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Abstract

The aim of this note is to recast somewhat informal axiom sys-
tem of quantum mechanics used by physicists (Dirac calculus) in the
language of Continuous Logic.

We note an analogy between Tarski’s notion of cylindric algebras,
as a tool of algebraisation of first order logic, and Hilbert spaces which
can serve the same purpose for continuous logic of physics.

1 Introduction

1.1 The axiomatic formulation of quantum mechanics was introduced by
Paul Dirac in 1930 [1] through a description of Hilbert space, and later de-
veloped with greater mathematical rigor in a monograph of 1932 by John
von Neumann. Since 1930, Dirac went through several rewritings and new
editions to refine his calculus to a level he considered satisfactory. Modern
books present Dirac’s axioms in a succinct form, often omitting much of the
technical detail.

In section 2 we survey the axioms of quantum mechanics following [2].
Readers with a background in logic will notice that what physicists refer to
as axioms is very far from what is a conventional set of axioms in a formal
language even in its early form as presented e.g. by Hilbert’s axiomatisation
of geometry [3].

We argue in section 3 that the language that Dirac introduced is that
of continuous logic. In section 4 we go further and explain that Dirac’s
axiomatisation has chosen the formalism known to logician as algebraic logic
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as exemplified e.g. by A.Tarski’s cylindric algebras representations, see [5].
In fact, Hilbert spaces can be seen as a continuous model theory version of
cylindric algebras.

1.2 Continuous logic and continuous model theory were introduced in the
monograph [4] in the 1960s and have since been developed and further gener-
alised for various applications, see e.g. [12]. For readers with no background
in logic the article of E.Hushovski [8] outlines a philosophy behind the math-
ematical formalism.

The link between physics formalism and continuous logic was proposed
and initially explored by the present author in [6]. Here this relationship is
studied at a deeper level.

2 Dirac’s calculus and axiomatisation of

quantum mechanics

Below we reproduce a slighly edited version of axioms from [2], 6.3.

2.1 Axiom 1. The state of a quantum system is described by a vector |ψ〉
belonging to a complex Hilbert space H. This state is usually called “ket ψ”.
A complex Hilbert space H is a vector space, which can be finite dimensional
or infinite dimensional, equipped with the complex scalar product (also called
inner product) 〈ψ|ψ′〉 between any pair of states |ψ〉, |ψ′〉 in H. The norm,
or modulus, of a generic vector |ψ〉 ∈ H is defined as

||ψ|| = |〈ψ|ψ〉|

and usually |ψ〉 is normalized to one, i.e.||ψ|| = 1. The symbol 〈ψ| which
appears in the definition of the norm is called “bra ψ” and it can be intepreted
as the fuction

〈ψ| : H → C.

For any |ψ′〉 ∈ H this function gives a complex number 〈ψ|ψ′〉 obtained as
scalar product of |ψ〉 and |ψ′〉. In a complex Hilbert space H it exists a set of
basis vectors |φα〉 which are orthonormal, i.e. 〈φα|φβ〉 = δ(α − β), and such
that

|ψ〉 =
∑
α

cα|φα〉 (1)

2



for any |ψ〉, where the coefficients cα belong to C.

Axiom 2. Any observable (measurable quantity) of a quantum system is
described by a self-adjoint linear operator F : H → H acting on the Hilbert
space of state vectors.

For any classical observable F it exists a corresponding quantum observ-
able F .

Axioms 3.The possible measurable values of an observable F are its
eigenvalues f, such that

F |f〉 = f |f〉

with |f〉 the corresponding eigenstate. The observable |f〉 admits the spectral
resolution

F =
∑
f

f |f〉〈f | (2)

where {|f〉} is the set of orthonormal eigenstates of F , and the mathematical
object 〈f |, called “bra of f”, is a linear map that maps into the complex
number. This also satisfy the identity∑

f

|f〉〈f | = I.

Axiom 4. The probability P of finding the state |ψ〉 in the state |f〉
(both of norm 1) is given by

P = |〈f |ψ〉|2

This probability P is also the probability of measuring the value f of the
observable F when the system is in the quantum state |ψ〉.

