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Abstract

We recast the well-known axiom system of quantum mechanics
used by physicists (the Dirac calculus) in the language of Continu-
ous Logic. For the basic version of the axiomatic system we prove
that along with the canonical continuous model the axioms have ap-
proximate finite models of large sizes, in fact the continuous model is
isomorphic to an ultraproduct of finite models. We analyse the contin-
uous logic quantifier corresponding to Dirac integration and show that
in finite context it has two versions, local and global, which coincide
on Gaussian wave-functions.

1 Introduction

1.1 The axiomatic formulation of quantum mechanics was introduced by
Paul Dirac in 1930 [1] through a description of Hilbert space, and later de-
veloped with greater mathematical rigor in a monograph of 1932 by John
von Neumann. Since 1930, Dirac went through several rewritings and new
editions to refine his calculus to a level he considered satisfactory. In fact,
von Neumann himself expressed his dissatisfaction not long after publication
of his book, and spent considerable effort looking for alternatives [20]. Mod-
ern books present Dirac’s axioms in a succinct form, often omitting much of
the technical detail.

In section 2 we survey the axioms of quantum mechanics following [2].
Readers with a background in logic will notice that what physicists refer to
as axioms is very far from what is a conventional set of axioms in a formal



language even in its early form as presented e.g. by Hilbert’s axiomatisation
of geometry [3]. We noted earlier, in [5] and in [7], that the language that
Dirac introduced is that of continuous logic, CL, and the (rigged) Hilbert
space which the axioms describe is a close analogue of cylindric algebra of
Tarski, see [6], in a CL-version. In section 4 we go further and prove our main
Theorem 4.7 stating that the continuous theory of Dirac - von Neumann given
in Hilbert-space form (with integral operators) has two kinds of models: the
canonical model U(oo) based on wave-functions/continuous predicates on
R™, and an asymptotic class of finite approximate models which we call
H-structures, U(n). More precisely we prove that the canonical continuous
model U(oo) is isomorphic to a CL-ultraproduct of the finite U(n), n € N.

As a matter of fact our U(n) are specific lattice models. Of course, a
variety of lattice models have been in use in physics. They play an important
role as toy models, as vehicles for specific calculations as well as modelling
specific phenomena. However, the fact that the specific cyclic lattice models
U(n) hosting the full set of integral operators represent in mathematically
exact way Dirac’s axioms of quantum mechanics is novel. In particular,
the Dirac integral is shown to correspond to a summation formula which is
“local” in a certain well-defined sense, namely the summation domain has
to be much shorter then the length of the full cycle. All unitary operators
of the form e’ where L is self-adjoint in a form of a polynomial of P and Q
with rational coefficients, are represented in the U(n).

The proof of the theorem is based on an analysis of Dirac’s integral (equiv-
alently of the structure of the underlying rigged Hilbert space) in the context
of a CL-quantifier. Modelling Dirac’s integral in finite CL-structures U(n) we
expose a specific local nature of this quantifier and compare it with another
possible global quantifier, based on discrete number-theoretic Gauss summa-
tion. Our second main result Theorem 5.6 states that for theories restricted
to Gaussian states (whose Hamiltonian includes quadratic terms only) the
local and the global quantifiers act equivalently.

Gaussian part of quantum mechanics is the backbone of the theory. From
it the theory extends by considering perturbed Gaussian states. We demon-
strate in subsection 5.7 that the global quantifier is applicable to perturbed
Gaussian states with result close to ones of perturbation theory.



2 Dirac’s calculus and axiomatisation of
quantum mechanics

Below we reproduce a slighly edited version of axioms from [2], 6.3.

