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Abstract. The occurrence of equatorial spread F on the bottomside of the F layer is 
likely the result of a process often referred to as the collisional interchange instability 
or generalized Rayleigh-Taylor instability. The traditional approach to the analysis 
of this instability with sheared zonal flow has been to calculate the eigenvalues of 
the linearized system. It is well documented that the introduction of shear has 
a stabilizing effect on the eigenvalues and significantly increases the wavelength 
corresponding to the fastest growing eigenmode. In this paper it is argued that the 
well-accepted conclusions drawn from eigenvalue analyses are not correct for cases 
of geophysical interest. A calculation of the e pseudospectra demonstrates that 
the system is highly nonnormal and that large-amplitude transients may exist even 
when all of the eigenmodes are decaying with time. Transient effects are shown 
to be of fundamental importance to the evolution of the system over a wide range 
of horizontal wavelengths. This viewpoint is consistent with some aspects of VHF 
radar observations of F region gravitational interchange dynamics and may explain 
the presence of irregularities which appear to be confined to the bottomside of the F 
layer. The techniques discussed are of general interest to the analysis of nonnormal 
linear systems. 

1. Introduction 

In the post sunset hours the equatorial ionosphere 
is an unstable configuration. Gravity together with 
an eastward ambient electric field in the presence of 
the density gradient on the bottomside of the F layer 
combine to drive a process known as the generalized 
Rayleigh-Taylor instability or sometimes the collisional 
interchange instability. An analogous process exists in 
the electrojet and barium releases where it is referred 
to as the gradient drift instability. 

It is often the case that instabilities are present in the 
bottomside of the equatorial F region for long periods 
of time without erupting into the dramatic plume-type 
structures that have been the focus of a great majority 
of the spread F research [Woodman and La Hoz, 1976]. 
There is no published model for spread F which predicts 
that irregularities develop and then are confined to the 
bottomside of the layer. It is well known that there is 
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significant shear in the horizontal flow on the bottom- 
side of the F region and that this shear is stabilizing. 
The question which motivates the work presented here 
is the following: Can the presence of a shear in the flow 
explain the long-lived irregularities which are observed 
on the bottomside of the F layer after sunset? 

Measurements made at the Jicamarca Radio Obser- 

vatory, located outside Lima, Peru, have provided evi- 
dence of significant shear in equatorial F region irregu- 
larities on the bottomside of the F region [Kudeki et al., 
1981; Kelley et al., 1986, D. L. Hysell, private commu- 
nication, 1997]. Shear has also been identified in radar 
images made with the ALTAIR (air launch ballistic tar- 
gets demostration) radar [Tsunoda et al., 1981]. While 
mathematical models for the instability without shear 
have been studied extensively [Kelley, 1989], less has 
been done on the problem when shear is included. Most 
of the work on the gravitational interchange instability 
with shear has focused on calculating the eigenvalues 
of the linearized system. Eigenvalue analyses may con- 
clude that all of the eigenmodes of the system are de- 
caying with time. This fact does not preclude the possi- 
bility of large-amplitude transient growth if the system 
is far from normal (i.e., the eigenvectors are far from 
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orthogonal). We show that this system is highly non- 
normal and that the least stable eigenvalue does not 
characterize the development of the instability the way 
it would for a normal system. Consequently, conclu- 
sions about the development of this instability based 
on eigenvalue analysis are significantly in error for a 
wide range of horizontal wavenumbers. 

The effect of the shear flow on this instability was 
first discussed in the context of studying the evolution 
of striations in barium releases by Perkins and Doles, 
[1975]. These authors showed that the shear has a sta- 
bilizing effect on the eigenvalues of the system. Huba 
et al. [1983], Guzdar et al. [1982], and $atyanarayana 
et al. [1984] confirmed these results and calculated the 
eigenvalues for a wide range of conditions. Fu et al. 
[1986] approached the system of equations as an initial 
value problem. 

They found by numerically integrating the linearized 
system that transients developed in a manner that was 
not predicted by an eigenvalue analysis and that tran- 
sient growth could exist at wavenumbers at which none 
of the eigenmodes are growing. Their work focused on 
the regime where the horizontal wavelength is much 
shorter than the gradient length scale. Additional work 
of interest on ionospheric interchange instability which 
included shear was performed by Huang and Kelley, 
[1996] and Ronchi [1990]. 

In this paper we consider a linearized model for the 
development of equatorial spread F with sheared hor- 
izontal flow. We show that for this system, the tran- 
sient response is not limited to horizontal wavelengths 
which are much less than the gradient scale length. We 
quantify the transient response with the use of analyt- 
ical techniques which have not been previously applied 
to this problem. The results are compared with the 
long-time asymptotic behavior of the system, which is 
equivalent to an eigenvalue analysis. We present a qual- 
itative discussion of the process of stretching and diffu- 
sion which is the mechanism by which shear reduces the 
growth of the instability. We also argue that the quali- 
tative behavior described by the numerical calculations 
is consistent with features of the VHF radar observa- 

tions that have not been explained previously. 
In section 2 the model is derived and the choices for 

the shear and density profiles are discussed. In sec- 
tion 3 the results of numerically integrating the system 
are presented. These results demonstrate that large- 
amplitude transient growth is the typical response of 
the system for random initial conditions. This section 
shows how the transient response dominates the dynam- 
ics of the system over a wide range of wavenumbers. 

In section 4 the concept of the e pseudospectrum of 
the matrix representation of the system is used to pro- 
vide insight into the behavior of the system. By cal- 
culating e pseudospectra, we show that the system is 
highly non normal (i.e., the eigenfunctions are highly 
nonorthogonal). The concept of pseudoresonance and 
the relation between the large-amplitude transient growth 

and the nonorthogonality of the eigenfunctions is dis- 
cussed. The discussion reconciles how the system can 
grow at a rate faster than any of the normal modes. 
Further interpretation of results and properties of pseu- 
dospectra is given with references which discuss these 
ideas in detail. 

In section 5 we quantify the transient response of the 
system by calculating the maximum possible growth. 
First, the maximum possible initial growth rate is cal- 
culated as a function of wavenumber and contrasted 

with the eigenvalues of the system. Then, the max- 
imum possible transient amplification is calculated at 
several times of interest. This calculation shows that 

the wavelength at which the transient response is the 
largest increases as a function of time. 