Axiom 5. The time evolution of states and observables of a quantum
system with Hamiltonian H is determined by the unitary operator

Kt := exp(−iHt/~)

, such that |ψ(t)〉 = Kt|ψ〉 is the time-evolved state |ψ〉.

2.2 Now we make several comments on the axioms.
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The term “Hilbert space” here should actually be read as the rigged
Hilbert space (see [9]) because it differs from the standard definition by ac-
commodating both a Hilbert space Φ and the dual space Φ∗ with

Φ ⊆ H ⊆ Φ∗.

The summation formulas like (1) and (2) are presented in a form of an
integral if the family |ψα〉 is continuous but seems natural in the summation
form when α runs in the discrete spectrum of an operator.

2.3 Remark. Rigged Hilbert spaces provide a powerful mathematical
framework to extend quantum mechanics, allowing distributions and general-
ized eigenfunctions to be rigorously handled. However, as is almost generally
accepted, not every element corresponds to a physically realisable state –
some are purely mathematical artifacts, see e.g. [10].

In the more general context of quantum field theories Wightman axioms
explicitly postulate that physically meaningful part of the rigged Hilbert
space H is a dense subset D ⊂ H.

3 The axioms in the setting of Continuous

Logic

3.1 We discuss in the section the possible interpretation of the above axioms
in terms of (a most general versions of) continuous logic (CL).

Recall that historical prototype of a ket-vector |ψ〉 of the Hilbert space
was a wave-function, that is a function

ψ :M→ C

from a configuration spaceM into a bounded domain of the complex numbers
C.

These can be seen as predicates on a domain which, for simplicity, is
identified with Rn, where R is the real line seen as a measure space. Definable
predicates of norm 1 will be referred to as states.

We represent

R =
⋃
k∈N

Ik

where Ik are intervals of finite length, Ik ⊂ Ik+1.
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Of special significance are the momentum and position states. Mo-
mentum states where defined by Dirac as the definable family of predicates
of the form

|p〉 :=
1√
2π

eipx, p ∈ R.

One can consider a C-linear space generated by the momentum states and
define Hermitian inner product, first between the momentum states

〈p1|p2〉 := δKr(p1 − p2) (3)

where δKr is the Kronecker delta (in Dirac’s setting this is calculated as the
Dirac-delta). This inner product definition can be extended to any pair of
elements

ψ1 :=

∫
R
f1(p)|p〉, ψ2 :=

∫
R
f2(p)|p〉 (4)

(understood as
∑

p∈R f1(p)|p〉 and
∑

p∈R f2(p)|p〉) provided

〈ψ1|ψ2〉 := lim
k

∫
Ik

f1 · f ∗2 dp

exists and is finite, which is the case for f1, f2 ∈ L2(R). Note that (4) is also
well-defined for f1 and f2 of the form eiF where F is a polynomial over R of
degree 2 (one uses the Fresnel integral formula in the general case and has to
use the agreement (3) when the leading coefficients in F1 and F2 are equal).

The position states |x〉, x ∈ R, by their physical meaning are character-
istic functions

|x〉 := δKr(x− z)

which for convenience of continuous mathematical manipulations have been
replaced here and in (3) by Dirac’s delta-functions that is by distributions.
Equivalently, position states can be represented by linear functionals (bra-
vectors)

〈x| : |ψ〉 7→ ψ(x)

or equivalently, for ψ running in {|p〉 : p ∈ R},

〈x| : |p〉 7→ 1√
2π

eipx (5)
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In model theory terms, the linear functionals 〈x| are imaginary elements
in the structure, the interpretation of which is given by (5).

Dirac’s calculus in aims at rigorous interpretation of such calculations in
terms of finite complex values.

3.2 More generally, let Hm be the set of all m-ary predicates on R which
by definition has structure of C-vector spaces and

C = H0 ⊂ . . . ⊂ Hm ⊂ . . . ⊂ Hm+1 . . .H.

Also, one uses quantifiers, linear maps written as integrals

φ(z1, . . . , zn) 7→
∫
R
φ(z1, . . . , zn)dzn.