2.1 Axiom 1. The state of a quantum system is described by a vector |¢)
belonging to a complex Hilbert space H. This state is usually called “ket .
A complex Hilbert space H is a vector space, which can be finite dimensional
or infinite dimensional, equipped with the complex scalar product (also called
inner product) (¢|¢)') between any pair of states [¢), [¢/') in H. The norm,
or modulus, of a generic vector [1)) € H is defined as

11l = [(&[)]

and usually |¢) is normalized to one, i.e.|[t)|| = 1. The symbol ()| which
appears in the definition of the norm is called “bra ¢)” and it can be intepreted
as the fuction

(| : H —C.

For any [¢') € H this function gives a complex number (i|¢)') obtained as
scalar product of |¢)) and |[¢/). In a complex Hilbert space H it exists a set of
basis vectors |¢,) which are orthonormal, i.e. (¢po|¢s) = 6(a — ), and such

that
) = an|¢a> (1)

for any [¢), where the coefficients ¢, belong to C.

Axiom 2. Any observable (measurable quantity) of a quantum system is
described by a self-adjoint linear operator F': H — H acting on the Hilbert
space of state vectors.

For any classical observable F' it exists a corresponding quantum observ-
able F'.

Axioms 3.The possible measurable values of an observable F' are its
eigenvalues f, such that

FIf)y = 11
with | f) the corresponding eigenstate. The observable | f) admits the spectral

resolution
F =Y fIf)/] (2)
f
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where {|f)} is the set of orthonormal eigenstates of F', and the mathematical
object (f], called “bra of f”, is a linear map that maps into the complex
number. This also satisfy the identity

SINUI=1
f

Axiom 4. The probability P of finding the state |¢)) in the state |f)
(both of norm 1) is given by

P ={fl¥)*

This probability P is also the probability of measuring the value f of the
observable F' when the system is in the quantum state |¢).

Axiom 5. The time evolution of states and observables of a quantum
system with Hamiltonian H is determined by the unitary operator

K" := exp(—iHt/h)
, such that [ (t)) = K*|¢) is the time-evolved state |1)).

2.2 The dynamical reformulation of quantum mechanics. This is
based on the Stone Theorem:

For each self-adjoint operator A on H there is a well-defined one param-
eter group of unitary operators on H

{1 te R}

and A can be recovered uniquely from the group.

Thus, we may reduce the theory to the equivalent theory of Hilbert spaces
with unitary operators of the form above. One advantage of such a theory is
that the unitary operators, unlike unbounded self-adjoint operators, are de-
fined on the whole of H and their treatment is mathematically more straight-
forward. The framework is also called the Heisenberg picture of quantum
mechanics.

2.3 Now we make several comments on the axioms.

The term “Hilbert space” here should actually be read as the rigged
Hilbert space (see [11]) because it differs from the standard definition by
accommodating both a Hilbert space ® and the dual space ®* with

® CHC P
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The summation formulas like (1) and (2) are presented in a form of an
integral if the family |¢),) is continuous but seems natural in the summation
form when « runs in the discrete spectrum of an operator.

2.4 Remark. Rigged Hilbert spaces provide a powerful mathematical
framework to extend quantum mechanics, allowing distributions and general-
ized eigenfunctions to be rigorously handled. However, as is almost generally
accepted, not every element corresponds to a physically realisable state —
some are purely mathematical artifacts, see e.g. [12].

In the more general context of quantum field theories Wightman axioms
explicitly postulate that physically meaningful part of the rigged Hilbert
space H is a dense subset D C H.

3 The axioms in the setting of Continuous
Logic

3.1 We discuss in this section the possible interpretation of the above ax-
ioms in terms of (the most general versions of) Continuous Logic (CL) and
Continuous Model Theory.

Recall that in a most general terms the language of CL consists of predi-
cate symbols (we will ignore function symbols for now), a collection of connec-
tives, that is continuous functions C" — C, and quantifiers, that is continuous
transformations of predicates.

A basic CL-formula is made of predicate symbols using connectives and
quantifiers.

An interpretation of symbols and formulas begins with a choice of a uni-
verse M, which may be a metric space or, in more recent application, a
measure space.

