely smooth region, an inverted ellipse, with the
boundary slightly perturbed, then observe how the convergence behaves as these per-
turbations reduce to zero.

To obtain the vertices of the perturbed inverted ellipse polygon we evaluate the
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Fig. 21. Conformal map from the unit disk to the region from Figure 19 but with added slits.
The curves are the images of 16 equally spaced radii in the unit disk and of concentric circles of
radii 0.2, 0.4, 0.6, 0.8, 0.9, and 0.95.
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Fig. 22. Slower convergence due to the additional slits in the region.

following formula at points tk = 2π(k − 1)/N :

f(t) = (0.1 + hρ(t))
√
1− (1− q2) cos(t)2eit, t ∈ [0, 2π),(4.1)

where ρ is a function that returns a random number between 0 and 1, q determines
the shape of the smooth inverted ellipse, and h is the parameter that controls how
much the boundary is allowed to oscillate from the smooth shape. For an example of
both a perturbed polygon (h = 0.025) and a smooth one see Figure 23, and for the
convergence see Figure 24. In Table 4 we show the number of iterations needed to
obtain error < 10−5 for various values of s and with p = 0.2.
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Fig. 23. Conformal map from the unit disk to a polygonal approximation to a smooth inverted
ellipse and to a distorted inverted ellipse (see section 4.1). The curves are the images of 12 equally
spaced radii in the unit disk and of concentric circles of radii 0.2, 0.4, 0.6, 0.8, 0.9, and 0.95
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Fig. 24. Convergence curves for the same two regions. Note the different horizontal scales.

5. Conclusion and future work. A robust method has been presented for the
computation of SC maps of polygons with many vertices. Mapping polygons with
tens of thousands of vertices is now realistic. The method is also applicable to regions
whose boundary, or part of the boundary, is smooth. Still, for most smooth polygons
the use of other methods like Symm’s integral equation is preferable.

A number of improvements to the algorithm are possible. The cost of applying
a translation operator to a multipole or Taylor expansion is O(p2) in the current
implementation, but methods exist that can reduce this to O(p log p) [17, 1, 11].
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Table 4
The first column shows the degree of distortion of the inverted ellipse, and the second column

shows the number of iterations needed to obtain error < 10−5 for the distorted polygon.

h No. of iterations
0.025 43
0.020 40
0.015 28
0.010 23
0.005 22
0 20

Unfortunately these methods are unstable for large values of p, and since our applica-
tion requires high accuracy, this may prove to be a problem. A new representation of
potentials in two dimensions, in which most translation operators are diagonal, was
introduced by Hrycak and Rokhlin [22, 23] and later extended with great success to
three dimensions, where the improvement is most noticeable [18, 5]. This new method
does not suffer from stability problems. Reconstructing the mesh and expansions from
scratch at each iteration seems wasteful especially in the later stages of convergence.
Also, during the parameter solution the map need not be evaluated inside the unit
disk; all the integration can be done on the boundary so that in this case a simpler
fast multipole algorithm could be used. The results of these improvements will be
reported at a later stage.

An important problem that has not been addressed in this paper is that of crowd-
ing. This is an intrinsic problem of conformal mapping in general. This phenomenon
occurs when the domain has long, narrow channels; when considering polygons with
hundreds of thousands of vertices, these channels need not be too pronounced to force
two prevertices to be so close that many significant digits are lost when computing
the differences between their arguments. One solution to the problem of crowding
for SC mapping has been put forward by Driscoll and Vavasis [10]. Their “CRDT
algorithm” uses cross-ratios and Delaunay triangulation of the polygon, which is com-
puted in O(N2) steps. Thus this method would have to be modified before it could
be used for polygons with many vertices. Otherwise a new idea is needed to combat
crowding. Certainly this is an issue that needs to be addressed in the future.

Finally, we note that in principle it should be possible to extend our algorithm to
handle (in the sense of lazy evaluation) fractals with infinitely many sides.
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