In section 6 we present a qualitative, physically moti- 
vated description of how shear acts to reduce the growth 
rate of the instability. Although the observations pre- 
sented in this section are similar to those first presented 
by Fu et al. [1986] and later in Ronchi [1990], this sec- 
tion is included because it is of fundamental importance 
to having a physical understanding of the problem and 
because it illustrates how the shear stabilizes the sys- 
tem in a way that has not been presented previously. 
We conclude by arguing that many features of the nu- 
merical modeling are qualitatively consistent with the 
behavior of bottomside spread F seen in VHF radar 
measurements. 

2. Model 

We first derive the system of equations and then dis- 
cuss the density and shear profiles as well as choices 
for the parameters of the model. This is followed by a 
brief discussion of considerations in the numerical cal- 
culations. 

The coordinate system is defined with •) in the di- 
rection of the magnetic field, 2 is vertically upward (in 
the direction of the density gradient), and • is eastward 
(which will be referred to as the horizontal or zonal di- 
rection). The model is two-dimensional and represents 
the dynamics of the system in the plane perpendicular 
to the magnetic field. The derivation of the model is 
essentially the same in all previously cited work. The 
system is a set of two coupled partial differential equa- 
tions. The first describes the time evolution of the den- 

sity perturbations, and the second relates the pertur- 
bation electric field to the density. Quasi-neutrality is 
assumed so that V. J - 0 is satisfied. The evolution 

of the density perturbations is determined by the elec- 
tron continuity equation. The electric field is related 
to the density perturbations by V-J - 0. If the shear 
is zero, the equations used here are identical to those 
presented by Zargham and $eyler [1987]. The source of 
the shear in the flow is the vertical component of the 
ambient electric field Ez(z). 

With the addition of this term, (11) and (12) of 
Zargham and $eyler then become 
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0-T + • X [vO - •z(•)]- v•v - (•) 

v. [•v(vO- •z(•))] - e•0. v•v (e) 

where N is the plasma density, 05 is the potential as- 
sociated with the perturbation electric field, Da is the 
ambipolar diffusion coefficient, and E0 represents the 
combined effect of the zonal component of the ambient 
electric field and gravity. The electric field has been 
divided by the magnitude of the magnetic field B0 so 
that it has units of velocity. Equation (1) shows that the 
evolution of the density perturbations can be described 
by two components: an advective derivative resulting 
from the E x B motion of the plasma and ambipolar 
diffusion. The total density N can be written as 

where no(z) is the background density which varies only 
in the vertical coordinate and n is the perturbation den- 
sity which varies in both the horizontal and vertical di- 
rections. Substituting this expression for N into the 
above equations and linearizing by neglecting products 
of perturbation quantities and neglecting the diffusion 
of the background profile no(Z) (which is small), we get 

On On , O• 
O---• = Ez(z)•xx + nø(Z)•zz + O•V'2n (4) 

•(•) oo • V•4,+ = 
no Oz no(z) o [,•z(•)] + •o o,• } • • (5) 

The background density profile was modeled as a sin- 
gle Chapman layer on a pedestal whose height is approx- 
imately 1% of the peak density. The Chapman layer is 
derived by considering the balance between the produc- 
tion of ionization from solar radiation and the recom- 

bination with the neutral atmosphere Budden, [1988]. 
Strictly speaking, this model does not apply to the post 
sunset equatorial ionosphere. However, we believe that 
this profile is sufficiently representative for our pur- 
poses of theoretically investigating the effect of shear 
on the dynamics of the interchange instability. A plot 
of the density profile is shown in Figure la. Figure lb 
shows the corresponding shear profile. As was described 
above, the shape of the shear profile is specified by the 
background density, and its amplitude is in general ar- 
bitrary. The magnitude of the shear shown here is con- 
si' tent with experimental data [Kudeki et al., 1981] and 
corresponds to a total change in the horizontal velocity 
of approximately 100 ms -1 across the bottomside of the 
F layer. Figure lc is a plot of Vn0/n0. 

After sunset in the equatorial ionosphere, the ambi- 
ent zonal field is eastward. For a period of variable 
duration, but typically about two hours, the eastward 
zonal field increases prior to reversing direction, a phe- 
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where • denotes differentiation with respect to z. 
The variation of the vertical electric field as a function 

of altitude satisfies the relation V. [•no(z)Ez(z)] - 0 
[Perkins and Doles, 1975]. This is equivalent to the 
statement that the product no(z)Ez(z) is a constant. If 
this were not true, the zero-order terms no(z) and Ez(z) 
would not satisfy V-J - 0. This requirement specifies 
the shape of the shear profile but does not specify its 
magnitude. After Fourier transforming in the • direc- 
tion the system can be rewritten as 

(o2 ) = i•,• [,%(•),/, + Sz(•),•] + o. • - • ,• (6) 

[(o2 b--• - •) + •(z) o ] no Oz •- 

[ • i•.,•o + ,•'z(•)+ •z(•)• (7) no 

where kx is the horizontal wavenumber. 
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Figure 1. Plot of (a) the density, (b) the shear, and 
(c) the gradient scale length as a function of altitude. 
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nomenon known as the pre-reversal enhancement [Kel- 
ley, 1989]. So that we might better concentrate on the 
fundamental properties of the model, we have used a 
constant value of the ambient zonal field. The magni- 
tude of the ambient field corresponds to a vertical E x B 
drift velocity of 15 ms -•. 

All of the numerical c.alculations discussed in this pa- 
per are based on a matrix representation of this system 
of the form fi - An, where n is an m element vec- 
tor and A is an m x m matrix. The vector n contains 

m equally spaced samples of the perturbation density. 
This system was solved using standard numerical inte- 
gration techniques. 

The matrix representation of the system can be de- 
rived by writing (6) and (7) in the form 

+ (S) 

Bqb- Qn (9) 

where B, Q, G and C are linear operators. Solving for 
;b in (9) by inverting B and substituting into (8), the 
system becomes 

fi- An (10) 

Each of these infinite-dimensional operators is approxi- 
mated by a finite dimensional matrix under the assump- 
tion that the boundary conditions are periodic. Tech- 
niques for discretizing such operators are described by 
Fornberg [1996]. Discretizing each operator and form- 
ing the product A = GB-•Q + C, where G,B -•, Q, 
and C are m x m matrices, produces the desired matrix 
representation for the system. 