Symbols of n-ary predicates P are interpreted as maps P : M™ — C.If f :
C" — C is a connective and 1, ..., 1, are formulas, equivalently, definable
predicates, than the formula f(11,...,1,) is interpeted as the composition of
the maps defined by 1, ..., ¥, with f(z1,...,z,). Quantifiers are interpreted
in a special way as transformations of formulas in n—+1 variables into formulas
in n variables.

The uniformity of interpretation of language symbols across different M
is ensured by certain uniform continuity moduli for the symbols P.



A universe M together with interpretation of predicates P of the language
constitutes a structure in continuous model theory. Importantly, the definable
sets in a structure are obtained not just by CL-formulas but also as limits in
the families of formulae-definable sets.

See [4], [14] and [?] for further details.

3.2 Recall that the historical prototype of a vector |1)) of the Hilbert space
has been a wave-function, that is a function

v: M—=C

from a configuration space M into a bounded domain of the complex numbers
C.

These can be seen as predicates on a domain which, as the matter of facr
is identified in Dirac calculus of quantum mechanics with R™, where R is the
real line seen as a measure space. Definable predicates of norm 1 will be
referred to as states.

Of special significance are the momentum and position states. Mo-
mentum states where defined by Dirac as the definable family of predicates
of the form

1 —ipx
p) = 75t ", peER (3)

One can consider a C-linear space generated by the momentum states and
define Hermitian inner product, first between the momentum states

(p1lp2) == 0(p1 — p2) (4)

where ¢ is the Dirac delta. However, in the context of rigged Hilbert spaces
one can identify the inner product above with the Kronecker delta.

The position states |x), z € R, by their physical meaning are character-
istic functions of one-point subsets {x}

|z) = d(x — 2) (5)

(as a function of z) which for convenience of continuous mathematical ma-
nipulations have been replaced here and in (4) by Dirac’s delta-functions,
that is by distributions. In this sense

1 TP
o) == [ s )
6



Equivalently, position states can be represented by linear functionals (bra-
vectors)

(x] = [¢) = ()
or equivalently, for ¢ running in {|p) : p € R},

(x| : e T (7)

)
b V2T
In model theory terms, the linear functionals (z| are imaginary elements
in the structure, the interpretation of which is given by (7).
The basic unitary operators (Weyl operators) can be defined by their
action on the basis:

"t lp) e elp)
Qo z) = e)a).

In particular, the former can be equivalently, using (6), written as

iP

e z a;+1)|p

0 L

52
The time-evolution operator Kf, ., for a free particle is e_”%, t € R, that

ree
18

K':|p) — e "= |p) (8)

1 ) p2
Kt |xo) — —/e’(mo_t2) d
‘ 0> \/% R |p> P

1 (ot
(@l ) = = [ ) alphap
R

Substituting (3) one gets

which yields by (6)

and

1
27T

oS
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1 . @—=p? 2T 1 i(z—z})

= —ei 2t = e 2t
2w it Vit
and one obains the well-known formula
]_ i(zfzz)
(x| K*|xo) = e o 9)

3.3 In a more abstract axiomatic setting the theory of Dirac integration in
the context of Gaussian states can be expressed in formulae:

for a # 0,
3 1  p2 i ]. . p2
R ta a

/ =2y — 5(b) = b15(0) (11)

More advanced calculus, going beyond Gaussian states, requires meth-
ods of perturbation theory. This can be illustrated by the following typical
calculation related to anharmonic oscillator in quantum mechanics and also
setting a pattern for crucial calculations in QFT

and,

/ &R do = ¥ V2mh(1 + iAh + o(AR)) (42
R

for h > 0 small, see [17], section 2.

3.4 In terms of structures, let H,, be the set of all m-ary predicates on R.
This by definition has structure of C-vector spaces

C=HoC...CH,C...CHps1...H.

Also, one uses quantifiers, linear maps written as integrals

(b(zl,...,zn)|—>/R¢(21,...,zn)dzn.

