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1 Introduction

This paper is an attempt to understand the nature of non-classical Zariski
geometries. Examples of such structures were first discovered in [HZ].

These examples showed that contrary to some expectations, one-dimensional
Zariski geometries are not necessarily algebraic curves. Given a smooth al-
gebraic curve C with a big enough group of regular automorphisms, one can
produce a “smooth” Zariski curve C̃ along with a finite cover p : C̃ → C.
C̃ cannot be identified with any algebraic curve because the construction
produces an unusual subgroup of the group of regular automorphisms of C̃
([HZ], section 10). The main theorem of [HZ] states that every Zariski curve
has the form C̃, for some algebraic C. So, only in the limit case, when p is
bijective, is the curve algebraic.

A typical example of an unusual subgroup of the automorphism group of
such a C̃ is the nilpotent group of two generators U and V with the central
commutator ε = [U,V] of finite order N. So, the defining relations are

UV = εVU, εN = 1.

This, of course, hints towards the known object of non-commutative ge-
ometry, the non-commutative (quantum) torus at the Nth root of unity.
This observation encourages us to look for systematic links between non-
commutative geometry and model theory. More specifically, we would like
to give arguments towards the thesis that any non-classical Zariski geometry
is in some way an object of non-commutative (quantum) geometry and the
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classical ones are just the limit cases of the general situation. Towards this
end we carried out some analysis of the above examples in [Z2].

In this paper we attempt to give a general method which associates a
“geometric object” to a typical quantum algebra. Note that this is in fact
an open question. Yu. Manin mentions this foundational problem in [Man]
I.1.4. Indeed, in general non-commutative geometry does not assume that
one has (as is the case in commutative geometry) a procedure of getting a
manifold-like structure from the algebra of “observables”, yet it is desirable
both for technical and conceptual reasons. See also the survey paper [Sk].
The approach in [RVW] looks quite similar to what our paper suggests.

More specifically, we restrict ourselves with quantum algebras at roots of
unity.

Strictly speaking the general notion of a quantum algebra does not exist,
and we have to start our construction by introducing algebraic assumptions
on A which make the desired theorem feasible.

The next step, after proving that the geometric object we obtain has the
right properties, would be to check if our assumptions cover all interesting
cases. If it were the case our assumptions would deserve the status of a
definition of a quantum algebra.

Our construction always produces a Zariski geometry and when the alge-
bra in question is big enough the structure is provably non-classical, that is
not an object of (commutative) algebraic geometry. This might be seen as a
good criterion for the adequacy of the construction. Among the structures
which satisfy our assumptions is the quantum group Uε(sl2), but we couldn’t
check it for higher-dimensional objects because of algebraic difficulties.

In more detail, we consider F-algebras A over an algebraically closed field
F. Our assumptions imply that a typical irreducible A-module is of finite
dimension over F.

We introduce the structure associated with A as a two-sorted structure
(Ṽ, F) where F is given with the usual field structure and Ṽ is the bundle
over an affine variety V of A-modules of a fixed finite F-dimension N. Again
by the assumptions the isomorphism types of N -dimensional A-modules are
determined by points in V. “Inserting” a module Mm of the corresponding
type in each point m of V we get

Ṽ =
∐

m∈V

Mm.
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In fact, for any m belonging to an open subset of V, the module Mm is
irreducible.

Our language contains a function symbol Ui acting on each Mm (and
so on the sort Ṽ) for each generator Ui of the algebra A. We also have the
binary function symbol for the action of F by scalar multiplication on the
modules. Since Mm may be considered an A/Ann Mm-module we have the
bundle of finite-dimensional algebras A/Ann Mm, m ∈ V, represented in Ṽ.
In typical cases the intersection of all such annihilators is 0. As a consequence
of this, the algebra A is faithfully represented by its action on the bundle of
modules. In fact the whole construction of the structure is aiming to present
the category of all finite dimensional A-modules.

Note that in the case when all the Mm are irreducible our structure is a
groupoid in the same sense as in Hrushovski’s paper [H]. But in general, e.g.
in the case of the quantum group Uε(sl2) the structure is not a groupoid and
this is one of the features that makes it richer and more interesting.

We write down our description of Ṽ as the set of first-order axioms
Th(A-mod).

We prove two main theorems.

Theorem A (Sections 2.4 and 3.2) The theory Th(A-mod) is categorical
in uncountable cardinals and model complete.