3. Integrating the System of Equations 

The system of equations ;vas solved as an initial value 
problem using random low k perturbations as the initial 
conditions. In Figures 2 and 3 the magnitude of the 
density perturbations as a function of time is shown for 
three horizontal wavelengths (8, 16, and 24 km). In 
Figures 2a, 2b and 2c there is no shear. In Figures 2d, 
2e and 2f there is mild shear. In Figures 3a, 3b and 3c 
the magnitude of the shear is consistent with published 
observations at Jicamarca by Kudeki et al., [1981]. In 
Figures 3d, 3e and 3f the shear is increased from this 
value by 50% which we refer to as strong shear. In the 
long time limit the growth rate of the system is equal 
to the real part of the least stable eigenvalue. A dotted 
line whose slope is equal to the growth rate of the least 
stable eigenvalue is overlayed on each plot. 

We can see from Figures 2a, 2b and 2c that when the 
shear is zero, the system is asymptotically unstable at 
horizontal wavelengths of 8, 16, and 32 km. In addition, 
when there is no shear the growth rate of the least stable 
eigenvalue characterizes the behavior of the system very 
well. With the possible exception of a very brief initial 
transient period the system grows at this rate. 

When sufficient shear is introduced (see Figures 3a, 
3b and 3c), the system is asymptotically stable at 8 
and 16 km; however, the growth rate of the least stable 
eigenmode does not .provide a good description of the 
system over the times of interest. With shear it is pos- 
sible for the system to grow initially much faster than 
it does at later times. 

It is also possible for the system to be asymptotically 
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Figure 2. Results of numerically integrating the linearized system for (a) an 8 km wavelength 
without shear, (b) a 16 km wavelength withoul; shear, (c) a 32 km wavelength without shear, 
(d) an 8 km wavelength with mild shear, (e) a 1.6 km wavelength with mild shear, and (f) a 32 
km wavelength with mild shear. Growth is defined as (f ]n]2dz)«/(f ]n(t- O)12dz)«. Each plot 
displays 25 trajectories. The slope of the dotted line corresponds to the growth rate of the least 
stable eigenvalue. 
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Figure 3. Results of numerically integrating the linearized system for (a) an 8 km wavelength 
with a typical shear , (b) a 16 km wavelength with a typical shear, (c) a 32 km wavelength 
with a typical shear, (d) an 8 km wavelength with a strong shear, (e) a 16 km wavelength 
with a strong shear and (f) a 32 km wavelength with a strong shear. Growth is defined as 
(f n12dz)«/(f In(t- 0)12dz)«. Each plot displ'ays 25 trajectories. The slope of the dotted line 
corresponds to the growth rate of the least stable eigenvalue. 

stable and still exhibit significant growth. If the system 
is asymptotically stable, this implies that the real parts 
of the eigenvalues of the linear system are all less than 
zero: that is, all of the normal modes decay monoton- 
ically with time. This result appears to present a con- 
tradiction: if all of the normal modes are decaying with 
time, how can the large amplitude transient growth that 
is exhibited here be produced? Figure 3b, for example, 
shows some trajectories exhibiting as much as eight e- 
foldings (a factor of approximately 3000) of transient 
growth prior to the growth rate becoming negative and 
the system beginning to decay. 

When the shear is mild, the growth rate at the longest 
wavelength shown, 32 km (Figure 2f, is close to the 
growth rate of the least stable eigenmode. Note that 
compared to the no-shear case (Figure 2c) the shear 
has reduced the growth rate by approximately a fac- 
tor of 2. As the shear is increased (Figures 3c and 3f, 
the growth rate for the 32 km horizontal wavelength 
is further reduced and the transient response becomes 
prominent. 

At the shortest wavelength, 8 km, even mild shear 
(Figure 2d) significantly changes the behavioi. of the 
system. As the shear is further increased (Figures 3a 
and 3d), the transient response becomes less significant: 
the magnitude of the transient amplification is reduced 
and the duration of the transient phase is decreased. 

The 16 km horizontal wavelength is an intermediate 
case. A modest amount of shear (Figure 3b) creates 
a noticeable transient effect. As the shear is increased 

(Figure 3e) the transient response becomes more signif- 
icant as in the long-wavelength case. 

The transient effects are most significant when the 
normal modes of the system are neither rapidly growing 
nor strongly attenuated. When the normal modes of the 
system can grow rapidly, for example as in Figure 2f, the 
growth rate of the system approaches the growth rate 
of the least stable eigenmode quickly, and the transient 
effects are not significant. When the shear is sufficiently 
strong that all of the normal modes of the system are 
strongly damped, efor example as in Figure 3d, again 
the transients are not as significant. It is when the 
system is neither rapidly growing nor rapidly decaying 
that the nonnormality of the system and the associated 
transient amplification are most important. 

These results clearly show that the behavior of the 
system is more complicated than simple exponential 
growth or decay at the rate of the least stable eigen- 
value. To characterize the response of this system, more 
information is necessary. in section 4 we begin our anal- 
ysis by considering the pseudospectra of the matrix A. 

4. e Pseudospectra 

4.1. Definition and Discussion 

The results of section 3 demonstrate that the behav- 

ior of the system can be more complicated than sim- 
ple exponential growth or decay. Consequently, the be- 
havior of the system cannot be explained in terms of 
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the growth or decay of a single normal mode. For sys- 
tems in which the eigenvectors are nonorthogonal, the 
concept of the e pseudospectrum (pseudospectra) of a 
matrix can be more meaningful than the eigenvalues. 
Pseudospectra were developed partially in connection 
with the study of hydrodynamic stability of fluid flows 
in pipes and channels. In the sections that follow, we 
will present computations of the pseudospectra of the 
matrix A described above. The development of pseu- 
dospectra and many of its properties are discussed by 
Trefethen [1992], Trefethen et al. [1993], and in Tre- 
fethen [1997], In this section we present a brief descrip- 
tion of pseudospectra and state some key results that 
will be used in interpreting the computed results. 

In problems involving shear flow in pipes and chan- 
nels, a discrepancy existed for over 100 years between 
theoretical predictions of the onset of turbulence and 
experimental observations. Since the mid-70s it had 
been recognized that transient effects had a role in the 
dynamics of the system [LandaM, 1975; Ellingsen and 
Palm, 1975; Benney and Gustavsson, 1981; Gustavs- 
son, 1986]. At about the same time, Boberg and Brosa 
[1988], Gustavsson [1991], Butler and Farrell [1992], and 
Hennigson et al., [1993], made the startling discovery 
that the system was highly nonnormal and that because 
of this, extremely large transient growth was possible. 
These authors showed that small perturbations in the 
flow could be amplified by several orders of magnitude 
even when all of the normal modes of the system are 
decaying. The analysis of this problem was further re- 
fined by Reddy and Hennigson [1993] and Trefethen et 
al. [1993]. Trefethen et al. [1993] reconciled the exis- 
tence of the targe amplitude transients with traditional 
eigenanalysis by calculating the pseudospectra of the 
linearized system. 

