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Stability of Hyperbolic Finite-Difference Models
with One or Two Boundaries

Lioyd N. Trefethen'

ABSTRACT. The stability of finite-difference models of hyperbolic
partial differential equations depends on how numerical waves propa-
gate and reflect at boundaries. This paper presents an extended
numerical example illustrating the key points of this theory.

0. Introduction. In the numerical solution of hyperbolic partial dif-
ferential equations by finite differences, stability is well known to be a
critical issue. As a first step, the difference model must satisfy the von
Neumann condition—that is, the basic formula should admit no ex-
ponentially growing Fourier modes. For linear problems with smoothly
varying coefficients and no boundaries, this is essentially the whole story,
and in fact if one rules out algebraically as well as exponentially growing
local Fourier modes, then stability is assured. Results of this kind are
widely known and ‘are discussed in the superb book by Richtmyer and
Morton [8].

When boundaries are introduced, the stability problem becomes more
subtle. Even here the literature is copious, and a dozen or more people
have made substantial contributions, inctuding Godunov and Ryabenkii,
Strang, Osher [7], Kreiss, Gustafsson, Sundstrom, Tadmor, and Michel-
son. The best known paper in this area is the one by Gustafsson, Kreiss
and Sundstrdm [4] in 1972, which presents what is now often referred to
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as the “GKS stability theory”. The great strength of the GKS paper is
that it establishes a necessary and sufficient stability condition for
difference models of very general form—three-point or multipoint stencil
in space, two-level or multilevel in time, explicit or implicit, dissipative or
nondissipative. A difficulty with the paper is that it is very hard to read,
and this has regrettably limited its influence. Fortunately, some more
accessible accounts have appeared recently, including the report of
Gustafsson in this volume. i

My own work in this field has been concerned with giving the stability
question for initial boundary value problem models a physical interpreta-
tion based on the ideas of dispersive wave propagation and group
velocity. Group velocity effects in finite-difference modeling have been
surveyed by me in [9] and by Vichnevetsky and Bowles in [13]; others
who have been interested in these matters include Matsuno, Grotjahn
and O’Brien in meteorology; Alfold, Bamberger, and Martineau-
Nicoletis in geophysics; Kentzer, Giles and Thompkins in aerodynamics;
and Hedstrom and Chin in theoretical numerical analysis. I have de-
scribed a group velocity interpretation of the one-boundary stability
problem in [10], showing in particular how the GKS “perturbation test”
for unstable “generalized eigensolutions” is equivalent to a test of the
sign of a group velocity. In [11] this approach is made rigorous, and
various theorems on unstable growth rates are obtained. In [12] I have
extended these ideas to problems with two or more boundaries or
internal interfaces, where stability depends on what happens when wave
packets reflect back and forth. The latter work was motivated in part by
ideas of Kreiss (see, e.g., [4, §7]), of Beam, Warming and Yee [1], and of
Giles and Thompkins [2]. _

There is an analogous theory for p.d.e.’s rather than difference ap-
proximations. Again, wave radiation from the boundary is a general
mechanism of ill-posedness. See Kreiss [6] for the basic theory, and the
new survey by Higdon [5] for the wave interpretation. The difference is
that for p.d.e.’s, nontrivial cases of ill-posedness do not arise unless the
domain contains two or more space dimensions.

The purpose of this paper is to survey these results relating stability
and wave propagation by means of an extended example. With the aid of
many illustrations we will see exactly how waves can get amplified by
reflection at boundaries and how this can lead to instability.

1. No boundaries: dispersive wave propagation. As our basic difference
scheme we will take the Crank-Nicolson (CN) or trapezoidal formula

A
n+1 no_ n n+l _ n _ gan+l1
gt =y =7 (vj+1 +op = o — o) (1.1)
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for the p.d.e. u, = u,. Here j is the space index, n is the time index, and A
is the mesh ratio k/h, where k and h are the time and space steps,
respectively. Because CN is a nondissipative, two-level formula, it will be
easy to analyze how waves propagate. The price we pay for this is that
CN is implicit, which means that in principle it cannot be implemented
on an unbounded domain, although it still defines a bounded operator on
/2. However, this is no problem for simple test experiments, since we can
keep the action away from the boundary when we wish.