Theorem B (Section 4.3) Ṽ is a Zariski geometry in both sorts.

Theorem A is rather easy to prove, and in fact the proof uses not all of
the assumptions on A we assumed. Yet despite the apparent simplicity of
the construction, for certain A, Ṽ is not definable in an algebraically closed
field, that is Ṽ(A) is not classical.

Theorem B requires much more work, mainly the analysis of definable
sets. This is due to the fact that the theory of Ṽ, unlike the case of Zariski
geometries coming from algebraic geometry, does not have quantifier elimina-
tion in the natural algebraic language. We hope that this technical analysis
will be instrumental in practical applications to noncommutative geometry.

Acknowledgement I would like to thank Shahn Majid for very helpful
discussions.

I started to work on the paper while I was a member of Model Theory
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and Applications to Algebra and Analysis programme at the Isaac Newton
Institute for Mathematical Sciences, Cambridge, UK. I am grateful to the
organisers of the program, the staff of the Institute, and the participants.
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2 From algebras to structures

2.1 We fix below until the end of the paper an F-algebra A, satisfying the
following.

Assumptions.

1. We assume that F is an algebraically closed field and A is an asso-
ciative unital affine F-algebra with generators U1, . . . ,Ud and defining
relations with parameters in a finite C ⊂ F. We also assume that A is
a finite dimensional module over its central subalgebra Z0.

2. Z0 is a unital finitely generated commutative F-algebra without zero
divisors, so Max Z0, the space of maximal ideals of Z0, can be identified
with the F-points of an irreducible affine algebraic variety V over C.

3. There is a positive integer N such that to every m ∈ Max Z0 we can
put in correspondens with m an A-module Mm of dimension N over F
with the property that the maximal ideal m annihilates Mm.

The isomorphism type of the module Mm is determined uniformly by
a solution to a system of polynomial equations PA in variables tijk ∈ F
and m ∈ V such that:

for every m ∈ V there exists t = {tijk : i ≤ d, j, k ≤ N} satisfying
PA(t,m) = 0 and for each such t there is a basis e(1), . . . , e(N) of the
F-vector space on Mm with

∧

i≤d, j≤N

Ui e(j) =
N

∑

k=1

tijke(k).

We call any such basis e(1), . . . , e(N) canonical.

4. There is a finite group Γ and a map g : V × Γ → GLN(F) such that,
for each γ ∈ Γ, the map g(·, γ) : V → GLN(F) is rational C-definable
(defined on an open subset of V) and, for any m ∈ V,

Domm, the domain of definition of the map g(m, ·) : Γ → GLN(F), is a
subgroup of Γ,

g(m, ·) is an injective homomorphism on its domain,
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and for any two canonical bases e(1), . . . , e(N) and e′(1), . . . , e′(N) of
Mm there is λ ∈ F∗ and γ ∈ Domm such that

e′(i) = λ
∑

1≤j≤N

gij(m, γ)e(j), i = 1, . . . , N.

We denote
Γm := g(m, Domm).

Remark The correspondence m 7→ Mm between points in V and the
isomorphism types of modules is bijective by the assumption 3. Indeed, for
distinct m1,m2 ∈ Max Z0 the modules Mm1 and Mm2 are not isomorphic, for
otherwise the module will be annihilated by Z0.

2.2 The structure

Recall that V(A) or simply V stands for the F-points of the algebraic
variety Max Z0. By assumption 2.1.1 this can be viewed as the set of A-
modules Mm, m ∈ Max Z0.

Consider the set Ṽ as the disjoint union

Ṽ =
∐

m∈V

Mm.

We also pick up arbitrarily for each m ∈ V a canonical basis e = {e(1), . . . , e(N)}
in Mm and all the other canonical bases conjugated to e by Γm. We denote
the set of bases for each m ∈ V as

Em := Γme = {(e′(1), . . . , e′(N)) : e′(i) =
∑

1≤j≤N

γije(j), γ ∈ Γm}.

Consider, along with the sort Ṽ also the field sort F, the sort V identified
with the corresponding affine subvariety V ⊆ Fk, some k, and the projection
map

π : x 7→ m if x ∈ Mm, from Ṽ to V.

