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Abstract. Powerful algorithms have recently been proposed for computing eigenvalues of large
matrices by methods related to contour integrals; best known are the works of Sakurai and coauthors
and Polizzi and coauthors. Even if the matrices are real symmetric, most such methods rely on com-
plex arithmetic, leading to expensive linear systems to solve. An appealing technique for overcoming
this starts from the observation that certain discretized contour integrals are equivalent to rational
interpolation problems, for which there is no need to leave the real axis. Investigation shows that
using rational interpolation per se suffers from instability; however, related techniques involving real
rational filters can be very effective. This article presents a technique of this kind that is related to
previous work published in Japanese by Murakami.
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1. Introduction. Let A ∈ CN×N be a large square matrix, and consider the
problem of computing the eigenvalues of A that lie within a given region of the complex
plane. Some of the most successful techniques for attacking this problem are based
on projecting the matrix A onto an approximately invariant subspace associated with
the eigenvalues of interest and computing the eigenvalues of the projection. Of these,
perhaps the best known are the Krylov subspace techniques such as the implicitly
restarted Arnoldi method [39], which is implemented in the widely used software
package ARPACK [20].

Recently, a new class of algorithms has been proposed which derive their projec-
tions from complex contour integrals. Though early traces of these ideas can be found
in the works of Goedecker on linear-scaling methods for electronic structure calcula-
tion [11, 12], the best-known algorithms of this type are the Sakurai–Sugiura (SS)
method [37] and the FEAST algorithm, due to Polizzi [32]. A major computational
advantage offered by these algorithms is that they are very easily parallelizable.

Some of the most important eigenvalue problems involve matrices A that are real
and symmetric. For large such problems, it is natural to want to take advantage of
the parallelism offered by contour integral methods; however, by their very nature,
these methods require complex arithmetic even though the sought-after eigenvalues
are real. Aside from the fact that the need to use complex arithmetic to solve a real
problem is conceptually jarring, this means that methods based on contour integrals
suffer roughly a factor of two penalty in both time and storage costs, compared with
approaches that rely only on real arithmetic.
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A1366 ANTHONY P. AUSTIN AND LLOYD N. TREFETHEN

In this paper, we present a technique that addresses this deficiency. Our approach
is motivated by the connection between the SS method and rational interpolation
established in [1] and can be succinctly described as a projection method which uses
a rational filter with only real poles. Projection methods based on rational filters
have been examined in the Japanese literature by Murakami [22, 23], whose work we
discuss in some detail later on.

The remainder of this paper is organized as follows. In section 2, we review the
connection between the SS method and rational interpolation, introduce the idea of
using the latter to find eigenvalues, and show how it yields a method with SS-like
parallelism that uses only real arithmetic. Unfortunately, as we will see in section 3,
methods based directly on rational interpolation are numerically unstable, but in
section 4, we will show how they can be reformulated to avoid this difficulty by using a
Rayleigh–Ritz procedure and rational filters. Section 5 contains information pertinent
to developing practical realizations of our method. In section 6, we give a summary
of the proposed algorithm, and finally, in section 7, we illustrate the performance of
our method on a numerical example.

While our main application is to real symmetric matrices A, much of our discus-
sion does not depend directly on this structure. Accordingly, we will assume most of
the time that A is arbitrary and specialize to the real symmetric or Hermitian case
when appropriate.

2. Finding poles of the resolvent. The methods we consider are rooted in
the fact that the eigenvalues of a matrix A are the poles of its resolvent (A − zI)−1.
Given vectors u, v ∈ CN , we consider the function

(2.1) f(z) = u∗(A− zI)−1v,

a “scalarized” version of (A− zI)−1. (If A is Hermitian, it is common to take u = v.)
If A is diagonalizable (an assumption we will make throughout the paper), we can
write A in an eigenvalue decomposition as

A =

N ′∑
h=1

λhPh,

where λ1, . . . , λN ′ are the distinct eigenvalues of A and P1, . . . , PN ′ are the corre-
sponding spectral projectors. Then, f takes the form

f(z) =

N ′∑
h=1

u∗Phv

λh − z
.

Thus, f is a rational function, and if v and u are generic in the sense that v (respec-
tively, u) is not orthogonal to any of the right (respectively, left) eigenspaces of A,
then f will have a simple pole at each of the points λh. Our goal will be to compute
the poles of this function that lie within a given region of interest.

2.1. The Sakurai–Sugiura method. The original method proposed by Saku-
rai and Sugiura in [37] computes the poles of f within a region Ω ⊂ C bounded by
a simple, closed, piecewise smooth curve γ by applying the derivative-free variant of
the pole-finding algorithm of Kravanja and Van Barel [1, 18, 19]. If A has s ≤ N ′
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distinct eigenvalues within Ω (a number which, for the time being, we will assume is
known) this algorithm works by computing the moment integrals

(2.2) μj =
1

2πi

∫
γ

zjf(z) dz, j = 0, . . . , 2s− 1,

and using them to form the s× s Hankel matrices

Hs =

⎡
⎢⎢⎢⎣
μ0 μ1 · · · μs−1

μ1 μ2 · · · μs

...
...

...
μs−1 μs · · · μ2s−2

⎤
⎥⎥⎥⎦ , H<

s =

⎡
⎢⎢⎢⎣
μ1 μ2 · · · μs

μ2 μ3 · · · μs+1

...
...

...
μs μs+1 · · · μ2s−1

⎤
⎥⎥⎥⎦ .

The poles of f within γ are then given by the eigenvalues of the generalized eigenvalue
problem for the pencil H<

s − λHs.
Because it makes use of these Hankel matrices, we will refer to this method as

the SS-H method.
In practice, the integrals (2.2) cannot be computed exactly and must be approx-

imated using a quadrature rule. If this rule is defined by nodes z0, . . . , zK−1 ∈ C and
corresponding weights w0, . . . , wK−1 ∈ C, then we obtain the approximation

(2.3) μj ≈
K−1∑
k=0

wkz
j
ku

∗(A− zkI)
−1v.

The dominant contribution to the computational cost of applying this method comes
from solving the K linear systems involving shifts of A at each quadrature node
required to compute (2.3). If A is large, these linear solves are potentially expensive;
however, as each system is independent of the others, they can be solved in parallel.

2.2. Rational interpolation. An alternative method for computing the poles
of f is to form a rational approximation to f and compute the poles of the approxi-
mation. The simplest type of rational approximation is a rational interpolant. Given
K points z0, . . . , zK−1 ∈ C, we seek polynomials p and q of appropriately chosen
maximum degrees m and n such that

p(zk)

q(zk)
= f(zk), k = 0, . . . ,K − 1.

In practice, it is easier to multiply through by the denominator and work with the
linearized conditions

(2.4) p(zk) = f(zk)q(zk), k = 0, . . . ,K − 1.

There are K interpolation conditions in total, and since these conditions only
determine p and q up to a common constant factor, we must additionally impose a
normalization condition. Balancing these K+1 constraints with the m+n+2 degrees
of freedom in p and q, we see that we must choose m and n such that m+n+1 = K.
Obviously, the degree of q should be at least as large as the number of eigenvalues
sought. As we are assuming for now that this number is known, we will take n to be
exactly equal to it. In practice, n will need to be selected based on an estimate of
this number, and we note in particular that it may be advantageous to make n larger,
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even if the number is known exactly; see section 5.2. Once we have computed the
interpolant, finding the poles is simply a matter of finding the roots of q, which can
be accomplished by solving an eigenvalue problem, the structure of which depends on
the basis chosen to represent q.