In fact, this is a collection of linear maps∫
: Hm+1 → Hm,

the rules of calculation of which as defined by Dirac [1] improper integration.
In particular, ∫

R
φ(z1, . . . , zn)dzn := lim

k→∞

∫
Ik

φ(z1, . . . , zn)dzn (6)

(which fits with the requirements of continuous model theory).
A special binary operation in the spaces, inner product,

Hm ×Hm → C; 〈φ(z1, . . . , zn), ψ(z1, . . . , zn)〉 =

∫
Rm

φ∗ · ψ dz1 . . . dzm

where φ∗ is the complex comjugate of φ and
∫
Rm is m-multiple integral. 〈φ|ψ〉

can be seen as a continuous predicate of equality φ = ψ.
One restricts the notion of state to predicates φ such that 〈φ|φ〉 = 1.

An important role in the theory is played by a collection of linear maps
(operators)

L : Hm → Hm

with physical meanings. These can be of the form

φ(z̄1, z̄2) 7→
∫
Rk

α(ȳ, z̄1) · φ(ȳ, z̄2) dȳ
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where |ȳ| = |z̄1| = k, α ∈ H2k, or

φ(x, z̄) 7→ ∂φ(x, z̄)

∂x
or φ(x, z̄) 7→ x · φ(x, z̄)

All of the above together makes the Hm a collection of Hilbert spaces
with linear operators and H an ambient Hilbert space.

The time evolution operator exp(−iHt/~) acts on states as a uni-
tary operator determining the evolution of a state in time t with a given
Hamiltonian H. A state φt0 determining a system at time t0 evolves into
a state φt := exp(−iH(t − t0)/~) with the probability amplitude equal to
〈φt0|φt〉, which is a complex number of modulus 1. The calculation of the
CL-formulae φt and 〈φt0|φt〉 (which involve mainly calculations of the appli-
cation of quantifier

∫
) is the central problem of quantum theory, equivalent

to solving the associated Schrödinger equation.

The above (along with further details of the Dirac calculus given in [1])
describes the formulae, the connectives and the quantifiers

∫
of continuous

logic for quantum mechanics.

4 Algebraisation of logic and Hilbert space

formalism

4.1 The axiomatic description of quantum mechanical theory in the form of
rigged Hilbert space may be quite confusing from the logician point of view
– there are no logical sentences which can be called axioms. What Axioms
1 – 5 render instead is the topological-algebraic structure of a Hilbert space
with operators.

Recall now the algebraisation of logic approach, perhaps less popular
among model theorists nowadays, versions of which were introduced by A.Lindenbaum,
A.Tarski, P.Halmos for the first order setting.

It is quite natural to see the Hilbert space formalism as the form of
algebraic logic in the context of the continuous logic of physics.

The qualification ’physics’ seems relevant here because of the specific
nature of its predicates (states) and quantifiers.

4.2 Recall that, given a first order structure A in a language L one can
associate with it the cylindric algebra CA as follows:
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Let, for distinct i1, . . . , in ∈ N, Fi1,...,in be the Lindenbaum algebra of L-
formulas in variables xi1 , . . . , xin up to equivalence in A. There is a natural
emebedding FX ⊂ FX′ , for sets of variables X ⊂ X ′. Respectively one defines
the Boolean algebra

F :=
⋃

i1,...,in

Fi1,...,in

Now introduce, for each ik, the quantifier

∃xik : FX′ → FX

for each X and X ′ such that X ′ differs from X by variable xik .
Cylindric algebra CA is the Boolean algebra F equipped with quantifica-

tion operators ∃xik .
The structure A is an interpretation of CA.

4.3 Recall the basic Theorem on Cylindric Algebras (see e.g. [5])
Let A and B be two structures in the same first-order language, and

CA,CB the respective cylindric algebras.
Then A is elementarily equivalent to B iff CA ∼= CB, where the isomor-

phism identifies sets definable by the same formulas.

4.4 In drawing an analogy with the first order case we intend to treat H as
an analogue of cylindric algebras.

However, the physical theory lacks a clear definition of an interpreta-
tion, that is of a structure, a model.

The problem of furnishing a definition of a structure M and the inter-
pretation of the language of quantum mechanics is in practice practically
solved by Dirac for the case of the n-particle quantum mechanics.