We assume the full language of Ṽ contains:

1. the ternary relation S(x, y, z) which holds if and only if there is m ∈ V
such that x, y, z ∈ Mm and x + y = z in the module;

2. the ternary relation a · x = y which for a ∈ F and x, y ∈ Mm is
interpreted as the multiplication by the scalar a in the module Mm;
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3. the binary relations Uix = y, (i = 1, . . . , d) which for x, y ∈ Mm are
interpreted as the actions by the corresponding operators in the module
Mm;

4. the relations E ⊆ V × ṼN with E(m, e) interpreted as e ∈ Em.

The weak language is the sublanguage of the full one which includes 1-3
above only.

Finally, denote Ṽ the 3-sorted structure (Ṽ, V, F) described above, with
V endowed with the usual Zariski language as the algebraic variety.

Remarks 1.Notice that the sorts V and F are bi-interpretable over C.
2. The map g : V × Γ → GLN(F) being rational is definable in the weak

language of Ṽ.

Now we introduce the first order theory Th(A-mod) describing (Ṽ, V, F).
It consists of axioms:

Ax 1. F is an algebraically closed field of characteristic p and V is the Zariski
structure on the F-points of the variety MaxZ0.

Ax 2. For each m ∈ V the action of scalars of F and operators U1, . . . ,Ud

defines on π−1(m) the structure of an A-module of dimension N.

Ax 3. Assumption 2.1.3 holds for the given PA.

Ax 4. For the g : V × Γ → GLN(F) given by the assumption 2.1.4, for any
e, e′ ∈ Em there exists γ ∈ Γ such that

e′(i) =
∑

1≤j≤N

gij(m, γ)e(j), i = 1, . . . , N.

Moreover, Em is an orbit under the action of Γm.

Remark The referee of the paper notes that if Mm is irreducible then as-
sociated to a particular collection of coefficients tkij there is a unique (up
to scalar multiplication) canonical base for Mm (as in 2.1.3). It follows
that the only possible automorphisms of Ṽ which fix all of F are induced
by multiplication by scalars in each module (the scalars do not have to be
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the same for each fibre, and typically are not). So the ’projective’ bundle
∐

m∈V(Mm/scalars) is definable in the field F, but the original Ṽ in general
is not (see subsection 2.5).

2.3 Examples We assume below that ε ∈ F is a primitive root of 1 of order
`, and ` is not divisible by the characteristic of F.

1. Let A be generated by U,V,U−1,V−1 satisfying the relations

UU−1 = 1 = VV−1, UV = εVU.

We denote this algebra T 2
ε (equivalent to Oε((F

×)2) in the notations of [BG]).

The centre Z = Z0 of T 2
ε is the subalgebra generated by U`,U−`,V`,V−`.

The variety Max Z is isomorphic to the 2-dimensional torus F∗ × F∗.

Any irreducible T 2
ε -module M is an F-vector space of dimension N = `.

It has a basis {e0, . . . , e`−1} of the space consisting of U-eigenvectors and
satisfying, for an eigenvalue µ of U and an eigenvalue ν of V,

Uei = µεiei

Vei =

{

νei+1, i < ` − 1,
νe0, i = ` − 1.

We also have a basis of V-eigenvectors {g0, . . . , g`−1} satisfying

gi = e0 + εie1 + · · · + εi(`−1)e`−1

and so
Vgi = νεigi

Ugi =

{

µgi+1, i < ` − 1,
µg0, i = ` − 1.

For µ` = a ∈ F∗ and ν` = b ∈ F∗, (U` − a), (V` − b) are generators of
Ann(M). The module is determined uniquely once the values of a and b are
given. So, V is isomorphic to the 2-dimensional torus F∗ × F∗.

The coefficients tijk in this example are determined by µ and ν, which
satisfy the polynomial equations µ` = a, ν` = b.
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Γm = Γ is the fixed nilpotent group of order `3 generated by the matrices








0 1 0 . . . 0
0 0 1 . . . 0
. . . . . .
1 0 . . . 0









and









1 0 0 . . . 0
0 ε 0 . . . 0
. . . . . .
0 0 . . . ε`−1









2. Similarly, the d-dimensional quantum torus T d
ε,θ generated by U1, . . . ,Ud,

U−1
1 . . . ,U−1

d satisfying

UiU
−1
i = 1, UiUj = εθijUjUi, 1 ≤ i, j ≤ d,

where θ is an antisymmetric integer matrix, g.c.d.{θij : 1 ≤ j ≤ d}) = 1 for
some i ≤ d.

There is a simple description of the bundle of irreducible modules all of
which are of the same dimension N = `.

T d
ε,θ satisfies all the assumptions.