Pseudospectra quantify the amount of nonorthogo- 
nality of the eigenfunctions and can also be used to 
calculate bounds on the transient response of the sys- 
tem. Contour plots of the pseudospectra provide a con- 
cise graphical representation of the nature of a nonnor- 
mal linear system and clearly illustrate whether large- 
amplitude transients growth is possible. Pseudospectra 
are not the only possible way to explain the develop- 
ment of the transients in this type of system. Butler 
and Farrell [1992], for example, discuss the transient 
response in terms of the growth of optimal perturba- 
tions. 

We first discretize the operator and then calculate the 
pseudospectra of its matrix representation. In a manner 
similar to the approach used in Reddy et al. [1993] and 
in Reddy and Trefethen [1994]. The e pseudospectrum 
of the matrix A is defined as 

A•(A)- {z e C' II(zI-A)-lll >_ e -• ) (11) 

where II II indicates the matrix norm, which is defined 
to be the maximum of IIAvll over all vectors v such that 
llvll - i, and I is the identity matrix. All of the calcu- 

lations presented here will be made using the standard 
Euclidean norm. When z is equal to an eigenvalue, the 
quantity II(zI- A)-lll is infinite. This corresponds to 
the e-0 contour. 

An equivalent statement to (11) is that for each point 
z e A•(A), there exists a vector u with lul - 1 such that 
I](zI-A)ull _< e. This shows that the e-pseudospectrum 
can be thought of as the set of points z in the complex 
plane that are in this sense e-close to an eigenvalue. 
As is discussed in appendix A, for a normal system, a 
point in the epseudospectrum must lie within a circle 
of radius e in the complex plane from an eigenvalue. 
Only for a nonnormal system can an e-pseudospectral 
contour extend farther. 

Another definition of pseudospectra that is equiva- 
lent to (11) is that the e-pseudospectrum is the set of 
eigenvalues of some perturbed system A + E, where IIEll 
_< e. Pseudospectral contours which extend far from the 
eigenvalues of the system indicate that the eigenvalues 
of the system are highly sensitive to small perturba- 
tions. 

It is useful to consider the response of the forced sys- 
tem [Trefethen et al., 1993] 

i- Ax + eZtf (12) 

The solution of this equation is x - z(I- A)-lfe zt. 
The magnitude of (zI- A) -1 quantifies how strongly 
the system can respond at the complex frequency z. In 
the case of a normal matrix the system resonates only 
at values of z close to the eigenvalues. When the matrix 
is nonnormal, the region of z for which the system re- 
sponse is large can extend much further from the eigen- 
values. The phenomena is referred to by Trefethen et 
al. [1993] as pseudoresonance. We are considering the 
response of the unforced system. The transient growth 
that we observe can be thought of as the growth that 
results from the excitation of these pseudoresonances. 

When the e-pseudospectral contours for small val- 
ues of e extend significantly into the unstable right half 
plane, transient growth will be possible for some initial 
conditions. A lower bound on the transient growth is 
given by 

1 
max IIA*11 > (13) 

for any e _> 0, where c• is the e-pseudospectral abscissa, 
defined as the maximum real part of the set A• (A) [Tre- 
lethen et al., 1993]. We can immediately see how close 
the system is to normal by calculating boundaries of the 
e pseudspectra. In the event that significant transient 
growth is possible, we can calculate a lower bound on 
the growth. This expression will be used in a specific 
example in the section 4.2. 

Another way to see what is happening is to consider 
the projection of a small initial perturbation onto the 
set of eigenvectors. For most of the parameter choices 
we are considering, the eigenva!ues are distinct and the 
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FLAHERTY ET AL.: GROWTH IN THE LINEAR EVOLUTION OF EQUATORIAL SPREAD F 6849 

set of eigenvectors forms a complete basis. The initial 
amplitude of each normal mode is given by the vec- 
tor b satisfying the relation Xb = y, where y is a 
vector containing equally spaced samples of the initial 
conditions, and X is a matrix whose columns contain 
the eigenvectors of A. The initial amplitude of each 
eigenmode is found by evaluating b - X-•y. Tak- 
ing the magnitude of both sides of this expression, we 
get the relation IIbll _< IIx-•llllyll. Now consider the 
case where the initial conditions are small; if ]]X-•]] 
is very large, this implies that the coefficients of the 
eigenmodes can be very large. Since the initial con- 
ditions are small, these modes must very nearly cancel 
each other. As the system evolves, there is no guarantee 
that these large-amplitude modes will continue to can- 
cel each other. Each of the normal modes of the system 
either grows or decays at the exponential rate given by 
the eigenvalue corresponding to that mode. The non- 
modal growth is the result of the set of eigenfunctions no 
longer effectively canceling each other as the individual 
modes grow or decay at different rates. The response 
of the system is no longer dominated by a single eigen- 
mode but is formed from the superposition of multiple 
eigenmodes and will in general change as a function of 
time. A further discussion of pseudospectra and their 
relation to the nonorthogonality of the eigenfunctions 
is given in the appendix. The reader should refer to the 
references in the appendix for a detailed discussion on 
pseudospectra. 

4.2. Numerical Results and Interpretation 

The pseudospectra of the matrix A in the vicinity 
of the least stable eigenvalues are plotted in Figures 4 

and 5. Figures 4 and 5 are organized in manner similar 
to Figures 2 and 3. In Figures 4a, 4b and 4c, there is 
no shear. In Figures 4d, 4e and 4f there is mild shear. 
In Figures 5a, 5b and 5c the magnitude of the shear is 
consistent with measured values reported by Kudeki et 
al. [1981], and Figures 5d, 5e and 5f have a shear which 
is 50% larger than that. Note that the axes of the plots 
are not the same when there is shear and when there is 

no shear. For these calculations, time has been scaled 
so that one time unit corresponds to 300 s. The units 
of frequency shown here correspond to 1/300 s -•. The 
eigenvalues are denoted by the symbol +. 