In fact, this is a collection of linear maps

/: Hm—H _>Hm7
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the rules of calculation of which defined by Dirac’s improper integration.
For a discrete basis the sum in (1) can be represented in CL-setting as a
definable countable sum, see e.g. [14], Example 5.2.
A special binary operation in the spaces, inner product,

Hon X Hip = C; (21,0 20), 0 (21, .0y 20)) = Q" pdzy ... dzy,

Rm

where ¢* is the complex comjugate of ¢ and [, is m-multiple integral. (¢[¢)
can be seen as a continuous predicate of equality ¢ = 1.
One restricts the notion of state to predicates ¢ such that (¢|¢) = 1.

An important role in the theory is played by a collection of linear maps
(operators)
L:H,, — H,

with physical meanings. These can be of the integral form

¢(z1,22) = | aly,z1) - ¢y, 22) dy

RFE
where |y| = |z1| = k, a € Hay, or as classical linear operators
P:o(x,2) — ih% or Q:¢(x,2)—x-d(x,Zz)

The time evolution operator exp(—:Ht/h) acts on states as a uni-
tary operator determining the evolution of a state in time ¢ with a given
Hamiltonian H. A state ¢, determining a system at time ¢, evolves into
a state ¢ = exp(—iH(t — ty)/h) with the probability amplitude equal to
(1, ®1), which is a complex number of modulus 1. The calculation of the
CL-formulae ¢; and (¢¢,|¢:) (which involve mainly calculations of the appli-
cation of quantifier [) is the central problem of quantum theory, equivalent
to solving the associated Schrodinger equation.

All of the above together makes the H,, a collection of Hilbert spaces
with linear operators and H an ambient Hilbert space.

Note that unitary operators of the form e** where L is self-adjoint can
mostly be represented in the integral form with respective kernels a. In par-
ticular, it is true when L is a polynomial of the basic operators P and Q, see
[19].



It should be mentioned that the Hilbert state formalism of quantum me-
chanics can be fully reduced to the unitary setting, that is the setting with a
Hilbert space equipped with unitary operators only. This is our preferred for-
malism and by the remark above, with enough functions « in the formalism,
one can reduce all the operators to the integration operator.

Below we explain how the Hilbert space axiomatisation of QM can be

represented as a formal theory in the language of Continuous Logic.

3.5 Remarks on Dirac 1ntegrat10n and measure. Let [, f r f(7)d, stand
for the Dirac integral and [, f » f(x)dz for the proper Riemann 1ntegra1

/R F(2)6, = /R f(#)da (13)

if the latter is well-defined.
In particular, for f(x) continuous on R,

/ f(z)d, = lim " f(z)dx (14)

m—oo J_ .

if the right-hand-side is well-defined.

If a finite limit in (14) does not exists the integral is understood in the
sense of distributions, in particular one writes

/eQbeém — (5(6)
R

However, in the setting of rigged Hilbert spaces it is consistent to renormalise
to the Kronecker delta-symbol:

/ e 2, = gy (15)
R

3.6 Remarks on rigged Hilbert spaces.
Recall (see e.g. [9]) that a Gelfand triple is:

dCHCP

where @ is a space of test functions (e.g. the space of continuous functions
on R with compact support), #H is the Hilbert space, ®* is the space of
continuous linear functionals on @, i.e., distributions.

10



In the context of continuous model theory with universe R it is natural to
take for @ continuous functions which are zero outside the interval [—m, m],
which agrees with (14) and further remarks above.

An element ¢ € ®* acts on a test function f via the application of inner
product in ®*: f — (f|¢)

The ket |x) € ®* is not a vector in H, but a generalized eigenvector.