One can choose a real manifold M (in fact, M = R) for the universe of
the structure and set predicates (states, wave functions) to be maps

ψ :Mn → C

with values in a compact subset of C.
One determines rules of calculating the rigged Hilbert space operations

over the states, including linear operators (CL-connectives) and the quantifier∫
M .

Write the respective structure as

(M;H).
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The fragment of QM where such interpretation is well-defined in the con-
text of continuous logic is the theory of a finite number of free particles and
more generally “Gaussian” quantum mechanics, determined by a Hamilto-
nians with quadratic potential (which includes the quantum harmonic oscil-
lator). Such theory, with the choice of operators in H restricted to unitary
operators (the Weyl operators and the time evolution operators) is analysed
in [6]. It is noticed that the theory has quantifier elimination under the nat-
ural choice of basic predicates. Moreover, the theory has a continuous model
(Rn;H) as well as a family of discrete pseudo-finite models (with the universe
Vv).

To move further from there in the context of [6] one needs to include
self-adjoint operators (such as P,Q and H) in the definition of H along with
the operation

exp : L 7→ eiL

defined for self-adjoint L. Note that interpretation of the time evolution op-
erator ei

H
~ t over M = R amounts to a path-integral calculation and requires

some non-conventional determination of a non-convergent limit even for the
case of the quantum harmonic oscillator, see [7], 7.7.4.

More problems arise with including perturbation methods into the formal-
ism. These treat the important Planck constant ~ as an infinitesimal while
physics estimates it by a concrete real number.

Generally, there is a sense of dissatisfuction with Dirac - von Neumann
formalism (see [10] for references), more so in the broader setting of quantum
field theory.

In the following definition an interpretation is in effect a structure of
continuous model theory with operators. Our setting for continuous model
theory is not fixed below. It certaily is less restrictive than that in the
original [4] and follows [12] in assuming that the universe of a structure is
just a measure space.

4.5 Definition. Let H be a rigged Hilbert space,

H = (H; O)

where H is a complete Hermitian space, O a collection of linear operators on
Hn → Hm, which contains Dirac integrals

∫
Rk of (6).

We assume O contains the Weyl operators of the form eaiP and ebiQ for
a, b rational numbers (“rational” Weyl operators).
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An H-structure is given by
- a universe, or a configuration space V, given with a measure µ;
- collections Fn n ∈ N, of predicates, that is measurable maps

ψ : Vn → C, closed under C-linear combinations. This will allow quanti-
fiers in the form of integrals over the measure;

- a Hermitian inner product 〈ψ1|ψ2〉; Fn × Fn → C is defined for all n;
- a collection of linear operators OF = {LF : L ∈ O}:

LF : Fn → Fm for each L : Hn → Hm

which includes a CL-quantifier E : Fn+1 → Fn, for all n ∈ N;
- an interpretation functor is a homomorphism

C :
Fn → H⊗n; n ∈ N,
OF � O

which respects the Hermitian structure and the algebra of linear operators
and satisfies the condition:

EigWF � EigW

surjection between bases of eigenfunctions, for W ∈ O, WF ∈ OF , Weyl
operators;

- C : E 7→
∫
R, the Dirac integration operators

∫
R corresponds to CL-

quantifier E : Fn+1 → Fn.

The respective continuous model structure structure V = (V,C,H) will
be called a model of H.

4.6 In general, the images C(Fn) ⊆ H⊗n can be proper subsets of H. This
is in agreement with Remark 2.3. Respectively, the class of models of H
corresponds in general to a theory which is not necessarily complete.

4.7 It is not hard to see that the Dirac representation of the space of wave
functions on R as in section 3 provides a “canonical” model for the respective
H. However, the general (V,C,H) suggests multitude of other possibilities
for models of physical reality.

Conceptually one can think of the functor C : V 7→ H as a structural ap-
proximation in the sense of [6] and [11] (called lm therein). C approximates
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a “rough” model of reality V by a “smooth” H. This is indeed how approxi-
mation has been applied in [6] to pass from a family of discrete (pseudo-finite)
structures to classical Hilbert space setting.

Note, that in [6] we work in a more general setting where states take their
values in a discrete (pseudofinite) field F, ψ : Vn → F. It is then shown that
there is an approximation lm : F→ C.
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