When the shear is zero and the system is close to 
normal, the contours of the e-pseudospectra are close 
to a distance e from the eigenvalues. Figures 4a, 4b and 
4c display the least stable eigenvalues and the contour 
of the e - .01 pseudospectrum for 8 km, 16 km and 32 
km wavelengths. 

On the basis of pseudospectra we can conclude that 
large-amplitude transient growth cannot occur. These 
results suggest that the product IlXllllX-11 is close to 
unity. 

For sufficient shear the e-pseudospectral contours are 
no longer close to a distance e from the eigenvalues. 
Figure 4(d) shows the pseudospectra in the vicinity of 
the least stable eigenvalues for an 8 km horizontal wave- 
length with a mild shear. Even a perturbation with a 
magnitude as small as 10 -s can move the eigenvalues 
a significant amount. Given that the eigenvalues are so 
highly sensitive to small perturbations in the system, 
it is doubtful that attempts to calculate their precise 
values will produce physically meaningful results. All 
of the eigenvalues of the system are in the stable, left 
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Figure 4. Pseudospectra of the matrix A for (a) an 8 km wavelength without shear, (b) a 16 
km wavelength without shear, (c) a 32 km wavelength without shear, (d) an 8 km wavelength 
with a mild shear, (e) a 16 km wavelength with a mild shear, and (f) a 32 km wavelength with 
a mild shear. In Figures 4a- 4c a single contour for a value of e - 0.01 is shown. In Figures 4d - 

6 4 2 4f the contours are e = 10 -s, 10- , 10- and 10- . 
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Figure 5. Pseudospectral contours of the matrix A for (a) an 8 km wavelength with shear, (b) 
a 16 km wavelength with shear, (c) a 32 km wavelength with shear, (d) an 8 km wavelength with 
a strong shear, (e) a 16 km wavelength with a strong shear, and (f) a 32 km wavelength with a 
strong shear. Contours are drawn for e = 10 -s, 10 -6, 10 -4 and l0 -2. 

half plane. However, a perturbation to the matrix A 
of magnitude 10 -6 can move the eigenvalues into the 
unstable right half plane. The maximum real part of 
the e = 10 -6 pseudospectral contour is approximately 
0.02. From the expression given in (13), this gives a 
lower bound on the maximum possible transient ampli- 
fication of a factor of 20,000. This is within a factor 
of 20 of the maximum transient response seen in Fig- 
ure 2d, which resulted from integrating 25 trajectories 
using random initial conditions. 

As the shear is increased to the nominal value de- 

scribed in section 3 (Figures 5a and 5d), the eigenvalues 
move slightly to the left, but the pseudospectral con- 
tours move significantly to the left. The pseudospectral 
contours moving to the left implies that the transient 
response will be significantly reduced. The estimate of 
the lower bound on the maximum possible growth is re- 
duced by more than two orders of magnitude. This large 
reduction in the transient growth is consistent with the 
results of numerically integrating the system shown in 
Figures 2d and 3a. From this we can see that it is pseu- 
dospectra that describe the behavior of the system, not 
the eigenvalues. 

Similarly, we can compare the transient behavior seen 
in the numerical integrations shown in section 4.1 with 
the pseudospectral contours for 16 km and 32 km wave- 
lengths. The large-amplitude transient response at 16 
km for nominal and strong shear shown in Figures 3b 
and 3e again correspond to strong pseudoresonances in 
the right half-plane (Figures 5b and 5f). At the longest 
wavelength, 32 km, when the shear is increased (Figures 
5c and 5)), the pseudospectral contours move to the left, 

but not as far as the eigenvalues. It is this increased dis- 
tance in the complex plane between the eigenvalues and 
the pseudospectral contours that allows the system to 
initially grow faster than the least stable eigenmode. 

The matrices considered in this paper are nondegen- 
erate; the eigenvectors are linearly independent and 
hence form a complete basis. The eigenvectors are, how- 
ever, nonorthogonal. Fu et al. [1986] conjectured that 
the set of eigenfunctions may not form a complete ba- 
sis and that this may be the source of the transient 
behavior. The results presented in this section show 
clearly that it is the nonorthogonality of the eigenfunc- 
tions which is the source of the large transient response. 

5. Optimal Trajectories 

In this section we consider the optimal response oi 
the system in the sense of Butler and Farrell [1992] by 
calculating both the maximum possible initial growth 
rate and the maximum possible transient amplification 
as a function of time and wavenumber. These calcula- 

tions provide an upper limit on the transient response 
and also give additional insight into the nature of the 
system. An important question for comparison with ex- 
perimental observations is, what is the distribution of 
irregularities as a function of wavenumber? The calcu- 
lations described in section 5.1 allow us to answer this 

question. 

5.1. Optimal Initial Growth Rate 

According to (10) the linear system is described by 
the matrix A. The time rate of change of the square 
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0.004 , 

ß o 0.002 
o 

0.1 0.2 0.3 0.4 0.5 0.6 

wavenumber (km -1) 

Figure 6. The eigenvalues and the maximum possible initial growth rate with and without shear 
as a function of wavenumber. The eigenvalues are given by the lowest, dotted-dashed curve, the 
maximum possible initial growth rate without shear is given by the solid curve, and the maximum 
possible initial growth when shear is included is shown in the upper, dashed curve. 

of the magnitude of the density perturbations can be 
written as 

dlnl2 - (n An)+ (An, n) (14) dt ' 

where ( , ) is the inner product. Writing this as a 
matrix product gives 

din[2 - nH(A + AH)n (15) 
dt 

Dividing by the quantity In[ 2 gives' 

nH(A + A H d ln([n[= )n (16) ) - lnl 
The right-hand side of (16) is the Rayleigh quotient 
of the Hermitian matrix A + A H. It is a well-known 
theorem of linear algebra that the maximum of this ex- 
pression is equal to the largest eigenvalue of A + A H 
and that this maximum occurs when the vector n is 

equal to eigenvector corresponding to the largest eigen- 
value. From (16) it is clear that the largest eigenvalue of 
A + A H is equal to the maximum possible growth rate of 
the quantity In[ 2. For arbitrary initial conditions this 
growth rate corresponds to the largest possible initial 
growth of the system. Note that when the eigenvec- 
tor corresponding to the largest eigenvalue is not an 
eigenvector of A, this maximum growth rate cannot be 
maintained, so that for our system it is only possible for 
the system to grow at this rate in the limit as t -• 0. 