A general initial data distribution v® € /? can be written as a Fourier
integral

1 w/h .
0 _ i£xn0 — 5
b =5~ [ﬂ/h e®p0(¢) dt, x = jh, (1.2)
where the dual variable ¢ is called the wave number. The Fourier
transform #° is a 27 /h-periodic function in L*[-w/h, m/h] given by the
Fourier series ‘

N
0°(¢) = lim ), e®%),  x=jh. (1.3)
N—-o o Y )
J

To determine what v" will look like for » > 0, we can first determine
what will happen to an initial sine wave e** and then use Fourier
synthesis. To this end, substitute ¢’“'*¢¥) in (1.1), where  is a frequency
to be determined. The result is the equation

. AL ) . . ‘
elwk - 1= Z(etfh + e:(wk+§h) . e—lEh _ et(wk—ﬁh)),

which simplifies to

wk _
5 =

This is the numerical dispersion relation for CN. This equation defines a
unique value w € [-n/k, w/k] for each & € [-w/h, m/h), and so it is
actually a function

2tan Asin ¢h. (1.4)

w(§)=%tan‘l(%5in£h). (1.4)

Figure 1.1 shows what (1.4') looks like in the case A = 1: For {h < « the
dispersion function matches the ideal function w = £ for u, = u_ closely,
but for larger £ it disagrees markedly.

Now that the dispersion function is known we can synthesize v" as
follows:

o = —fﬂ/h e/ (WBNHENEO( Y gE x=jh,t=nk., (1.5)
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Armed with this equation we could duplicate the behavior of CN by
computing Fourier integrals. There is little profit in that, but what (1.5)
does offer is the prospect of approximate evaluation by a stationary
phase argument. For observe that the exponential term introduces an
oscillatory behavior that will make the integrand tend to cancel to zero if
w(£) and 0°(£) are smooth. The exception is that at values of £ satisfying
dig(w(ﬁ)t bl . L. i’ﬂd(gi) -
there is no oscillation and no cancellation. In other words, most of the
energy associated with wave number £ travels approximately at the group
velocity

dw
C=- it (1.6)
Of course this argument is vague, but it can be made precise in various
ways; see, for example, Lemma 5.1 of [11].

Thus wave energy travels at a velocity given by the negative of the
slope of the dispersion relation. For CN we can differentiate (1.4)
implicitly to obtain

C = —cos ¢£hcos? %k (1.7)

Eliminating w by means of (1.4"), or differentiating (1.4’) directly, con-
verts this to the functional form

—cos &h
c(¢) = : 1.7
©) 1 +(A*/4)sin® ¢h (L.7)
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FIGURE 1.1. Dispersion relation for CN with A = 1.



STABILITY OF FINITE-DIFFERENCE MODELS 315

This function is plotted in Figure 1.2. One sees that for well-resolved
waves—i.e. £h < 0, or many points per wavelength—energy travels at
velocity -1, as it should according to the p.d.e. u, = u,. Less well-re-
solved waves have lower speeds (less negative velocities), and it is this
fact that gives rise to familiar oscillations around discontinuities. At the
extreme, the sawtoothed (or parasitic) wave v} = (-1, i.e. ¢h = +m, has
group velocity + 1, so energy in this mode travels in the physically wrong
direction (Figure 1.2).

Let us confirm this last prediction by an experiment. Figure 1.3 shows
the evolution under CN with # = .01 and A = 1 of an initial signal

= 1+ (c1)/] e 0=

c®)
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h h
FIGURE 1.2. Group velocity.
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F1GURE 1.3. Propagation of energy at group velocities C = +1.
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on the interval [0, 1]. This “rectified Gaussian”, shown in Figure 1.3(a),
contains equal amounts of energy at £h = 0 and at £¢h = +7. Figures
1.3(b), (c) show the wave forms at times .2 and .4. As predicted, the two
wave components have separated and traveled in opposite directions.
This backwards motion of the parasitic wave component is of course a
purely numerical effect. For further examples see [9 and 13]. )

In analyzing the behavior of an arbitrary difference model, a useful
question to ask is: given a frequency w,, what associated wave numbers ¢
are admitted by the dispersion relation, and how do the corresponding
waves exp(i(wyt + £x)) propagate? To get the answer for CN, imagine
drawing a horizontal line at height w, in Figure 1.1. Assuming w,, is small
enough, it will intersect the dispersion curve at two values £, and &,. Of
the two corresponding sine waves, one has C < 0 and one has C > 0. For
simplicity, from now on we will write n for the wave number correspond-
ing to C < 0 and £ for the other one. By (1.4), £ and 7 are related under
CN by

£ = % . 5:' rightg.oing, (1.8)
n: leftgoing.
The same relationship holds for any difference model, such as leap frog
or backwards Euler, whose spatial discretization consists of the usual
second-order centered difference.