3. A = Uε(sl2), the quantum universal enveloping algebra of sl2(F). It is
given by generators K,K−1, E, F satisfying the defining relations

KK−1 = 1, KEK−1 = ε2E, KFK−1 = ε−2F, EF − FE =
K − K−1

ε − ε−1
.

The centre Z of Uε(sl2) is generated by K`, E`, F ` and the element

C = FE +
Kε + K−1ε−1

(ε − ε−1)2
.

We use [BG], Chapter III.2, to describe Ṽ. We assume ` ≥ 3 odd.
Let Z0 = Z and so V = Max Z is an algebraic extension of degree ` of

the commutative affine algebra K`, K−`, E`, F `.
To every point m = (a, b, c, d) ∈ V corresponds the unique, up to isomor-

phism, module with a canonical basis e0, . . . , e`−1 satisfying

Kei = µε−2iei,

F ei =

{

ei+1, i < ` − 1,
be0, i = ` − 1,

Eei =

{

ρe`−1, i = 0,

(ρb + (εi−ε−i)(µε1−i−µ−1εi−1)
(ε−ε−1)2

)ei−1, i > 0.
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where µ, ρ satisfy the polynomial equations

µ` = a, ρb +
µε + µ−1ε−1

(ε − ε−1)2
= d (1)

and

ρ
`−1
∏

i=1

(

ρb +
(εi − ε−i)(µε1−i − µ−1εi−1)

(ε − ε−1)2

)

= c. (2)

We may characterise V as

V = {(a, b, c, d) ∈ F4 : ∃ ρ, µ (1) and (2) hold }.

In fact, the map (a, b, c, d) 7→ (a, b, c) is a cover of the affine variety A3∩{a 6=
0} of order `.

In almost all points of V, except for the points of the form (1, 0, 0, d+)
and (−1, 0, 0, d−), the module is irreducible. In the exceptional cases, for
each i ∈ {0, . . . , ` − 1} we have exactly one `-dimensional module (denoted
Z0(ε

i) or Z0(−εi) in [BG], depending on the sign) which satisfies the above
description with µ = εi or −εi. The Casimir invariant is

d+ =
εi+1 + ε−i−1

(ε − ε−1)2
or d− = −

εi+1 + ε−i−1

(ε − ε−1)2

and the module, for i < ` − 1, has the unique proper irreducible submodule
of dimension ` − i − 1 spanned by e(i + 1), . . . , e(` − 1). For i = ` − 1 the
module is irreducible. According to [BG],III.2 all the irreducible modules
of A have been listed above, either as Mm or as submodules of Mm for the
exceptional m ∈ V.

To describe Γm consider two canonical bases e and e′ in Mm. If e′ is not
of the form λe, then necessarily e′0 = λek, for some k ≤ ` − 1, b 6= 0 and

e′i =

{

λei+k, 0 ≤ i < ` − k,
λbei+k, ` − 1 ≥ i ≥ ` − k,

If we put λ = λk = ν−k, for ν` = b, we get a finite order transformation. So
we can take Γ(a,b,c,d), for b 6= 0, to be the Abelian group of order `2 generated
by the matrices









0 ν−1 0 . . . 0
0 0 ν−1 . . . 0
. . . . . . ν−1

ν`−1 0 . . . 0









and









ε 0 0 . . . 0
0 ε 0 . . . 0
. . . . . .
0 0 . . . ε








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where ν is defined by
ν` = b.

When b = 0 the group Γ(a,0,c,d) is just the cyclic group generated by the scalar
matrix with ε on the diagonal.

The isomorphism type of the module depends on 〈a, b, c, d〉 only. This
basis satisfies all the assumptions 1-4.

Uε(sl2) is one of the simplest examples of a quantum group. Quantum
groups, as all bi-algebras, have the following crucial property: the tensor
product M1 ⊗ M2 of any two A-modules is well-defined and is an A-module.
So, the tensor product of two modules in Ṽ produces a Uε(sl2)-module of
dimension `2, definable in the structure, and which ’contains’ finitely many
modules in Ṽ. This defines a multivalued operation on V (or on an open
subset of V, in the second case).

More examples and the most general known cases Uε(g), for g a semisimple
complex Lie algebra, and Oε(G), the quantised group G, for G a connected
simply connected semisimple complex Lie group, are shown to have properties
1 and 2 for the central algebra Z0 generated by the corresponding U `

i , i =
1, . . . , d.