In Figure 6 the lower (dotted-dashed) curve is the real 
part of the least stable eigenvalue for a shear of magni- 
tude consistent with the measured values of Kudeki et 

al. [1981]. As shown by the computation of the pseu- 
dospectra near marginal stability the eigenvalues are ex- 
tremely sensitive to small perturbations to the system. 
Away from marginal stability, where the least stable 
eigenmode is either strongly damped or rapidly grow- 
ing, the eigenvalues are not sensitive to perturbations to 
the system. The solid curve is the maximum real part of 

the least stable eigenvalue when there is no shear. The 
upper (dashed) curve is the largest eigenvalue of the 
matrix (A + AH)/2. This gives the maximum possible 
initial growth rate of the density perturbations. The 
factor of one half compensates for the square in (16). 

We can see from this plot that the shear strongly 
stabilizes the eigenmodes of the system at the high 
wavenumbers. If the growth of the least stable eigen- 
mode were representative of the growth of the system 
over the times of interest, these results would imply 
that the dominant horizontal scale would be at wave- 

lengths of the order of 70 km. This plot clearly demon- 
strates the large difference that exists between the ini- 
tial growth of the system and its long-time behavior de- 
scribed by the eigenvalues. The lower (dotted-dashed) 
curve shows that all of the normal modes of the system 
are decaying with time for wavenumbers greater than 
approximately 0.4 km -•. The upper curve shows that 
there can be initial growth that is considerably faster 
than even the least stable normal mode of the no-shear 
system. 

At first glance it is surprising that shear can cause the 
density perturbatipns to grow more rapidly than when 
there is no shear. If the shear represents a stabilizing 
effect, how can shear lead to initial growth at a rate 
that is faster than if the shear were not present? The 
answer can be seen by considering the role of the vertical 
electric field in the potential equation (5). The system 
of equations describes the motion of the plasma as a 
result of the perturbation electric fields. The equation 
for the perturbation electric field (5) has a form similar 
to Poisson's equation where the terms on the right-hand 
side play the role of charge density. The increased initial 
growth rate shows that the vertical field has resulted 
in a larger effective charge density. When the vertical 
electric field is removed from the potential equation, 
the curve describing the maximum initial growth rate 
and the growth of the least stable normal mode are the 
same. 

Although this result shows that it is theoretically pos- 
sible for the system with shear to grow initially faster 
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Figure ?. Trajectory corresponding to maximum possible initial growth for a 16 km wavelength 
including shear. The slope of the upper, dotted line corresponds to the maximum possible growth 
rate. The slope of the lower, dotted line corresponds to the growth rate of the fastest growing 
eigenmode when there is no shear. 

than the no-shear system, numerical integration using 
random initial conditions shows that when shear is in- 

cluded, the initial growth is typically comparable to 
the growth without shear. The initial conditions corre- 
sponding to the maximum possible growth in the limit 
as t --> 0 do not produce significant transients. The 
transient growth corresponding to the maximum pos- 
sible initial growth is shown as a solid line in Figure 
7. The slope of the lower dotted line corresponds to 
the maximum possible growth rate when the shear is 
zero. The upper dotted line corresponds to the maxi- 
mum possible growth rate with nominal shear. In the 
limit as t --> 0, the perturbations are growing at the rate 
given by the upper dotted line. This figure shows the 
growth rate decreases very rapidly, and by 10 minutes, 
the perturbation is already beginning to decay. 

5.2. Optimal Growth as a Function of 
Wavenumber 

With no shear the system quickly approaches the 
growth rate associated with the least stable eigenvalue. 

Since the growth can be characterized by a single num- 
ber, comparing the growth at different wavenumbers 
is straightforward. When shear is nonzero, this is no 
longer the case. The growth rate of the transients 
changes as a function of time, so that the response of the 
system can no longer be characterized by a single num- 
ber. We would like to make a calculation that quantifies 
the transient amplification as a function of wavenumber 
and to carry out this calculation for several instances of 
time as the system evolves. The details of how the sys- 
tem evolves depend on the initial conditions. Figure 2 
shows that random initial conditions can produce a va- 
riety of transient behavior. One possibility for quantify- 
ing the transient response is to calculate the maximum 
possible growth. (This approach was used by Butler 
and Farrell [1992] to study transient behavior in fluid 
flows in pipes and channels.) We do this to estimate 
how the transient amplification varies as a function of 
wavenumber at a given time. By performing this calcu- 
lation at several times, insight can be gained into how 
the transient response evolves. While it is unlikely that 

15 

10 

o 
o 500 1 ooo 1500 

time (minutes) 

Figure 8. The same data as shown in Figure 2d with the maximum possible growth at each 
time overlayed as a dotted curve. 
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FLAHERTY ET AL.' GROWTH IN THE LINEAR EVOLUTION OF EQUATORIAL SPREAD F 6853 

the initial conditions will be such that the maximum 

amplification is achieved, we show by example that the 
maximum possible growth is a reasonable estimate of 
the behavior of the system for random initial condi- 
tions. 

The perturbation density at a given time t is given 
by 

n(t) = •'n(t = 0) (•) 
where e At is the matrix exponential. The maximum 
possible transient amplification at time t for the system 
described by the matrix A is []eAt]]. In the examples 
shown below, the norm was calculated by finding the 
largest singular value of the matrix e At . 

Figure 8 shows the maximum possible growth of the 
system as a function of time overlayed on a plot dis- 
playing the results of numerically integrating the system 
starting with random initial conditions (as was done in 
Figures 2 and 3). For times less than two hours the 
optimal growth curve (shown as a dotted line) is within 
three e-foldings of the envelope of the response result- 
ing from the random initial conditions. From Figure 8 
we see that as well as being an upper bound on the re- 
sponse of the system, the maximum possible growth is 
reasonably representative of the behavior of the system 
resulting from random initial conditions. 

The maximum possible growth as a function of hori- 
zontal wavenumber was calculated at several times sep- 
arated by 30 min and the results are shown in Figure 9a 
- 9e. At the earliest time, 30 min, the response of the 
system has a broad maximum. By 60 mina dominant 
wavenumber near 0.3 km -1 has emerged. After another 
30 min as shown in Figure 9c, the peak has moved to 
a wavenumber of approximately 0.25 km -1. This trend 
of the peak response moving to lower wavenumbers as 
time increases continues in Figures 9d and 9e. At the 
last time shown, 2.5 hours, the maximum response has 
moved to a wavenumber less than 0.2 km -1. 