As a more complicated example, suppose we had a nondissipative
difference formula with the dispersion function plotted in Figure 1.4. (An
arbitrary continuous dispersion function defines a bounded operator
v" = v"*1in I?, a Fourier multiplier, but this operator can be realized by
finite differences only when the function is the solution of a trigonomet-
ric polynomial equation in w and £.) According to the figure, there are

w
hus
k
_m
o u o
- p

FIGURE 1.4. Dispersion relation for an unknown difference formula,
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four wave numbers £, associated with the frequency w,. £ and ¢,
correspond to leftgoing waves, and §, and £, to rightgoing waves,

On the face of it, the situation looks different at frequency w,— there is
only one wave propagating in each direction. However, in fact, the
missing two wave numbers still exist, but they have become complex.
One has negative imaginary part and corresponds to a leftgoing evanes-
cent wave that does not carry energy; the other has positive imaginary
part and is evanescent and rightgoing,

Actually, as far as one can tell from Figure 1.4, evanescent modes may
exist at frequency w, too. This depends on the size of the stencil of the
difference formula. The general rule is this: for a scalar difference
formula with stencil extending / points to the left of center and  points
to the right, the dispersion relation is a trigonometric polynomial in £ of
degree / + r, which for each w has / + r complex roots £ that break down
into exactly r “leftgoing” and / “rightgoing” linearly independent wave
modes. Here we say that a wave exp(i(w? + §x)) with Im o = 0 (or more
generally Im w < 0) is righigoing if either

DImé=0and C(¢, w)= 0, or

2)Imé > 0.

A lefrgoing wave is defined with the directions of the inequalities in (1)
and (2) reversed. These definitions and their consequences are studied in
detail in [11].

Thus the general solution of the form v = e”‘”¢ to an arbltrary scalar

finite-difference formula can be written
{ r
vl =t N et et Y Beim x =jh,t = nk.

v=1 p=1
(rightgoing) (lefigoing)

(1.9)

For convenience I have relabeled a,,,...,a,,, by B,,...,8,, and
§iitre sy, by My, '

2. One boundary: reflection coefficients. What if we now let more time
elapse in Figure 1.3, so that the waves hit the boundaries at x = +1? The
result will, of course, depend on the boundary conditions there.

The general principle for analyzing such problems is to look for
solutions containing only a single frequency w,. Different frequencies can
be superposed later. If a wave exp(i(wyt + £,x)) hits a boundary, then
the reflected result after the initial transient has died away will be a linear
combination ¥ a, exp(iwyt + §,x)) of waves with the same frequency w,
but with various new wave numbers £,. In general, the wave numbers in
the reflected waves will be all of those fulfilling the following two
conditions:

(1) wy, £, satisfy the dispersion relation.
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(2) The wave exp(i(wyt + £,x)) propagates away from the boundary
into the interior (the radiation condition). This means that any wave
reflected at a left-hand boundary must be rightgoing, and any wave
reflected at a right-hand boundary must be leftgoing,

Neither of these statements mentions the boundary conditions. Those
do not affect the set of reflected waves, Just the coefficients a,.

To compute numerical reflection coefficients one simply inserts the
wave (1.9) into the numerical boundary conditions. For a general formu-
lation consider a left-hand boundary at x = j = 0, and let the numerical
boundary conditions there consist of / linear homogeneous equations

giving vg*,.. . ,v7*]! as linear combinations of other values v}'. Insertion
of (1.9) yields a linear reflection equation

E(w)a=D(w),B, (2.1)

relating leftgoing and rightgoing wave coefficients. Here E and D are
matrices of dimensions / X /and / X r, respectively. If E(w) is nonsingu-
lar we can solve for the rightgoing wave coefficients to get

a=A(w)B =[E(w)] "' D(w)B. (2.2)

A(w) is called the reflection matrix. Compare [4, (10.2)].
Figure 2.1 shows what happens when the integration of Figure 1.3 is
carried to ¢ > 1/2 with the following conditions at the boundaries:

pg Tl =i+l (2.3a)

vt =0. (2.4a)

Here J = 1/h is the index of the grid point at the boundary x = 1.
Figures 2.1(a), (b) show the configuration at times ¢ = .6 and ¢ = .8.
Clearly the leftgoing pulse with n = 0 has generated a rightgoing re-
flected wave with £ = 7 /h at very small amplitude. The rightgoing pulse
with £ = # /h has generated a considerably larger reflection with n = 0.
Let us predict these reflected amplitudes after the fact.