In terms of computational structure, rational interpolation is very similar to the
SS-H method. The dominant cost involved comes from solving the K linear systems
required to evaluate f at each of the interpolation nodes, and, just as in the SS-
H method, these systems can be solved in parallel. Also as in the SS-H method,
obtaining the approximations to the eigenvalues of A boils down to solving a small,
dense eigenvalue problem.

In fact, it turns out that the SS-H method and rational interpolation are mathe-
matically equivalent (in exact arithmetic) in the most basic case where (1) the eigen-
values sought are those in the unit disc, (2) the contour integrals in the SS-H method
are discretized using the trapezoidal rule in the roots of unity, and (3) those same
roots are used for the interpolation nodes when constructing the rational interpolant.
This was shown in [1], where the observation takes the form of a theorem asserting
the equivalence of rational interpolation and the derivative-free Kravanja–Van Barel
method. This equivalence, combined with the success enjoyed by contour integral
methods in practice, is one of the main reasons we have been motivated to consider
approaches to eigenvalue computation based on rational interpolation.

2.3. Rational interpolation on a real interval. Though the SS-H method
and rational interpolation are very similar, as just observed, they provide different
perspectives on how to approach eigenvalue computation. In particular, rational in-
terpolation schemes are not constrained by the need to worry about contours, regions,
or quadrature rules; there are only interpolation nodes. This simpler structure nat-
urally leads one to consider schemes that are not so easily conceived in a framework
based strictly on contour integrals.

Suppose that A is a Hermitian matrix, so that the eigenvalues of A are all real,
and suppose that we seek the eigenvalues that lie in a given interval I ⊂ R. For
concreteness, let us suppose that I = [−1, 1]. Applying a contour integral method
requires the selection of a contour in the complex plane that encloses I. The unit
circle is an obvious choice and is often used, as are long, narrow ellipses that enclose
I. Both of these choices of contour can be used as the basis for a successful algorithm.

If, in addition, A is real, however, this method has an unfortunate defect. As
any reasonable choice of quadrature rule for approximating the contour integrals will
have nodes that do not lie on the real axis, we must use complex arithmetic to solve
a real eigenvalue problem. Complex operations take roughly twice as much work to
perform as real operations, and storing complex matrices takes twice as much memory
as storing real ones.

Rational interpolation affords us a way out of this problem. Unlike in a contour
integral framework, we are not forced by the demands of a quadrature rule to take
some evaluation points off the real axis. Instead, we are free to take the interpolation
nodes all to lie in I. If we do this, a natural candidate for a good set of nodes is a
set of Chebyshev points in I [42]. In this paper, we will work with the K Chebyshev
points of the first kind, defined by

(2.5) xk = cos

(
(2k + 1)π

2K

)
, k = 0, . . . ,K − 1.D
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Later on, we will also make use of the Chebyshev polynomials of the first kind, denoted
by Tj , which are defined by T0(x) = 1, T1(x) = x, and, for j ≥ 2, by the recurrence

Tj+1(x) = 2xTj(x) − Tj−1(x).

The zeros of TK are exactly the first-kind Chebyshev points xk just defined.
Thus, we arrive at the following simple algorithm: find p and q that satisfy (2.4)

with zk = xk and then compute the roots of q. Since all the points xk are real, only
linear systems involving real shifts are solved to evaluate the scalarized resolvent f .
If A is real, only real arithmetic is employed.

All that remains is to decide how to solve the linearized rational interpolation
problem (2.4). Rational interpolation has a propensity, well-known to practitioners,
for rounding errors to cause spurious pole-zero pairs (sometimes called Froissart dou-
blets) to appear when the interpolant is computed in the obvious way [42]. To combat
this, we use the algorithm presented in [13], which combines the earlier algorithm of
[29] with a regularization technique based on the SVD to detect and remove these spu-
rious pairs. This algorithm is implemented in the MATLAB code ratinterp within
the freely available Chebfun software package [6].

3. Instability of rational interpolation for finding eigenvalues. Unfortu-
nately, the simple algorithm just described suffers from numerical instability. The
difficulty is that the eigenvalues of A in [−1, 1] may be distributed in such a manner
that the polynomial rootfinding problem set up by the interpolation process is poorly
conditioned. This problem can occur even if the number of eigenvalues of A in [−1, 1]
is small and the eigenvalue problem itself is well-conditioned (which it always is if A
is Hermitian), as we now illustrate.1

Suppose that A is a 12 × 12 diagonal matrix with diagonal entries −10, 10, and
0, 0.1, 0.2, . . . , 0.9 and that we wish to compute the 10 eigenvalues of A inside [−1, 1].
Using the ratinterp code just mentioned, we can implement the algorithm of the
previous section in just a few lines of MATLAB and Chebfun as follows:

A = diag([0:0.1:0.9, -10, 10]); I = eye(12); v = randn(12, 1);

K = 32; xk = chebpts(K, 1); fk = zeros(K, 1);

for k = 1:K, fk(k) = v’*((A - xk(k)*I) \ v); end

[p, q, r, mu, nu, pol] = ratinterp(fk, K - 11, 10, K, ’type1’, 0);

The first line of this code creates the matrix A and generates the random vector
v that we will use to scalarize the resolvent. The second line uses the Chebfun code
chebpts to create a vector of K = 32 Chebyshev points (2.5) in [−1, 1]. The third
line computes the values of the scalarized resolvent function at each interpolation
point, storing the results in a vector fk. Finally, the fourth line computes a linearized
rational interpolant to these values with a denominator degree of 10. The ’type1’

argument to ratinterp specifies that we are working with data from a first-kind
Chebyshev grid, and the final 0 argument disables the aforementioned SVD-based
robustness techniques, which are not necessary for this demonstration. The poles
that form our computed approximations to the eigenvalues are stored in the output
variable pol.

Approximations to the eigenvalues produced by a typical run of this code are
displayed in Table 1. The eigenvalues at 0 and 0.9 are computed to only about

1This example was suggested by Grady Wright.
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Table 1

Eigenvalues and absolute errors illustrating instability of eigenvalue computation via rational
interpolation for the test problem considered in the text.

Exact Computed Error

0.0 0.00000240 2.40 ×10−6

0.1 0.09992181 7.82 ×10−5

0.2 0.20039592 3.96 ×10−4

0.3 0.27060498 2.94 ×10−2

0.4 0.40129619 1.30 ×10−3

0.5 0.48977909 1.02 ×10−2

0.6 0.59984376 1.56 ×10−4

0.7 0.70009663 9.66 ×10−5

0.8 0.79959982 4.00 ×10−4

0.9 0.89999995 4.51 ×10−8

five and seven digits of accuracy, respectively, and the accuracy is even worse for the
eigenvalues in the middle of the spectrum. Increasing the value of K does not improve
the accuracy, nor does enabling the SVD-based robustness techniques in ratinterp.
The computation has been spoiled by rounding error.

The reason for this behavior becomes apparent when we look at the denominator
polynomial of the rational interpolant, which is depicted in Figure 1. Observe how
the polynomial is relatively large on the left half of the interval, while on the right
half, where the spectrum of A is concentrated, it is nearly zero. (In fact, the values
on the right half fluctuate near 10−8.) This large scaling of the polynomial over the
entire interval relative to its size on the half of the interval containing the spectrum
causes its roots to be badly conditioned, resulting in the poor approximations to
the eigenvalues we see in the table. In the polynomial rootfinding literature, this is
sometimes referred to as a “dynamic range” problem [3].