The pairing (z|¢) can be interpreted as the evaluation ¢(z) of ¢ at the
point z, if such evaluation makes sense. If ¢ € H, this is a well-defined
function ¢ : R — C

4  Hilbert space formalism and H-structures

4.1 The axiomatic description of quantum mechanical theory in the form of
rigged Hilbert space may be quite confusing from the logician point of view —
there are no logical sentences which can be called axioms. What Axioms 1 —
5 render instead is the topological-algebraic structure of a Hilbert space with
operators. This brings us to the algebraisation of logic approach introduced
by A.Lindenbaum, A.Tarski, P.Halmos for the first order setting. It is quite
natural to see the Hilbert space formalism as the form of algebraic logic in
the context of the continuous logic of physics.

As explained in our less formal note [5] the Hilbert space ‘H of quantum
mechanics, or rather the tower of Hilbert spaces H®", plays the role of the
Tarski cylindric algebra, see [6].

4.2 Let H be a rigged Hilbert space, H,, = H®" and O a collection of
linear operators on the H,. Let HP* is a dense subspace of H,, closed under
operators from O.

We will often write H for the union of the tower H; C H, C ... and
similarly with HPef.

Definition. An H-structure (U, HP*, O) is given by

- a universe U, a complete metric space with a measure p and metric
dist (U17 UQ).

In case U = U(n) is finite of size n, we identify

11



with additive structure isomorphic to Z/nZ and dist(u, us) = \/g |uy — g,
the measure of a point is \/LH

In case U = U(oo) is infinite, U(co) := R, dist(u1, us2) = |u; — ug| and the
measure is the Dirac’s delta-measure as determined in 3.5.

- collections H,, n € N, of predicates

v :U"—C

each with a name 1 from HP*', continuous maps; H, has a structure of a
C-linear space;
- an Hermitian inner product (¢y|¢); H, x H, — C is defined for
all n;
- quantifier
E: Hn+1 — Hn,

for all n € N, which is given as an integral operator

E:@br—>/U¢d,u

on the rigged Hilbert space H, 1.
- a collection of linear operators

L:H,— H,

named by symbols L € O:
- Weyl assumption: O contains a pair of (Weyl) operators U and V,
acting on H; and satisfying the commutation relation

UV =¢VU
where

q:{ X if U is finite [U] = N

e?™ some h € Ry

There is a canonical set of eigenvectors for U
EigU = {u[r] € H, : Uu[r] = ¢" - u[r], r € U} (u[r]|u[s]) = d, s

which form an orthonormal basis of H;. The action of V on the basis is
defined as

Vulr] = ulr + 1], where u[r] = u[s], if |[U =n and r = s mod N.

12



There is a dual canonical set of eigenvectors for V with eigenvalues in
S(U) CS

EigV = {vlp] € Hy: Vv[p] = ¢" - v[p], p € U} (v[plug]) = dp4

We call an infinite H-structure a continuous H-structure. Recall that
U = U(c0) = R in this case.

4.3 There is a Fourier duality between the bases Eig U and EigV, in finite

| il = = S0l ub] = 2= 3 (16)

rel pelU

or, in continuous/rigged Hilbert spaces form, in agreement with (5),

1 —irp.

1 ipr
Vil = =l = 3() = <= [ Vil

In the setting of continuous model theory we represent the one-point char-
acteritic functions u[r] as the limit of continuous bump-functions.

4.4 We also consider asymptotic classes of H-structures with given signature
HPe O, which are classes of H-structures with finite universe U(n), n running
in a subset P C N. (Similar to the class considered by Hrushovski in [15]).
Then, given an ultrafilter D on P and the first-order ultraproduct

Um) =[] U(n)

we obtain a pseudo-finite version of H-structure. We study these below along
with CL-ultraproducts.

We say that (U, HP*, O) represents the (possibly uncomplete) Hilbert
space (HP' O) if
(H,0) = (K", 0)

via the naming correspondence.

4.5 Proposition. Given a rigged Hilbert space H with an inner product
subspace HP which is dense in H and closed under the quantifier and a

13



famaly of unitary operators O satisfying the Weyl assumtion, there is a unique
H-structure (U, HP*', O) representing (H, O) .