(a) /7 t=.6
v

S

FIGURE 2.1. Continuation of Figure 1.3 showing reflection at boundaries.
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First, we compute the reflection coefficient for (2.3a). In the present
case, (1.8) implies that (1.9) reduces to
U;r - [aei&\‘ + Beinx]eiwt
= [(-1) e + Be™|etr,  x=jn,i=nk. (2.5

For simplicity in such computations it is convenient to introduce the
abbreviations

k=e®h  p=em 7= ek (2.6)
Then (2.5) becomes
of = (ax/ + Bp’)z". ’ (2.7)
For CN, (1.8) becomes k = ~1/p. Inserting (2.7) in (2.3a) gives
a+ B = (ak + Bp) = -a/p+ Bu.
In the form of (2.1) this is

(1 + i—)a —(n-1)B, (2.3b)
that is,
a_ bl ng,, R
RS ie'™" tan . (2.3¢)

For 7 = 0, as in the present experiment, we get a/f = 0, and this
explains the very small amplitude of the pulse reflected from the left-hand
boundary in Figure 2.1.

Now the analogous computation for (2.4a): Inserting (2.7) gives

ko = —p’B, (2.4b)
that is,

5= () = (e (24c)

Thus the amplitude of the reflected wave should be equal and opposite to
that of the incident wave, regardless of 7. Figure 2.1 confirms this nicely.

Let us return to the left-hand boundary and consider some alternative
boundary conditions. Suppose we replace (2.3a) by

vett =0l (2.8a)

Then insertion of (2.7) leads to

(Hi)q:(-zw)ﬁ, (2.8b)




320 L. N. TREFETHEN

or
o p—2z  iesin((nh — wk)/2)
B My uz” cos ((nh + wk)/2) (238¢)
Again this predicts a near-zero reflected amplitude for n = 0 = w. On the
other hand, suppose we impose
ot = potl, (2.92)
The reflection equation is then
(1 - 1/0)a = (2 - 1)B. (2.9b)
This implies
2= p? = 2k (2.9¢)

much as in (2.4c), at least for 7 # 0. At n =0, (2.9b) has the form
O0a = 0B, so it is not solvable except in a limiting sense.

Figure 2.2 plots results of experiments with boundary conditions (2.8a)
and (2.9a). Figure 2.2(a) shows the initial condition, a leftgoing wave with
1 = 0 on a mesh with # = .01 for [0, 1], and Figures 2.2(b), (c) show the
results at 7 =1 under (2.8a) and (2.9a), respectively. The predicted
reflection coefficients 0 and 1 are clearly in evidence. In fact, no reflected

(2 ; =0
(b) (;2)

=1
(2.9a)

t=1
(2.10a)

FIGURE 2.2, Effect of various left-hand boundary conditions.
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energy at all is visible in Figure 2.2(b); this is because with A = 1, i.e.
h = k, (2.8¢) is identically zero.

Figure 2.2(d) shows the response of CN to the same initial data with a
more contrived boundary condition:

U(r)H-l n+1 + Un+1 + U:’;H—l. (210&)

This time a marked instability is evident (note the vertical scale). To see
why, compute the reflection equation

[+ k== wfa=-[1+p—p2 - 2] B,
which can be simplified to

A+ p)(1 = p)a= 21+ p)’(1 - p)B, (2.10b)
that is,
ﬁ — 3 l + o — 3inh ﬂ_}_l_
Il ie*™" cot . (2.10c)

Atn = 0, this reflection coefficient is infinite.

The existence of a frequency w at which the reflection coefficient at a
boundary is infinite implies that a finite-difference model is unstable. In
[11] it is shown that under reasonable assumptions, such a model
potentially amplifies initial data in the /2 norm at a rate at least
proportional to the time step number n. Obviously this is an unstable
situation, since as 4 and k are decreased, the index n corresponding to a
fixed timet increases to oo,

The presence of an infinite reflection coefficient is a stronger condition
than “GKS-instability,” a name sometimes given to instability according
to Definition 3.3 of [4). In fact, a difference model is GKS-unstable if
and only if the matrix E(w) in (2.1) is singular for some w with Im « < 0,
ie. |z| = 1 (Theorem 1a of [11]). For scalar problems with three-point
stencils, this amounts to the condition that the coefficient of a on the left
side of a reflection equation, such as (2.3b), (2.4b), (2.8b), (2.9b) or
(2.10b), is O for some w. Thus, for example, the boundary condition (2.9a)
is GKS-unstable for CN, since the left-hand side of (2.9b) is zero at
p =z =1, even though no apparent catastrophe occurred in Figure
2.2(c). In such situations the reflection coefficient remains finite if it
happens that the right-hand side of the reflection equation has a zero at
the same value of w of at least as high an order. When this occurs, it is
shown in [11] that unstable growth of initial data in the /2 norm need
proceed no faster than in proportion to vVn .