The example just given is admittedly manufactured; however, it is easy to imagine
that similar situations could arise in actual applications. Unfortunately, there seems
to be little that can be done to prevent this without some a priori knowledge of the
spectrum of A. A better solution is to avoid polynomial rootfinding altogether. Thus,
we now modify the approach based on rational interpolation by turning to a method
based on Rayleigh–Ritz procedures and rational filters.

4. Rayleigh–Ritz reformulation using rational filters.

4.1. The SS-RR method. Sakurai and coworkers noticed similar instabilities
to those just described in the SS-H algorithm of [37] and devised an alternative version

-1 -0.5 0 0.5 1
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

Fig. 1. Plot of the denominator of the rational interpolant whose roots were computed to
produce the eigenvalue approximations in Table 1.

D
ow

nl
oa

de
d 

03
/2

7/
23

 to
 1

29
.6

7.
18

6.
57

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COMPUTING EIGENVALUES WITH RATIONAL FILTERS A1371

of their method based on a Rayleigh–Ritz procedure to correct this [15, 38]. When
applied to Hermitian matrices, their algorithm works as follows. Given a vector v that
is generic in the sense defined in section 2, the method computes a basis {v0, . . . , vs−1}
for the invariant subspace corresponding to the eigenvalues ofA within γ by computing
the projections of the vectors Ajv onto this eigenspace via the integrals

(4.1) vj =
1

2πi

∫
γ

zj(A− zI)−1v dz, j = 0, . . . , s− 1.

The vectors vj are then orthonormalized, and the resulting vectors are gathered as
columns into a matrix Q. The desired eigenvalues and eigenvectors are then obtained
by solving the s× s eigenvalue problem for the matrix Q∗AQ.

Because of its use of a Rayleigh–Ritz procedure, we will refer to this method as
the SS-RR method.

4.2. Contour integrals and filter functions. The key mechanism underlying
the SS-H and SS-RR methods—and, indeed, all contour integral methods—is that the
contour integrals (2.2) and (4.1) compute a projection of a vector onto the eigenspace
of interest, since

(4.2) P = − 1

2πi

∫
γ

(A− zI)−1 dz

is the spectral projector associated with the eigenspace corresponding to the eigen-
values of A contained within γ [17]. When we discretize (4.2) using a quadrature rule
defined by K distinct nodes z0, . . . , zK−1 and corresponding weights w0, . . . , wK−1,
we obtain an approximate projector

(4.3) P̂ =

K−1∑
k=0

wk(A− zkI)
−1.

Written another way, we have P̂ = H(A), where H is the rational function

(4.4) H(z) =
K−1∑
k=0

wk

z − zk
.

We call H the filter function associated with the method because it describes how
(4.3) acts to filter out undesired eigenvectors while retaining the rest. The points
zk are the poles of the filter, and the wk are the corresponding residues. If λ is an
eigenvalue of A for which H(λ) is small, then when P̂ acts on a vector v, it will reduce
the components of v in the directions of eigenvectors of A corresponding to λ.

Contour integral methods have been discussed from the viewpoint of rational
filters in several places in the literature. Sakurai and coworkers do this for the SS-H
method in [16] and for SS-RR in [15]. Tang and Polizzi do the same for FEAST
in [40].

4.3. Filters derived from rational interpolation. We will now show that the
process of rational interpolation described in section 2.2 for our scalarized resolvent
function also acts to filter the spectrum of A by a rational function. This is clear in
the case where the result from [1] mentioned at the end of section 2.2 is applicable,
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for under those conditions, rational interpolation is equivalent to the SS-H method
based on discretized contour integrals, and we have just shown that all discretized
contour integrals have a rational filter behind them. The easiest way to see that this
is true for other choices of the interpolation nodes is to extend the result from [1] to
a more general setting.

Specifically, let f : C → C∪ {∞} be a meromorphic function, let z0, . . . , zK−1 be
K distinct points in C that are not poles of f , and let w0, . . . , wK−1 ∈ C be nonzero.
Let n ≥ 1, and consider the following two computational procedures:

• Procedure (K):
1. Compute the quantities

μj =

K−1∑
k=0

wkz
j
kf(zk), j = 0, . . . , 2n− 1.

2. Form the Hankel matrices

Hn =

⎡
⎢⎢⎢⎣
μ0 μ1 · · · μn−1

μ1 μ2 · · · μn

...
...

...
μn−1 μn · · · μ2n−2

⎤
⎥⎥⎥⎦ , H<

n =

⎡
⎢⎢⎢⎣
μ1 μ2 · · · μn

μ2 μ3 · · · μn+1

...
...

...
μn μn+1 · · · μ2n−1

⎤
⎥⎥⎥⎦ .

3. Compute the eigenvalues, counted according to multiplicity, of the ma-
trix pencil H<

n − λHn.
• Procedure (R):

1. Compute the J ≤ K − 1 zeros η0, . . . , ηJ−1 of the rational function

H(z) =

K−1∑
k=0

wk

z − zk
.

2. Compute a linearized rational interpolant with maximum denominator
degree n and maximum numerator degree m = K − n− 1 in the points
z0, . . . , zK−1 to the function

g(z) =

⎛
⎝J−1∏

j=0

(z − ηj)

⎞
⎠ f(z).

3. Calculate the zeros, counted according to multiplicity, of the denomina-
tor polynomial of the interpolant computed in step 2.

Procedure (K) is essentially a statement of the derivative-free Kravanja–Van Barel
method after discretization, applied to compute n poles. In its original formulation,
zk and wk are, respectively, the nodes and weights of some quadrature rule, but there
is nothing in the statement of the result that constrains them to be chosen in this way.
Procedure (K) gives a way to apply the derivative-free Kravanja–Van Barel method—
and, hence, the SS-H method—with any rational filter of the form we are considering.
In Procedure (R), we compute the roots of the denominator polynomial of a linearized
rational interpolant to a modified version of f that incorporates the zeros of the filter.
The result we now prove asserts that these two methods are equivalent under one
additional assumption.

Theorem 4.1. The matrix Hn of Procedure (K) is nonsingular if and only if
the denominator polynomial computed in Procedure (R) has degree exactly n. If these
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COMPUTING EIGENVALUES WITH RATIONAL FILTERS A1373

equivalent conditions hold, then Procedure (K) and Procedure (R) yield identical results
in exact arithmetic in step 3: the eigenvalues computed in Procedure (K) are the same
as the roots computed in Procedure (R).

The nonsingularity requirement precludes degenerate situations in which the pen-
cil H<

n − λHn of Procedure (K) has infinite eigenvalues or the denominator of the
interpolant in Procedure (R) has fewer than n roots.

Before proving this theorem, we first recall some definitions from the theory of
barycentric representations of polynomial interpolants [2, 42]. Suppose that ξ0, . . . ,
ξK−1 are K distinct points in C. The node polynomial for these points is �(ξ) =
(ξ − ξ0) · · · (ξ − ξK−1). The barycentric weights ν0, . . . , νK−1 are defined by

(4.5) νk =
1

�′(ξk)
=

1∏K−1
j=0,j �=k(ξk − ξj)

.