Proof. Set U := Eig U and define, for each v € HP®!| an n-ary predicate
1 to be the unique map ¢ : U" — C such that

o(r) = (ulr] )

This is well-defined according to 3.6 (note that u[r] = |F), a position state in

%,). O

4.6 CL-ultraproduct. We will work in a specific asymptotic class of H-
structures of signature (HP°f, E) where the predicates of HP° on U(n) are of

the form
k1 kvn

where f(z1,...,2,) is a smooth function R™ — C.
The predicate with the same name v on continuous U is

V(xy,.o xy) = f(xr, T).

¢(k77km>:f( )7

The quantifier E := {E(™ : m € N}, a family of quantifiers on finite
intervals of diameter 2m < /n, is defined as follows:

By (k, p) = st % Zf (k. p) | . for U(n) (17)
k>—my/n
BPg) = [ vleds, for U() (18)
We also consider: B
Ep“i(k,p) = lim E (k. p) (19)

Here, in case n is finite, the limit should be understood as the value for
the maximal m satisfying 2m < y/n.

For a pseudo-finite n it is assumed that m runs in N, the standard positive
integers. In the context of continuous model theory EI°® is definable in terms

of Eém).
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While E,(Cm)w is well-defined for all ¥, El°s) might be not, for some 1 for
infinite n.

However, we use notation E'°° for the family {E(™ : m € N} when it does
not lead to confusion.

4.7 Theorem. (H,0) be a rigged Hilbert space with a family O of integral
operators, and HP its dense subspace closed under inner product and O.

For any non-principal ultrafilter D on N the continuous model theory ul-
traproduct (U*, HP, O) of finite H-structures (U(n), HP*t, O) is a continuous
H-structure.

For every sentence o and every positive € there is a subset D, € D such
that for all n € Dy the value of o on (U, HP O) differs from the value of
o on (U(n), HP, O) by no more than e.

Proof. The metric universe U* of the ultraproduct is defined as the union
of sorts of finite diameter 2m, which are limits along the ultafilter D of sorts
of the same diameter of U(n). This means that for a limit non-standard
number n and numbers k € U(n) we set the limit point x = k/p so that

dist(0, z) = dist(0, k) /p

This brings us to
k

x = st( \/ﬁ)’

(the standard part map). In particular, the interval [—my/n, m+y/n] in U(n)
corresponds to the interval [—m,m] in R.

This also agrees with the definition of predicates i) on the ultraproduct
and

Next we prove the correspondence for quantifiers. It is enough to consider
unary ¢ : R — C. By definition ¢(k) = f(\%), f(z) smooth on R.

Claim. Given any positive € € R,

1 k m
= X IR - /_mf<x>dx|<e

—my/n<k<my/n

Indeed, the discrete formula is a Riemann sum with spacing Az =

5

By the left Riemann sums estimate for an interval (a, b)

(b, (2m)

Err < M -
T=ATON T m/m
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where NN is the number of points between @ = m and b = —m and My =

max{ f'(z) : b <z < a}. Clearly, Mf% € R and thus M; ﬁi”\}; < € because

Lﬂ is a non-standard infinitesimal.

Thus the application of the quantifier in the asymptotic class agrees with
the quantifier in the ultraproduct. It follows that the inner product opera-
tion in the asymptotic class agrees with the inner product operation in the
ultraproduct, once it is determined by integration. This is enough to obtain
the correspondence for the construction of interpretable linear functionals
and the rigged Hilbert space in the asymptotic class and in the ultraprod-
uct. It follows that the inner product operation (i |t¢)s) is preserved by the
ultraproduct for all 1y, 1, € HPeE.

Finally, the operators in O are preserved by the ultraproduct because
they are expressible in terms of E°°. This includes Weyl operators.