To summarize, there are at least three distinct circumstances that may
obtain at the boundary:

(1) nonsingular reflection equation, finite reflection coefficient: stable

(o]l = 01));
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(2) singular reflection equation, finite reflection coefficient: weakly
unstable (||v]| = O(Vn));
(3) singular reflection equation, infinite reflection coefficient: unstable

(lvll = O(n)).

3. Two boundaries: reflection back and forth. What if we let even more
time elapse in Figure 1.3 and 2.1? The answer is simple: new reflections
will occur as the two wave packets bounce back and forth between x = 0
and x = 1. Each time a rightgoing wave packet with £ = «/h hits x = 1,
it will reflect as a leftgoing wave packet with n = 0 having essentially the
same amplitude. But each time a leftgoing wave hits x = 0, it will reflect
as a rightgoing wave of greatly diminished amplitude. The total energy in
[0, 1] will consequently decay rapidly to near 0. The reason one can only
say “near” is that a certain portion of the energy will have E=a/2h,
and since C = 0 at this wave number, this portion tends to stay in a fixed
position and never hit the boundaries.

Figures 3.1(a), (b) confirm this prediction by showing the numerical
solutions at 7 = 2 and ¢ = 4. At t = 2 the signal that remains is very
weak, and at ¢ = 4 it is somewhat weaker.

Suppose, more generally, that we set up the CN model on an interval
[0, L] with some pair of stable boundary conditions at x = 0 and x = L
for which the reflection coefficient functions are A,(w) and A,(w),
respectively. If v° is a wave packet with frequency w, then as ¢ increases
this packet will reflect back and forth, undergoing amplification by |4,|
or |A4,| each time it hits a boundary. Let C(w) denote the group speed
|C(£, )| = |C(n, w)| Then the travel time for a complete circuit involv-
ing a reflection at each boundary will be

2L
C(w)”

T(w) = (3.1)

After such a circuit the amplitude will have increased by a factor

a(w) =]4,(0)4,(0)]. (32)

() - - -

FIGURE 3.1. Further continuation of Figures 1.3 and 2.1.
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Combining these formulas, we reach the following conclusion: as t — oo,
energy associated with frequency w grows approximately at the rate

ol _ o) 7T = a( ) WL, (3.3)
llo(0)]]
For o > 1 this equation predicts exponential growth, and for « < 1,
exponential decay.

On the basis of this analysis one can now make some very interesting
observations about stability and convergence. The following ideas are
spelled out in detail in [12].

The first observation is: stability does not preclude exponential growth in
time. We have seen in the last section that stability for a single boundary
implies | 4] < oo, but not |4| < 1. Thus it is easily possible for a model
composed of two individually stable boundaries to generate growth of
truncation errors at a rate exp(const 7). One might think that this reveals
that the concatenation of two stable boundaries is in general unstable.
But in fact, exponential growth does not imply instability in the usual
Lax-Richtmyer sense, and it will not prevent convergence. The reason is
that the growth factor for any fixed ¢ does not get larger as A, k — 0,
whereas the truncation errors that the factor multiplies get smaller (by
consistency). i

These conclusions are already known. In fact, Theorem 5.4 of [4]
asserts that in general, the concatenation of two GKS-stable difference
schemes is. always GKS-stable, while §7 of [4] investigates the conditions
under which exponential growth in ¢ will occur for a particular stable
2 X 2 example. What is new here is the interpretation by reflection
coefficients. This interpretation also helps to clear up a misconception.
Some people have thought that although exponential growth can occur
for finite 4 and k, it must vanish as 4, k — 0. But the study of reflecting
wave packets gives no reason to expect such good fortune, and an
example in [12] proves that, indeed, it is not to be expected. To be sure of
eliminating growth by refining the mesh, one needs a difference formula
that is suitably dissipative [3, 12].