Any polynomial p of degree at most K − 1 can be expressed in terms of its values at
the points ξk using the barycentric formula (of the first kind):

(4.6) p(ξ) = �(ξ)
K−1∑
k=0

νkp(ξk)

ξ − ξk
.

Proof of Theorem 4.1. Let �(z) = (z − z0) · · · (z − zK−1) be the node polynomial
for the points z0, . . . , zK and ν0, . . . , νK−1 be the corresponding barycentric weights.
Consider the Hankel matrices

Ĥn =

⎡
⎢⎢⎢⎣
h0 h1 · · · hn−1

h1 h2 · · · hn
...

...
...

hn−1 hn · · · h2n−2

⎤
⎥⎥⎥⎦ , Ĥ<

n =

⎡
⎢⎢⎢⎣
h1 h2 · · · hn
h2 h3 · · · hn−1

...
...

...
hn hn−1 · · · h2n−1

⎤
⎥⎥⎥⎦ ,

where

hj =
K−1∑
k=0

νkz
j
kg(zk), j = 0, . . . , n− 1.

One can show [8, 10], [19, Theorems 1.2.2 and 2.3.4] that the denominator polynomial

computed in Procedure (R) has degree exactly n if and only if Ĥn is nonsingular and
that if this is so, the roots of this polynomial are given by solving the generalized
eigenvalue problem for the pencil Ĥ<

n − λĤn.
Since H has poles at exactly the points zk and J zeros, we have H(z) = p(z)/�(z)

for some polynomial p of degree J . Using (4.6) to represent p in terms of its values
at the points zk and dividing through by �(z), we find that

H(z) =

K−1∑
k=0

νkp(zk)

z − zk
.

It follows from the definition of H and the uniqueness of partial fraction representa-
tions that wk = νkp(zk).

As the zeros of p are exactly the zeros of H , we can factor p to obtain p(z) =
α(z − η0) · · · (z − ηJ−1) for some nonzero constant α. As g(z) = (p(z)/α)f(z), it

follows that hj = μj/α for each j. Thus, Ĥn = (1/α)Hn, so Ĥn is nonsingular if and
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Fig. 2. Magnitudes on [−2, 2] of filters derived from rational interpolation in the Kth roots of
unity (left) and K first-kind Chebyshev points on [−1, 1] (right) for K = 16.

only if Hn is, establishing the equivalence of the conditions stated at the end of the
theorem. Moreover, Ĥ<

n − λĤn = (1/α)(H<
n − λHn), and so Procedure (R) reduces

to the same generalized eigenvalue problem as Procedure (K), establishing the claim
that the two yield identical results in exact arithmetic.

The preceding discussion casts Theorem 4.1 as a way to associate a rational
interpolation problem with the use of a given rational filter, but we can also use it “in
reverse” to determine the rational filter that underlies a given rational interpolation
problem. In particular, we see that finding eigenvalues of A by computing the poles
of a rational interpolant to f(z) = u∗(A − zI)−1v, unmodified, in distinct points, is
equivalent to applying the SS-H method with a rational filter that has poles at those
same points and that has no zeros.

Thus, if the interpolation nodes are z0, . . . , zK−1, it follows that the rational
filter implicitly applied by rational interpolation is H(z) = α/�(z), where �(z) =
(z − z0) · · · (z − zK−1) is the node polynomial for the interpolation points and α is a
nonzero constant. Expressing r in pole-residue form, we have

(4.7) H(z) = α

K−1∑
k=0

νk
z − zk

,

where ν0, . . . , νK−1 are the barycentric weights corresponding to the interpolation
nodes zk. This can be seen, e.g., by taking p to be the constant polynomial p(z) = α
in (4.6). Rational filters of this form have the property that they achieve the maximum
possible asymptotic decay rate as |z| → ∞ among all rational filters (4.4) with poles at
the same points, an immediate consequence of the fact that the numerator polynomial
is a constant. When computing eigenvalues, this can be a desirable property, as it
ensures that the corresponding approximate spectral projector strongly attenuates
components of unwanted eigenvectors that are far from the region of interest.

As an example, if the points zk are the Kth roots of unity, then the corresponding
node polynomial is �(z) = zK − 1, and the resulting filter is H(z) = 1/(zK − 1), up to
an arbitrary scaling factor. For the K first-kind Chebyshev points in [−1, 1], the node
polynomial is �(z) = TK(z)/2K , where TK is the Kth degree Chebyshev polynomial
of the first kind, defined in section 2.3. Rescaling to eliminate the 2K factor, the filter
is H(z) = 1/TK(z).

Graphs of the absolute values of these filters on [−2, 2] for K = 16 are shown in
Figure 2. Note that while both of these filters ultimately decay as O(z−K) as |z| → ∞,
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COMPUTING EIGENVALUES WITH RATIONAL FILTERS A1375

the filter associated with the Chebyshev points decays much more rapidly immediately
outside of [−1, 1]. This means that approximate projectors based on it will do a much
better job than the filter based on roots of unity at suppressing components in the
direction of eigenvectors corresponding to eigenvalues that lie outside but close to
[−1, 1]. This advantage is another reason to consider using methods based on this
filter instead of methods derived from discretized contour integrals.

4.4. Rayleigh–Ritz for the Chebyshev interpolation filter. Now that we
have determined the filters that underlie methods based on rational interpolation, we
can remove the instabilities observed in section 3 by replacing rational interpolation
with a Rayleigh–Ritz procedure based on the same filter. We proceed exactly as in
the SS-RR method described in section 4.1, but instead of discretizing (4.1) to project
v onto the eigenspace of interest, we use the filter (4.7).

For the first-kind Chebyshev grid on [−1, 1] of length K defined by (2.5), it can
be shown by direct calculation that the barycentric weight νk corresponding to the
point xk is 2KTK−1(xk)/K. After rescaling to eliminate the 2K factor, the filter for
rational interpolation on this grid may be written in pole-residue form as follows:

(4.8) H(z) =
1

K

K−1∑
k=0

TK−1(xk)

z − xk
.

Thus, in the notation of section 4.1, to calculate the vectors vj that form the basis
for the subspace we use when applying the Rayleigh–Ritz procedure, we compute

(4.9) vj =
1

K

K−1∑
k=0

TK−1(xk)x
j
k(A− xkI)

−1v, j = 0, . . . , s− 1.

Note that the computation of these vectors requires the solution of exactly the same
linear systems as the algorithm based directly on rational interpolation presented
previously. This reformulation therefore does not require any significant additional
work compared to the original method.

To show that this allows us to get around the instabilities described in section 3,
we rerun the same example from that section using the new procedure. This can be
accomplished with the following MATLAB code:

A = diag([0:0.1:0.9, -10, 10]); I = eye(12); v = randn(12, 1);

K = 32; xk = chebpts(K, 1); wk = cos((K - 1)*acos(xk))/K;

V = zeros(12, 10); Y = zeros(12, K); e = ones(12, 1);

for k = 1:K, Y(:, k) = (A - xk(k)*I) \ v; end

for j = 0:1:9, V(:, j + 1) = sum((e*(wk.*xk.^j).’).*Y, 2); end

[Q, R] = qr(V, 0); D = sort(eig(Q’*A*Q));

The first three lines simply set up the problem and initialize a few variables for
storing results. The fourth line solves the systems at each of the Chebyshev points,
storing the results in Y, and the fifth line implements (4.9) to compute the basis,
storing the results in V. In the last line, we form the projected eigenvalue problem as
described in section 4.1.