O

5 Gaussian and perturbation-Gaussian states

5.1 Gaussian predicates.
Call an m-predicate 1 (ky,...,kn) on U(n) basic Gaussian if there is a
n € C and a positive-definite quadratic form Q(x1, ..., z,,) over Q such that

V(ky, .. kn)=n-e ™ =n-e s
For the continuous U :
Wz, X)) =1 e—m'Q(ﬂﬁ,.“,acm)7

where () is a over R.
Since by definition e P is a Gaussian predicate, we consider the Fourier-
dual one point characteristic function u[r] to be a Gaussian state.

Note that Q(x1,...,2,) can be written in the form that singles out a
particular variable, say xq,

Q(z1, ..., 2m) = ar® + 22b(y) + c(¥)

where x = 1, y is the rest of the variables, b(y) a linear form and ¢(y) a
quadratic form.

16



Now a Gaussian predicate can be written as

(p) i Ak +2kb(P)

w(l{;’p) = 7] . eiﬂ'i no.e n

in the discrete setting, and

w(fﬂ, g) =n- efﬂic(?})) . e*ﬂ'i(azQJerb(g)

in continuous seting.

For the discrete version, if a # 0, we call the rational number a the
period of 1 with respect to variable k.

Ifa=0and b(p) =b-(L1p1+ ...+ Lyupm) with Ly, ..., L, coprime tuple
of integers, then the period of 1 with respect to variable k is equal to b.

Definitions. Call non-standard integer n highly divisible if it is divis-
ble by all standard integers.

Let n be highly divisble and |U| = n. We say that a subset X C U™ is
d-dense if X contains a submodule of U™ of finite index.

5.2 Lemma (Gauss summation). On U(n), for n highly divisible:

1  ah?42kb(p) 1 = ()
— g e ™ =4/—-es . ™ an (20)
vn a

n n
<k<g;

T 22—

for all p in a d-dense subset of U™!, and equals 0 outside the d-dense subset.
In case a =0 and b(p) =b-p, forb e Q,

1 2bkp
> e =) (21)

where

0 ifp#0
(w) —
0p) = { V1 otherwise

Proof. Let a = 4 > 0 where A, D € Z. We choose D so that D - b(p) is
over Z. Note that - is an integer because n is divisible by A by assumptions.
Now let
Xo={peU™ " : A|Db(p)}.

17



This is a dense subset of U™ !, For a p € X, the function

2 _
i ak“+2kb(p)
e n

of variable k has period * and b0 g an integer. Thus the summands in

a

ak? + 2kb(p) = a(k + @ 2 b(z;)? o b(??

are integer and we can write

2 = 2 —\2 .
Z e_m‘a]C +§kb(p) = ei7r o Z e_m‘% = e”b(fﬁ . Ee%
a

n n n
<k< 0<n<®

T 22—

where at the last step we used the classical Gauss’ quadratic sums equality.
In case p ¢ X, the Gauss sum is equal 0.

Now consider the case a = 0, b = %, for B,D € N coprime. If p =0

mod B then all the summands in (21) are equal to 1 and we get \/Tﬁ for the
value of the formula. Alternatively, if p # 0 mod B then we get all the roots

of 1 of order 7 as summands, and the sum is equal 0.
O

5.3 Lemma. For any d-dense subset X C U(n)™ for any y € R™ there is
p € X such that st(\/iﬁ]i) = 7.
Proof. When p runs in U(n) = [~5, 3] the numbers st(\/iap) run contin-
uously between —oo and +oo. Thus there is p € U(n)™ such that st(\/%;ﬁ).
Density of X implies that there is a tuple of non-negative standard inte-

gers d such that p+d € X. But st(\/iﬁj) = 0 and thus we can assume p € X.
0J

5.4 Corollary
Let (U*, 1P, O) be the ultraproduct constructed in 4.7, n highly divisible,

P 2 o . . .
and e~ +2200) o Gaussian predicate on U*, where a,b are rational. Then,
1 i ak?+2kb —7i(ax?+2xb)
N E e o= [e dx (22)
n R
— e <k<g-
if a >0, and
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1 i A
ﬁ Z 6_2'7‘% _/Re—27rzccbdx (23)

n n
—%<k§ﬁ

where we dropped 6™ on the left and Dirac delta on the right of equality (see
(15)).