There is a reason why exponential growth in ¢ may be a problem: in
practice, time-dependent finite-difference models are often used (espe-
cially in aerodynamics) to compute approximate solutions for the steady
state 1 = o0. Obviously growth of errors at a rate e“°™'* will make such a
procedure fail. With this in mind, Beam, Warming and Yee [1] have
defined a difference model to be P-stable if it is GKS-stable and, in
addition, it admits no exponentially growing modes. In this language the
above observation becomes: stability does not imply P-stability.

Our second observation now comes as the natural complement to the
first: having reflection coefficients bounded by 1 does preclude exponential
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growth in time. For in (3.3) we see that if a(w) < 1 for every w, then no
frequency exists that can experience repeated amplification by reflection.
This argument can be made rigorous, and Proposition 10 of [12] states: if
a(w) < 1 for every w, a difference model is P-stable.

For a third and final observation, let us turn to the case in which one
or both boundaries is individually unstable. Then we find: a mildly
unstable boundary with an infinite reflection coefficient may become
catastrophically unstable when a second boundary is introduced. For con-
sider a boundary condition which has A(w,) = oo for some w,. If a wave
packet at frequency w, hits this boundary, it will be amplified by a large
factor (typically O(N ), where N is the width of the packet in grid points).
For a single boundary, this is a one-time-only event, as in Figure 2.2(d).
But when there are two boundaries, the reflected wave may reflect at the
other boundary, then return to be amplified again, and so on. For’
boundaries separated by N grid points one gets growth potentially at a
very rapid rate -

llo ()]l
llo (0)l

- Nconsll s Nconsl nk

This instability is a far cry from the growth proportional to » mentioned
in the last section, and it renders the difference model totally useless.

This phenomenon of catastrophic two-boundary interactions was first
noted long ago by Kreiss. The advantage of the present point of view is
that it makes it clear that the problem is associated not with all unstable
boundaries, but only with those having infinite reflection coefficients.
Unstable boundary conditions with finite reflection coefficients typically
exhibit only weak instability even when other boundaries are present. Of
course, sometimes weak instabilities may be more dangerous than strong
ones, since they can more easily go undetected.

Our final numerical experiment, summarized in Figure 3.2, illustrates
the difference in two-boundary behavior between unstable boundary
conditions with finite and infinite reflection coefficients. Figure 3.2(a)
shows the initial data, a uniformly distributed random signal on the usual
CN mesh on [0,1]. At x = 1 the boundary condition is (2.4a). First, an
integration was performed with the boundary condition (2.9a) at x = 0,
which is unstable but by (2.9¢) has a finite reflection coefficient. In this
process nothing dramatic occurs no matter how large ¢ is. Figures 3.2(b)
show the result at 7 = 10, and it looks qualitatively much like the initial
data. Of course this does not imply that this model will give accurate
answers to physical problems, but it does reveal that GKS-instability of a
boundary condition does not by itself lead to explosive two-boundary
interactions.
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In contrast, Figures 3.2(c), (d) show results obtained with boundary
condition (2.10a), which has an infinite reflection coefficient. The plots
show times 7 = 1, 3. Note the vertical scales.

In summary, for two-boundary problems one has the following possi-
bilities:

(1) stable b.c.’s, 0 < @ < 1: stable and P-stable (lvll = O));

(2) stable b.c.’s, 1 < & < oo stable but P-unstable (||v]] = O(eo™! 1)),

(3) unstable b.c.’s, 0 < a < co: weakly unstable (||jvf| = O(Vn));

(4) unstable b.c.’s, & = co: strongly unstable (||v]| = O(N"st 1)),

Before closing, a word must be said about dissipation. I have presented
a picture in which numerical waves bounce back and forth between
boundaries, with changes of amplitude occurring at each reflection but
not during the transit in between. Under a dissipative difference formula,
however, any wave with ¢ # 0 decays as it travels. The result is that the
two-boundary interactions I have spoken of rarely take place, so that in
practice, the behavior of a dissipative two-boundary model is not much
different from what the individual boundaries would suggest. The excep-
tions occur when the dissipation is very weak, as in the problems with
large mesh ratios considered in (1], or when the number of grid points
between boundaries is very small, as in certain cases discussed in §2 of

[12].
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FIGURE 3.2, Two-boundary interactions,
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For an overall summary, one may say that difference models for
hyperbolic partial differential equations exhibit three important physical
processes: propagation, reflection, and dissipation of waves. In general,
the waves involved are numerical objects with no physical meaning, but
they are still important to stability. An exact mathematical analysis of a
finite-difference model is usually too difficult to be practical, but even for
complicated models one can often gain insight fairly easily by consider-
ing these physical processes.
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