The results of running this code with the same random vector v used in the demon-
stration of section 3 are shown in Table 2. All 10 eigenvalues have been computed to
full precision.
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Table 2

Results of applying the reformulated method based on a Rayleigh–Ritz procedure to the test
problem of section 3. All eigenvalues are computed to full accuracy. No instabilities are observed.

Computed eigenvalue Error

0.000000000000000 1.76 ×10−16

0.100000000000000 0.00 ×10+00

0.200000000000000 1.67 ×10−16

0.300000000000000 2.78 ×10−16

0.400000000000000 5.55 ×10−17

0.500000000000000 2.78 ×10−16

0.600000000000000 4.44 ×10−16

0.699999999999999 1.11 ×10−15

0.800000000000000 1.11 ×10−16

0.900000000000002 2.11 ×10−15

4.5. Contour integral derivation of the Chebyshev filter. While we ar-
rived at the filter for rational interpolation in Chebyshev points via the equivalence
established in Theorem 4.1, it is worth observing that it can also be obtained as a
limit of filters derived from discretized contour integrals taken over certain ellipses
that enclose the interval [−1, 1]. Before proceeding, we pause to outline an argument
that shows this is the case.

Let Dr be the open disc in C with center 0 and radius r > 1. The ellipses we
consider are Bernstein ellipses [42] that have the points ±1 as their foci. If r > 1,
then the Bernstein ellipse Er is the image J(Dr) of Dr under the Joukowski map
J(z) = (z + z−1)/2. As r → 1 from above, these ellipses collapse to the interval
[−1, 1].

If ψ0, . . . , ψK−1 are any K points that are equally spaced on the unit circle, then
by transforming the integral (4.2), taken over ∂Er, into one over ∂Dr via a change of
variables using J and discretizing the result using the trapezoidal rule in these points,
we obtain

1

2πi

∫
∂Er

(A− zI)−1 dz ≈ 1

K

K−1∑
k=0

(rψk)
(
A− J(rψk)I

)−1
J ′(rψk).

Using the fact that J ′(z) = (z − z−1)/(2z) and letting r → 1, one can show via
straightforward computation that the filter obtained is

H(z) =
1

K

K−1∑
k=0

i Imψk

z − Reψk
.

Let ψk = xk + iTK−1(xk), 0 ≤ k ≤ K − 1. Another computation shows that ψK
k = i

for each k, so these points are the Kth roots of i and hence are equally spaced on the
unit circle. Our filter then becomes

H(z) =
i

K

K−1∑
k=0

TK−1(xk)

z − xk
,

which is the same as (4.8), apart from a factor of i.

4.6. General rational filters and remarks on the literature. The use of a
Rayleigh–Ritz procedure in conjunction with a rational filter for computing eigenval-
ues is not a new idea. For example, the shift-and-invert Arnoldi method [35], applied
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with a given shift σ, can be thought of as filtering the spectrum with powers of the
function 1/(z − σ). This observation was extended by Ruhe to filters generated by
arbitrary rational functions with his introduction of rational Krylov methods [34] in
the 1980s. Contour integral methods and the method we discuss here differ from
traditional rational Krylov methods primarily in the mechanics of how they build
the subspace. Unlike the rational Arnoldi algorithm, which applies each shift to the
starting vector in succession, these methods apply the shifts simultaneously and then
take linear combinations to form the result. Doing things the latter way makes the
method easier to parallelize, but all the shifts must be chosen in advance. In contrast,
a method that employs the former approach can choose the shifts adaptively [7, 44].

We arrived at the concept of a rational filter by considering how discretized con-
tour integrals and rational interpolation act on the resolvent, but it is not necessary
to proceed in this way. It is equally possible to begin directly with (4.4) and ask how
to choose the poles zk and residues wk to construct an effective filter. Eigenvalue
algorithms based on rational filters have been explored extensively from this view-
point in the Japanese literature by Murakami [21, 22, 23, 24, 25, 26], who refers to
them as filter diagonalization methods. The term “filter diagonalization” comes from
a class of closely related algorithms introduced by Neuhauser in the 1990s for calcu-
lating eigenstates of quantum mechanical systems that lie in a given energy interval
[27, 28, 41, 46].

In [22], Murakami considers the problem of computing all the eigenvalues within a
given real interval of a matrix pencil A−λB, where A and B are both real symmetric
and B is positive-definite. After introducing the concept of filter diagonalization
methods, he discusses the result mentioned in section 4.3 that one can obtain a filter
H(z) that decays as rapidly as possible as |z| → ∞ by taking the residues to be
the barycentric weights of the corresponding poles (though he does not appear to
use exactly this language). Murakami actually proposes the use of the reciprocal
Chebyshev filter that we have been considering, justifying it using the minimality
properties of Chebyshev polynomials [42]. Ultimately, however, he sets it aside in favor
of filters that have no poles on the real axis (and hence require complex arithmetic
to implement), owing to the potential for numerical instabilities that can arise when
one of the eigenvalues sought lies close to one of the filter poles. Murakami proposes
a fix for these instabilities in [23], which we will discuss in section 5.1.

In [24, 25, 26], Murakami goes on to consider the use of rational filters based
on the four “classic” filter types used in analog circuit design [30]: Butterworth,
Chebyshev, inverse Chebyshev,2and elliptic. Each of these filter types satisfies a
different optimality condition with respect to certain criteria, and hence each may be
expected to perform particularly well in certain circumstances. All of them have poles
located off the real axis. Of these filters, the elliptic (also called Cauer or Zolotarev)
filter is especially noteworthy because of its ability to attain a sharper transition across
the boundary of the search interval than the other types. The price one pays for using
this filter is that it does not decay to zero at infinity. This makes it well-suited to
problems for which there are unwanted eigenvalues that lie outside but close to the
interval of interest. On the other hand, if the desired portion of the spectrum is fairly
well-separated from the rest, one will typically achieve greater accuracy by using a
filter that decays at infinity. The use of elliptic filters in conjunction with the FEAST
algorithm has been considered in [45] and is explored further in the paper [14].

2In spite of their names, the “Chebyshev” and “inverse Chebyshev” filters are not the same as
the filters based on the reciprocals of Chebyshev polynomials considered in this paper.
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One can also consider filters derived from rational interpolation on an interval
in points other than first-kind Chebyshev grids, i.e., filters which are reciprocals of
polynomials other than Chebyshev polynomials. Recall that we based our choice of
the first-kind Chebyshev points on their suitability for use as interpolation points, a
property that stems from the fact that they cluster near the interval endpoints [42].
If one uses a Rayleigh–Ritz-based approach instead of one based on interpolation, one
might imagine that this clustering property would be less important.

Nevertheless, we can still isolate two advantages to using the proposed filter based
on the reciprocal Chebyshev polynomial. First, Chebyshev polynomials grow rapidly
immediately outside of the interval [−1, 1] compared to other polynomials of the same
degree [33]. This means that filters based on their reciprocals will typically do a better
job of suppressing unwanted eigenvalues outside but close to the interval of interest
than will filters with the same number of poles that achieve the same asymptotic decay
rate at infinity. We noted this advantage previously in section 4.3 when comparing
the proposed filter to the one derived from rational interpolation in roots of unity
(recall Figure 2).