The duration of the enhanced electric field which 

drives the instability varies night to night, but is typi- 
cally on the order of 2 hours. Even at 2.5 hours , the 
dominant wavenumber is considerably higher than that 
predicted by eigenanalysis. The distribution of the ir- 
regularities as a function of wavenumber is continually 
evolving over the times shown in Figure 9. For times 
less than 2.5 hours, the response of the system is clearly 
dominated by transient effects. 

These results show an interesting progression of the 
wavenumber spectrum of the irregularities. Initially, a 
broad range of wavenumbers will grow. As time in- 
creases, the growth rate at the higher wavenumbers de- 
creases. As this happens, the response of the system 
becomes dominated by lower wavenumbers. This pro- 
cess will continue, and the dominant wavenumber will 
asymptotically approach the wavenumber of the fastest 
growing normal mode of the system. The least stable 
eigenmode and the growth rate associated with it only 
describe the response of the system in the limit as t -• 0. 
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Figure 9. The maximum possible transient amplifi- 
cation as a function of wavenumber at (a) 30 min, 
(b) 60 min, (c) 90 min, (d) 120 min, and (e) 150 min. 
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Figure 10. (a) -. (d) The magnitude of the perturbation density as a function of altitude. (e) - 
(h) The structure of the perturbation in two dimensions. Perturbation density as a function of 
altitude at t - 0 is shown in Figures 10a and 10e t - 10 min as shown in Figures 10b and 10f, 
.t - 20 min as shown in figures 10c and 10g, t - 40 rain as shown in Figures 10d and 10h 

6. Qualitative Description of the 
Instability 

The instability results from a process analogous to the 
hydrodynamical instability which occurs when a heavy 
fluid is above a lighter fluid in the presence of gravity. 
It is useful to consider the expression for the growth 
rate that can be derived from local analysis when the 
shear and the vertical variations in the irregularities are 
neglected. As is shown by Kelley [1989], the instability 
grows as e vt, where ? is equal to (Eo+g/t•in)V log[n0(z)] 
plus diffusion. As this expression shows, the existence 
of the ambient zonal field and gravity (which are com- 
bined in the term E0) in the presence of a density gra- 
dient drives the instability, and diffusion has a stabi- 
lizing influence. Recall from section 2 that E0 is mod- 
eled as a constant so that the driving term is directly 
proportional to V' log[n0(z)]. When a nonuniform ver- 
tical electric field is added, the source of the instability 
is still the ambient field, gravity, and the gradient in 
density. The nonuniform field causes the irregularities 
to E x B drift in the zonal direction at a rate which 
changes with altitude. Qualitative insight into the be- 
havior of this system can be gained by looking at the 
time evolution of the structure of the unstable region at 
a single horizontal wavenumber. In Figures 10 and 11, 
density perturbations are shown at several times during 
the evolution of the system. The results shown here are 
for a 16 km horizontal wavelength. The density gradi- 
ent and shear are given in Figure 1. Figures 10a-i0d 

show the magnitude of the perturbations as a function 
of altitude. Figures 10e -10h show the same data as 
contours in two dimensions. Figure 10 shows the initial 
conditions and the early stages of the evolution at 10, 
20 and 40 min. Figure 11 shows the later stages as the 
transient response reaches a maximum and then begins 
to decay. 

At the earliest times the growth rate of the system is 
determined primarily by the term (E o-Fg/v,.•)V log[n0(z)]. 
Note for example, the pronounced maximum in the i r- 
regularities in Figure 10d in the vicinity of 340 km where 
V log[n0(z)] is a maximum. However, the system does 
not continue to evolve in this manner. The plots of 
the density perturbations in Figures 10 and 11 show 
that the density perturbations have become stretched 
by the shear flow into horizontally elongated struCt;ures. 
Associated with this stretching in the horizontal di'•-'ec_ 
tion, sharp gradients in the vertical direction have been 
formed. 

Consider, for the moment, the region in the vicinity of 
320 km altitude. In Figure 10f we see the initial stretch- 
ing, in Figure 10g the vertical gradients have steepened 
and in 10h, after another 20 min, the structure is no 
longer present, and the amplitude is close to zero. This 
sequence illustrates the process of stretching and dif- 
fusion by which the shear stabilizes the system. As 
th e perturbations become stretched by the shear, the 
growth rate is reduced because of the presence of xiiffu- 
sion. In this region the diffusion ultimately removed the 
perturbations. As can be seen in Figure lb, the region 
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Figure 11. (a) - (d) The magnitude of the perturbation density as a function of altitude. (e) - 
(h) The structure of the perturbation in two dimensions. Perturbation density as a function of 
attitude at t - 200 is shown in Figures 11a and 11e t - 500 min as shown in Figures 11b and 11f, 
t - 1000 min as shown in figures 11c and 11g, t - 1500 min as shown in Figures lid and 11h 
ß 

slightly above 320 km is where the shear is the largest. 
Ultimately, as can be seen in Figure 11, the irregu- 

larities at all altitudes become stretched into vertically 
steepened structures. This steepening increases the dis- 
sipation due to diffusion and the growth rate at all alti- 
tudes is reduced. At altitudes less than approximately 
350 km the dissipation due to the stretching and diffu- 
sion became greater than the growth due to the driving 
term described above and the amplitude of the pertur- 
bations eventually went to zero. 

The process by which the shear generates the high 
vertical wavenumbers is fundamental to the dynamics of 
the system. One way to think about how this structure 
is created is to consider just the portion of the evolution 
equation (6) which causes the stretching, i.e. 

On(z,t) 
= t) (18) 

ot 

where w(z) is the oscillation frequency at the altitude z 
which is given by kxEz(z). The solution of this equation 
is 

n(z, t) - ei"•(Z)tn(z, t - 0) (19) 
At each altitude the perturbation density iS oscillating 
at a different frequency. As time increases, high k struc- 
ture will be created as a result of the eventual rapid 
change in the phase With altitude. 

The driving term for the instability is proportional 
to Vln[n0(z)]. FrOm Figure 1(c) we can see that this 
term is greater than zero everywhere on the bottomside 
of the layer. As the density perturbations at the lower 

altitudes are being removed by the shear, the density 
perturbations at the highest altitudes are continuing to 
grow. As the instability grows the combination of these 
two effects causes the location of the density perturba- 
tions to increase in altitude with time. At the last time 

shown, the amplitude of the transient response has de- 
creased significantly. We note •hat through this com- 
bined process of growth and diffusion, the shape of the 
perturbations has broadened slightly and the altitude 
corresponding to the peak amplitude of the perturba- 
tions has decreased slightly. 