Remark. (23) makes sense when b = 0, in which case one has a constant
function of value 1 on the right and the constant sequence on the left. These
are Gaussian predicates as well (the case a = 0 = ). The formula can also
serve for calculating norms.

5.5 Global versions of quantifiers.
The global quantifier is defined for finite and pseudo-finite U :

B =t [ = 3 (k)

where P is the period of 1.

5.6 Theorem. Given a pseudo-finite H-structure with U = U(n) with n
highly divisible, and a Gaussian predicate 1 with variables k,p:

By (k, p) = ERy(k, p)

for each p in a d-dense subset.
Proof. This is a direct consequence of 5.4 and 4.7. [

5.7 Beyond free particles. Anharmonic oscillator. The Gaussian
fragment of quantum mechanics modelled above (with a little more work
includes also quantum harmonic oscillator) is the only part of QM which
allows exact sohéltions. The more general version of QM would include states
224 f(2)

2

of the form e~ ) where f(z) is a polynomial of degree > 2. In fact, the
theory, due to physical and mathematical issues only deal with quite specific

forms of such states. The key example is that of an anharmonic oscillator
N
e as analysed in [18]. This is also a much simplified analogue of so

called ¢*-quantum field theory.
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The important difference with the Gaussian case is that Dirac calculus
over such states, namely the key calculation

_-z2+>\x4
/e T dr, A>0
R

can only be carried out using perturbation methods, which impose specific
restriction on coefficients, in particular h have to be infinitesimally small in
the example.

This leads us to restrict our analysis to discrete states of the form

CHK2+Leh
Y(k) = e
perturbed Gaussian states where H, L positive integers and
1
h= o2mH’

As in the Gaussian case we assume that H divides n. Note that H also
plays here a role of asymptotic period for i. Perturbed Gaussian states in
general are not of period H.

Set z = \/gk Then!

24 1,4 2 4
—ﬂiH(k +Lk ) . iz ;/\z . n
e n =e b A= —

5.8 As for the above Gaussian states the application of the global quantifier
to a perturbed state ¢ is defined as

glo e 1
B (k) .—\/; > k)

n n
—ag <k<sg

That is for ¢ as above

o 1 77”:Hk2+%k4 2 77”;Hk2+%k4
E%l bw(k) = \/; Z s} n = \/; Z 8 n

n n n
—zr<k<zm Osk<zm

!Physicists also consider perturbative states with term Az¢ for d > 3. In this case
nd/2-1

A=
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assumin 5 > 1 is an integer.
We Wlll assume that

A=0(1).
Then under the restriction 0 < k < 557 we have

HE* n? n?

o < 1m 9l

(24)

H
5.9 Let ¢p(k) =1— e(%—f). Consider the partition of the sum

l HE24 Hk4
Eglob Z e —mi o —

0<k<
1 . HE2 H Hk?
= []§ \/> Z e mT \/; Z QS(]{;)Q_WZ 2n =
0<k< 0<k<#5
= b2 (To(h) + Ty(h)).

We know that
To([)) =e 4.
So our aim is to evaluate T (h).
5.10 Note that
et HE HE HE
ok)=1- e In = L]jl + O(( Li )?) = m')\nZ

Note that k% < (&)* and thus Z&° < 27 (%)% and € = o(h), so

+ €

We will say



5.11 Corollary

Ts(H) < O(1) - \h when h — 0.

5.12 Corollary

E§ "0 (k, b) = h2v/2me (1 + I(b)), where I(h) = O(1) - \h when b — 0.

This is in a good agreement with El°“¢)(k, ) calculated in [17] and [18]
as an asymptotic (non-convergent) series of b.
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