Second, the residues for the reciprocal Chebyshev filter, i.e., the barycentric
weights for the first-kind Chebyshev points, are roughly uniform in magnitude, and
hence the terms in the pole-residue expansion (4.8) are weighted roughly equally.
Other point distributions may give rise to barycentric weights that do not have this
property; for instance, the weights for equispaced points vary by factors which grow
exponentially as the number of points increases [2]. Filters with the maximum asymp-
totic decay rate derived from such points may thus excessively weight the contributions
from linear systems solved at some of the poles relative to others, potentially reducing
accuracy.

5. Some practical considerations. In the preceding sections, we have pre-
sented these methods in their simplest possible forms. In this section, we briefly
discuss a few additional items which should be considered when realizing them in
practice.

5.1. Dealing with eigenvalues near filter poles. The method we have pro-
posed based on the use of the reciprocal Chebyshev polynomial filter draws its strength
from its placement of the filter poles within the interval of interest. While we have
shown that this can be advantageous, it also has a potential drawback. If it happens
that one of the eigenvalues of A, say, λ, lies close to one of the filter poles, say, zk,
then ‖(A − zkI)

−1‖ will be large. Hence, the solutions to the linear systems at zk
will dominate those from the other poles, and the resulting filtered vectors will have
large components in the direction of the eigenvectors of A corresponding to λ. If λ
is sufficiently close to zk, these components can overwhelm those in the directions of
the other eigenvectors of A, degrading the accuracy of their computation and that of
their corresponding eigenvalues, though λ itself will be computed highly accurately.

As an illustration, we consider the same problem from section 3 but with the
eigenvalue of A at 0 shifted to lie at the point cos(31π/64) + 10−14. Furthermore,
instead of taking A to be diagonal, we set A = Q∗DQ, where D is a diagonal matrix
of the specified eigenvalues and Q is a randomly generated 12×12 orthogonal matrix.
Since cos(31π/64) ≈ 0.049 belongs to the 32-point first-kind Chebyshev grid on [−1, 1],
A has an eigenvalue very close to one of the filter poles. The results of running the
same code from section 4.4 with this new A are presented in the left half of Table 3.
The eigenvalue near cos(31π/64) has been computed to full accuracy, while the other
eigenvalues, especially those near the middle of the spectrum, have suffered badly.
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Table 3

Eigenvalues and absolute errors for the example of section 5.1 illustrating the handling of
eigenvalues that fall extremely close to filter poles.

Original filter Dropped pole

Eigenvalue Error Eigenvalue Error

0.049067674327428 7.6 ×10−17 0.049067674327428 1.7 ×10−16

0.100005648969141 5.6 ×10−06 0.100000000000000 2.4 ×10−16

0.200031541585367 3.2 ×10−05 0.200000000000000 8.3 ×10−17

0.300016487697101 1.6 ×10−05 0.300000000000000 3.9 ×10−16

0.411431339360006 1.1 ×10−02 0.400000000000000 5.6 ×10−17

0.502930792938639 2.9 ×10−03 0.500000000000000 2.2 ×10−16

0.600000216771745 2.2 ×10−07 0.599999999999998 2.4 ×10−15

0.700033492323077 3.3 ×10−05 0.699999999999999 1.4 ×10−15

0.800000015779351 1.6 ×10−08 0.800000000000000 1.1 ×10−16

0.900000000238297 2.4 ×10−10 0.899999999999999 1.1 ×10−15

As mentioned in section 4.6, this phenomenon was noted by Murakami [22, 23],
who refers to it as a “resonance problem.” In [23], he presents two options for over-
coming it: either drop the offending poles from the filter or shift them to lie somewhere
else. The former is simpler and needs no extra linear solves but requires that one ac-
cept the use of a filter with a slower asymptotic decay at infinity than that with which
one began the computation. The latter does not have this disadvantage, since it keeps
the total number of poles the same, but it is more expensive, requiring the solution of
additional linear systems at the new poles. Murakami discusses these solutions in the
context of non-Hermitian eigenvalue problems. Nevertheless, it is clear that they are
also applicable in the Hermitian (and, in particular, the real symmetric) case, though
he does not appear to mention this explicitly.

Under either option, one will need to recompute the filter residues to ensure that
the resulting filter has the desired behavior. If one is working with filters of the type
(4.7) and wishes to maintain the property that the recomputed filter has the maximum
possible asymptotic decay rate at infinity, this amounts to calculating the barycentric
weights for the new grid. Murakami provides explicit formulae for doing this in [23],
which he phrases as updates to the weights for the original grid.

Before one can move to address this problem, however, one must first determine
whether it has occurred. In [23], Murakami suggests looking at the factor by which
application of the resolvent at a given filter pole (via the solution of the correspond-
ing linear system) magnifies the norm of the starting vector and declaring the pole
problematic if this factor exceeds a predetermined threshold. One could also consider
simply looking at the computed eigenvalues and seeing if any are close to the filter
poles; however, doing this may be subtle, as it is not clear how close an eigenvalue
must be to a pole to be considered “too close,” and the induced error may vary greatly
between eigenvalues, as the results in the left half of Table 3 demonstrate.

Nevertheless, we note that the distance which qualifies as “too close” may be
even smaller than one may expect at first, thanks to the Rayleigh quotient effect:
an O(ε) error in an approximation to an eigenvector induces an O(ε2) error in the
Rayleigh-quotient estimate of the corresponding eigenvalue [43]. If an eigenvalue is a
relative distance α from a pole, then since the terms in the partial fraction expansion
for the filter function are inverse linear, we might anticipate induced errors in the
nonresonant eigenvectors on the order of εmα

−1, where εm is the machine epsilon,
yielding errors in the nonresonant eigenvalues on the order of ε2mα

−2. Thus, the errors
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Fig. 3. Behavior of residuals and errors in the eigenvalues at 0.4 (left) and 0.8 (right) as the
eigenvalue near cos(31π/64) in the example considered in section 5.1 gets close to that point.

in the eigenvalues due to the resonance effect fall off rapidly as the distance α increases.
This suggests that if one seeks to compute only eigenvalues and not eigenvectors, then
this problem may be less cause for concern than it may seem initially.

These facts are illustrated in the plots of Figure 3, which we produced by vary-
ing the distance α between the eigenvalue near cos(31π/64) and that point in the
numerical example just discussed. The solid lines show the errors in the approxima-
tions to the eigenvalues at 0.4 (left) and 0.8 (right), and the dotted lines show the
associated residuals, a measure of the error in the corresponding eigenvectors. The
dashed lines in both plots illustrate the decay rates of O(α−1) for the residuals and
O(α−2) for the eigenvalue errors. The error in the eigenvalue at 0.4 reaches the level
of machine precision for α larger than around 10−7, while for 0.8, this occurs for α as
small as 10−10. The residuals at these values are relatively large; however, if one is
not concerned with approximating the eigenvectors, this is not a problem.

Returning to our original numerical example and noting that the solution to
the linear system at the pole at cos(31π/64) has a norm larger than that of the
starting vector by a factor on the order of 1013, we conclude that a resonance problem
has occurred and decide to correct it by simply dropping this pole from the filter.
Recalculating the barycentric weights using (4.5) and applying the new filter, we
obtain the results in the right half of Table 3. All eigenvalues have now been obtained
to full precision.