7. Discussion 

Our work began as an attempt to understand the 
long-lived irregularities on the bottomside of the F 
layer that are often observed in VHF radar measure- 
ments. We constructed a numerical simulation of a two- 

dimensional model and analyzed the results. Now, we 
ask the following question: Are the results of the mod- 
eling consistent with what is observed in the VHF radar 
measurements made at the J•Camarca Observatory? 

As can be seen in many published examples o f the 
phenomena [WoOdman and Latioz, 1976; Kelley, 1989], 
bottomside irregularities develop soon after sunset and 
can often persist for several hours. When bottomside 
irregularities grow to sufficient amplitude, nonlinear 
terms begin to dominate the dynamics and bubble, type 
features will develop. The absence of these bubble-type 
features in the radar measurements suggests that the 
irregularities have not grown to the point that the non- 
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linear terms are significant. The transient behavior de- 
scribed in sections 3 and 6 is qualitatively consistent 
with this phenomena. The rapid initial growth may 
explain how the irregularities are visible soon after sun- 
set; and the subsequent slower growth may explain how 
these features may be present for several hours without 
nonlinear features developing. 

The radar at the Jicamarca Radio Observatory op- 
erates at 50 MHz. The strength of the 50 MHz radar 
returns is proportional to the amplitude of the three m 
component of the irregularities in the vertical direction. 
The steepened vertical structures which are produced 
by the shear may act as a source of the small-scale ir- 
regularities which are measured by the radar. 

Our calculations predict a gradual progression of the 
dominant horizontal wavelength of the irregularities. 
This is a new view of how this instability will evolve. 
Valladares et al [1983] identified a class of long-lived 
irregularities on the bottomside of the F layer known 
as bottomside sinusoidal structure (BSS). One charac- 
teristic of BSS is that there is a pronounced peak in 
the wavenumber spectrum corresponding to a horizon- 
tal wavelength of approximately 1 km. This aspect of 
the phenomena is not consistent with the results of our 
modeling, and we do not believe that the production of 
BSS can be explained by the effect of a shear on the 
gravitational interchange instability. 

The development of bubble-type features which rise 
out of the regions of bottomside irregularities is a funda- 
mentally nonlinear phenomenon. On the basis of only 
a linear model we cannot directly address the question, 
will the irregularities remain confined to the bottomside 
of the layer? Solution of the full nonlinear model is pre- 
sented by Fluhetty [1997]. An interesting issue that has 
not been explored is, do the structures which develop as 
a result of the shear have an effect on the structure of 

the nonlinearities which develop when the irregularities 
become sufficiently large? 

The irregularities which exist on the bottomside of 
the F region can be categorized as bottom-type or bot- 
tomside spread F[ Woodman and La Hoz, 1976]. Bottom- 
type irregularities drift westward (opposite to the direc- 
tion of the thermospheric wind) and typically extend 
less than a few kiolmeters in altitude. The westward 

drift is evidence that the vertical electric field in these 

regions is controlled by the E region dynamo through 
the coupling between the E and F regions [Kelley, 1989]. 
Bottomside irregularities drift eastward and extend tens 
of kilometers in altitude. The coupling to the F layer is 
not as strong and the vertical electric field is controlled 
by the F-region dynamo. An impressive collection of 
measurements of these phenomena is presented by Hysell 
and Burchant [ 1998]. 

The two-dime•ional model we have investigated does not 
account for the coupling that exists between the E region 
and the F region. We have limited the scope of our efforts 
to the role of the shear (which is present in both bottomside 
and bottom-type irregularities) on the development of the 

instability. A numerical model which attempts to account 
for the effects of the coupling between the E and F regions 
is presented by Hysell and Burchant [ 1998]. The coupling 
to the E region effectively shorts out long-wavelength 
irregularities One conclusion from their work is that their 
models produce bottomside irregularities which do not 
evolve into plume-type structures. 

8. Conclusion 

Equatorial spread F can severely degrade the per- 
formance of communications and radar systems. As 
part of the National Science Foundation space weather 
initiative, there is considerable interest in developing 
the ability to predict the occurence of strong equatorial 
spread F [Basu et al., 1996]. An understanding of the 
bottomside irregularities which exist prior to the devel- 
opment of the large-scale plume events is a necessary 
component in developing such a predictive capability. 
This paper has addressed one component of this prob- 
lem by investigating the role of shear on the evolution 
of the gravitational interchange instability. 

Appendix' Nonorthogonality of the 
Eigenvectors and the Pseudospectra 

It is instructive to rewrite the matrix A in the def- 

inition of the pseudospectra as XEX -1, where X is a 
matrix whose columns are the eigenvectors of A and E 
is a diagonal matrix with the eigenvalues of A on the 
diagonal. Rewriting the quantity II(zI- A)-lll using 
this substitution, we get: 

II(zI- A)-11 IIxllllX-Xllll(zI- (A1) 

If the matrix A is normal, that is, there exists a com- 
plete set of orthogonal eigenvectors, then the columns 
of X can be normalized so that IIxll--IIX-•ll- 1. In 
this case, II(zI- A)-•ll _• II(zI- •)-•ll, and in fact, the 
inequality can be replaced by an equality [Karo, 1976]. 
The quantity II(zI- •)-•ll is equal to the reciprocal of 
the distance in the complex plane from the point z to 
the closest eigenvalue. This shows that a point in the 
e pseudospectrum must be located within a distance e 
from an eigenvalue of the system. When the matrix 
is nonnormal, it is no longer true that IIX-lll- 1; in 
fact, this quantity can become arbitrarily large. When 
IIX-lll is large, we can see from expression (A1) that 
the e pseudospectra can extend much farther away from 
the spectrum. 

According to (A1) the e-pseudospectral contours for 
small values of e can extend far from the eigenvalues 
only when the system is nonnormal and the product 
IlXllllX-•11 (which is the condition number of the ma- 
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trix X) is much greater than 1. This implies that the 
large-amplitude transient amplification is the result of 
the nonorthogonality of the eigenvectors. An important 
inequality which exhibits this relationship more directly 
is to the norm of the matrix exponential e At : 

where a, the spectral abscissa, is the maximum real part 
of the set of eigenvalues. When the product IlXllllX-111 
is close to unity, the response is bounded by the growth 
of the least stable eigenvalue. 
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