5.2. Determining the subspace size. In our descriptions above, we have made
the assumption that the number s of eigenvalues within the region of interest is known
in advance and taken the dimension d of the subspace used for the Rayleigh–Ritz
procedure to be equal to this number. In practice, s will have to be calculated or
estimated in some way. For modest-size Hermitian eigenvalue problems, this can
be accomplished using the “spectrum slicing” technique based on Sylvester’s law of
inertia and the LDL∗ decomposition [31]. For larger problems, stochastic techniques
have been developed that use contour integrals to estimate the trace of the spectral
projector onto the region of interest [5, 9]. It is not immediately obvious how to extend
these latter techniques to work with arbitrary rational filters because they rely on the
filter taking the same (or approximately the same) value at every eigenvalue in the
search region. Further investigation is needed.

Actually, all that is required is that d ≥ s, and it is often advantageous to take
d to be larger than s even when s is known exactly. This is especially helpful if the
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spectrum of A is not well-separated so that there are eigenvalues close to but outside
the search region that may not be adequately suppressed by the filter. Increasing d
has the effect of incorporating eigenvectors corresponding to such eigenvalues within
the search subspace so that they are computed instead of ignored. This results in a
larger projected eigenvalue problem and the need to solve additional linear systems if
block methods are used (see the next subsection). Nevertheless, the cost is typically
far less than would be required to solve the problem by adding more filter poles to
achieve the desired level of suppression. In [32], Polizzi suggests choosing d ≥ 1.5s as
a rule of thumb.

While taking d to be too small yields poor results due to the influence of unwanted
eigenvectors, if d is too large, one will typically find that some of the computed
eigenpairs are spurious and need to be discarded. One way to deal with these is to
check the residuals of the computed eigenpairs and eliminate those which are large.
This is essentially what is done in the version 2.1 release of FEAST [40].

An alternative technique, proposed by Sakurai and coworkers [15, 16], uses the
SVD to pare down the search subspace prior to solving the projected eigenvalue
problem. The basis vectors for the subspace computed by applying the rational filter
are gathered as columns into a matrix. One then computes the reduced SVD of this
matrix and replaces the original basis vectors with the left singular vectors, omitting
those corresponding to negligible singular values. This is very similar both in spirit
and in execution to the techniques employed by ratinterp for eliminating spurious
pole-zero pairs from rational interpolants briefly mentioned in section 2.3. In [36],
Sakurai and coworkers propose further that this technique can be used to help detect
when one’s initial choice of the subspace dimension is too small: if none of the singular
values are negligible, a larger basis is probably needed.

5.3. Block methods. If implemented exactly as described above, these methods
cannot detect if an eigenvalue is derogatory, i.e., if it has multiplicity greater than
one. For the SS-H and rational interpolation methods, this follows from the fact that
the scalarized resolvent (2.1) has only a simple pole at each of the eigenvalues of A,
even if some of those eigenvalues have non-unit multiplicity. From the perspective of
SS-RR, this occurs because the subspace is generated from the projected powers of A
applied to a single initial vector v.

This problem can be addressed by using multiple starting vectors to build the
subspace. Sakurai and coworkers introduced this technique for their algorithms in
[15] and [16] under the name of the “block Sakurai–Sugiura method,” while Polizzi
used it from the outset in FEAST [32]. Doing this requires one to solve additional
linear systems at each filter pole, but since systems corresponding to different starting
vectors are independent, they can be solved in parallel.

Aside from being able to detect higher-multiplicity eigenvalues, an additional
benefit to using multiple starting vectors is that it allows one to use fewer projected
powers of A when building the subspace [16]. This is useful because higher powers
weaken the filter. For instance, when using (4.9) to apply the reciprocal Chebyshev
polynomial filter we have been considering, the vector vj is computed by filtering v
with

Hj(z) =
1

K

K−1∑
k=0

xjkTK−1(xk)

z − xk
=

zj

TK(z)
, 0 ≤ j ≤ K − 1.

The higher the power j, the more slowly the filter decays as |z| → ∞.
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Allowing higher powers does, however, have the advantage of requiring fewer
linear solves, so a balance must be struck. To date, there is no consensus about how
this is best accomplished. In [36], Sakurai and coworkers propose the heuristic that
the number of starting vectors be chosen so that the number of powers (including the
zero power) employed to build the subspace is at most K/4. Polizzi, on the other
hand, does not use higher powers at all in FEAST [32].

5.4. Outer iteration. Finally, if the accuracy of the computed eigenpairs is
not satisfactory, it can be improved by using a simple iterative procedure: just take
the computed eigenvectors (or some linear combination(s) thereof) as starting vectors
and repeat the process, filtering them to generate a new subspace and applying the
Rayleigh–Ritz procedure again to get a new set of eigenpairs. This idea was proposed
by Polizzi in [32] for FEAST, and it amounts to applying powers of the underlying
filter or, equivalently, subspace iteration [40]. The disadvantage to doing this is that
an additional set of linear solves is required for each iteration. Since the same filter
is used each time, however, one can mitigate this cost by computing the LU factors
of the resolvent at each filter pole during the first pass and then reusing them on
subsequent passes.

6. Summary of proposed algorithm. Taking into account some of the con-
siderations discussed in the previous section, a more practical version of the algorithm
we have been discussing based on the reciprocal Chebyshev polynomial filter might
proceed as follows:

1. Fix the matrix A and the search interval [a, b]. Choose the number K of
filter poles and the maximum number M of powers of A that will be used to
build the search subspace. Let x0, . . . , xK−1 be the filter poles given by (2.5),
rescaled to lie in [a, b], and let ν0, . . . , νK−1 be the corresponding barycentric
weights.

2. Compute or estimate the number s of eigenvalues of A in [a, b], e.g., using
Sylvester’s law of inertia.

3. Decide the minimum dimension dmin ≥ s of the search subspace and calculate
the number L of starting vectors as L = �dmin/M�. The search subspace
dimension is then d =ML.

4. Generate L random starting vectors, and gather them as columns into an
N × L matrix V .

5. Factor (A− xkI) = LkUk at each filter pole xk.
6. For each k, solve LkUkWk = V for Wk.
7. For each power 0 ≤ j ≤ M − 1, calculate Rj =

∑K−1
k=0 xjkνkWk. Let R =[

R0 · · · RM−1

]
.

8. Factor R = XSY ∗ in an SVD. Let Q be the first r columns of X , where r is
the number of singular values of R greater than a chosen tolerance.

9. Compute the eigenvalues λj and corresponding eigenvectors yj of Q∗AQ.
Discard those that do not lie within the search interval. The remaining λj
are approximations to the desired eigenvalues of A, and the vj = Qyj are the
corresponding approximate eigenvectors.

10. If an eigenvalue λj is too close to a filter pole, adjust the filter using one of the
strategies outlined in section 5.1 and return to step 7. Otherwise, proceed.

11. If greater accuracy (as measured, e.g., by the size of the residuals of the
approximate eigenpairs) is desired, reassign the L columns of V to be suitably
chosen linear combinations of the vectors vj , and return to step 6.
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Fig. 4. Sparsity patterns for the matrices of the test problems considered in section 7.

7. Numerical examples. We close with a pair of examples illustrating the
application of the proposed algorithm to larger problems. Our first test matrix A is
the PARSEC/SiH4 matrix from the University of Florida Sparse Matrix Collection
[4]. A is real symmetric with dimensions 5041 × 5041, and it has 171,903 nonzero
entries. The sparsity pattern is shown in the left half of Figure 4.

We apply our method using the reciprocal Chebyshev polynomial filter with poles
at 16 Chebyshev points of the first kind in [−1, 1]. Using the approach mentioned in
section 5.2 based on Sylvester’s law of inertia, we find that A has 35 eigenvalues in
[−1, 1]. We take the dimension d of our search subspace to be 72, roughly twice this
value. We use a block Sakurai–Sugiura-like approach (see section 5.3) using up to
16/4 = 4 powers of A, following the rule of thumb from [36], and 72/4 = 18 starting
vectors. We do not employ any form of outer iteration (see section 5.4).

Our computations were carried out in MATLAB R2013a on 1 core of a machine
with twin 8-core Intel Xeon processors, clocked at 2.7 GHz, and 256 GB of RAM.
The results are shown in Tables 4 and 5.

Table 4 displays a selection of the eigenvalues in [−1, 1] (specifically, the lowest
10) computed by each of three methods. The results for the remaining eigenvalues are
similar. The leftmost column shows those computed by the method just described.
For comparison, the middle column shows approximations to the same eigenvalues
computed using the same procedure but using a contour integral method based on
applying the midpoint rule in 32 points (i.e., the trapezoidal rule in 32 roots of unity,
shifted along the unit circle by an angle of π/32), exploiting the symmetry to require
only 16 linear solves. This is the same as the number of solves required by the
reciprocal Chebyshev filter, but they require complex arithmetic. Finally, this problem
is small enough that dense methods can solve it in a reasonable amount of time, and
the results of using MATLAB’s built-in eig function are shown in the rightmost
column. Digits in each eigenvalue that were computed the same for all three methods
are underlined. All methods agree to at least 10 digits on all eigenvalues.

Table 5 shows the amount of time taken by each method to produce the figures in
Table 4. For the projection methods based on rational filters, this includes the time
required to count the eigenvalues using Sylvester’s law. We observe that the method
which uses the filter based on the reciprocal Chebyshev polynomial is faster than that
that uses the filter derived from the midpoint rule by approximately a factor of 2,
reflecting the difference between real and complex arithmetic. Direct solution of the
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Table 4

Selected eigenvalues for the PARSEC/SiH4 test problem of section 7. Figures in each row that
are the same in all three columns are underlined.

Cheb. polynomial Midpoint rule Dense solver

−0.995566528834318 −0.995566528834321 −0.995566528834260

−0.625158654642699 −0.625158654642699 −0.625158654642678

−0.625158654640977 −0.625158654640979 −0.625158654640871

−0.625158654638943 −0.625158654638941 −0.625158654638861

0.034524054616914 0.034524054616922 0.034524054616893

0.034524054618691 0.034524054618692 0.034524054618906

0.034524054620245 0.034524054620246 0.034524054620210

0.045410512335108 0.045410512335109 0.045410512335284

0.176963580133752 0.176963580133772 0.176963580133777

0.176963580137865 0.176963580137871 0.176963580138021

Table 5

Computation times on a single processor for the PARSEC/SiH4 test problem of section 7. Use
of multiple processors would allow a speedup of the first two figures by a factor of up to 16.

Cheb. polynomial Midpoint rule Dense solver
38 s 63 s 420 s

problem with eig is the slowest of the three, as expected for a problem of this size.
In particular, the rational filter methods are much faster in spite of the fact that we
employed only 1 core for the computations. Since the parameters for each have been
chosen to require 16 independent linear solves, they can in theory be sped up by a
factor of up to 16.

For our second example, we take A to be the GHS indef/olesnik0 test matrix, also
from the University of Florida Sparse Matrix Collection. This real symmetric matrix
has dimensions 88,263 × 88,263 and has 744,216 nonzero entries. Its sparsity pattern
is plotted in the right half of Figure 4.

We search for the eigenvalues of A in [1.005, 1.010], again using the reciprocal
Chebyshev polynomial filter with poles at 16 Chebyshev points of the first kind.
Employing Sylvester’s law, we find that there are 44 eigenvalues of A in this interval.
We take the search subspace dimension to be 88 and use 22 starting vectors, again
limiting the number of powers of A to 4. This time, we employ one step of outer
iteration to refine the eigenpairs.

Ten of the computed eigenvalues and their 2-norm relative residuals (defined for
an approximate eigenvalue λ and corresponding eigenvector v as ‖Av − λv‖/‖Av‖)
are displayed in the first two columns of Table 6. As with the previous example, we
have also computed the same eigenvalues using an equivalent contour integral method
based on the midpoint rule that requires the same number of linear solves. Finally,
we performed the computation a third time using MATLAB’s eigs function, based
on ARPACK [20], to search for 44 eigenvalues near 1.0075, the midpoint of the target
interval. All three methods agree to at least 10 digits in the displayed eigenvalues.
The maximum residual for all eigenvalues computed using the reciprocal Chebyshev
polynomial filter, including those not displayed in the table, is 2.1 × 10−8. For the
midpoint rule, it is 2.2× 10−7. For eigs, it is 2.1× 10−12

Timings for each of the methods applied to this problem are given in Table 7. The
values all include the time required to count the eigenvalues in the search interval using
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Table 6

Selected eigenvalues and residuals for the GHS indef/olesnik0 test problem of section 7. Figures
in the eigenvalues that are the same for all three methods are underlined.

Cheb. polynomial Midpoint rule eigs

Eigenvalue Residual Eigenvalue Residual Eigenvalue Residual

1.005045284020284 8.4 ×10−09 1.005045284020280 2.6 ×10−10 1.005045284020283 5.4 ×10−13

1.005103490546754 3.4 ×10−10 1.005103490546747 4.7 ×10−10 1.005103490546746 7.5 ×10−13

1.005242127920682 8.1 ×10−10 1.005242127920672 4.1 ×10−10 1.005242127920671 4.7 ×10−13

1.005379305986318 4.4 ×10−09 1.005379305986315 3.5 ×10−10 1.005379305986314 2.0 ×10−12

1.005441288487731 5.0 ×10−09 1.005441288487725 2.9 ×10−10 1.005441288487726 5.3 ×10−13

1.005502251201476 4.1 ×10−09 1.005502251201470 4.4 ×10−10 1.005502251201470 2.4 ×10−13

1.005588537196233 2.1 ×10−10 1.005588537196231 2.6 ×10−10 1.005588537196233 3.4 ×10−13

1.005691187808958 4.2 ×10−09 1.005691187808951 3.3 ×10−10 1.005691187808950 1.8 ×10−12

1.005875698341051 1.3 ×10−09 1.005875698341042 4.6 ×10−10 1.005875698341042 1.6 ×10−12

1.006254446406822 1.8 ×10−09 1.006254446406818 5.4 ×10−10 1.006254446406822 1.1 ×10−12

Table 7

Computation times on a single processor for the GHS indef/olesnik0 test problem of section 7.
Again, the use of multiple processors would allow a speedup of the first two figures.

Cheb. polynomial Midpoint rule eigs

42 s 61 s 11 s

Sylvester’s law. As before, the method based on the reciprocal Chebyshev polynomial
is faster than the one based on the midpoint rule, though the speedup is closer to a
factor of 1.5 for this problem instead of 2. MATLAB’s eigs is considerably faster
than both; however, as in the previous example, since we are using only 1 core for
our computations, we are not taking full advantage of the parallelism offered by the
other methods. As before, these methods can be sped up by approximately a factor
of 16, making their timings much more competitive.
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