The rest of the assumptions are harder to check. We leave this open.

4. A = Oε(F
2), Manin’s quantum plane is given by generators U and

V and defining relations UV = εVU. The centre Z is again generated by
U` and V` and the maximal ideals of Z in this case are of the form 〈(U` −
a), (V` − b)〉 with 〈a, b〉 ∈ F2.

This example, though very easy to understand algebraically, does not
quite fit into our construction. Namely, the assumption 3 is satisfied only in
generic points of V = Max Z. But the main statement still hold true for this
case as well. We just have to construct Ṽ by glueing two Zariski spaces each
corresponding to a localisation of the algebra A.

To each maximal ideal with a 6= 0 we put in correspondence the module
of dimension ` given in a basis e0, . . . , e`−1 by

Uei = µεiei

Vei =

{

ei+1, i < ` − 1,
be0, i = ` − 1.
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for µ satisfying µ` = a.
To each maximal ideal with b 6= 0 we put in correspondence the module

of dimension ` given in a basis g0, . . . , g`−1 by

Vgi = νεigi

Ugi =

{

gi+1, i < ` − 1,
ae0, i = ` − 1.

for ν satisfying ν` = b.
When both a 6= 0 and b 6= 0 we identify the two representations of the

same module by choosing g (given e and ν) so that

gi = e0 + ν−1εie1 + · · · + ν−kεikek + · · · + ν−(`−1)εi(`−1)e`−1.

This induces a definable isomorphism between modules and defines a glueing
between Ṽa 6=0 and Ṽb 6=0. In fact Ṽa 6=0 corresponds to the algebra given by
three generators U,U−1 and V with relations UV = εVU and UU−1 = 1,
a localisation of Oε(F

2), and Ṽb 6=0 corresponds to the localisation by V−1.

2.4 Categoricity

Lemma (i) Let Ṽ1 and Ṽ2 be two structures in the weak language satis-
fying 2.1.1-2.1.3 and 2.2.1-2.2.3 with the same PA over the same algebraically
closed field F. Then the natural isomorphism i : V1 ∪F → V2 ∪F over C can
be lifted to an isomorphism

i : Ṽ1 → Ṽ2.

(ii) Let Ṽ1 and Ṽ2 be two structures in the full language satisfying 2.1.1-2.1.4
and 2.2.1-2.2.4 with the same PA over the same algebraically closed field F.
Then the natural isomorphism i : V1 ∪ F → V2 ∪ F over C can be lifted to
an isomorphism

i : Ṽ1 → Ṽ2.

Proof We may assume that i is the identity on V and on the sort F.
The assumptions 2.1 and the description 2.2 imply that in both structures

π−1(m), for m ∈ V, has the structure of a module. Denote these π−1
1 (m) and

π−1
2 (m) in the first and second structure correspondingly.

For each m ∈ V the modules π−1
1 (m) and π−1

2 (m) are isomorphic.
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Indeed, using 2.1.3 choose tijk satisfying PA for m and find bases e in
π−1

1 (m) and e′ in π−1
2 (m) with the Ui’s represented by the matrices {tijk :

k, j = 1, . . . , N} in both modules. It follows that the map

im :
∑

zje(j) 7→
∑

zje
′(j), z1, . . . , zN ∈ F

is an isomorphism of the A-modules

im : π−1
1 (m) → π−1

2 (m).

Hence, the union

i =
⋃

m∈V

im, i : Ṽ1 → Ṽ2,

is an isomorphism. This proves (i).
In order to prove (ii) choose, using 2.1.4, e and e′ in Em in π−1

1 (m) and
π−1

2 (m) correspondingly. Then the map im by the same assumption also pre-
serves Em, and so i is an isomorphism in the full language. ¤

As an immediate corollary we get

Theorem Th(A-mod) is categorical in uncountable cardinals both in the
full and the weak languages.

Remark 1 The above Lemma is a special case of Lemma 3.2.

Remark 2 It is not difficult to see that in the general case the theory
Th(A-mod) is not almost strongly minimal in the weak language but is always
almost strongly minimal in the full language.

2.5 We prove in this subsection that despite the simplicity of the construc-
tion and the proof of categoricity the structures obtained from algebras A in
our list of examples are nonclassical.

Assume for simplicity that char F = 0. The statements in this subsection
are in their strongest form when we choose the weak language for the struc-
tures.
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Proposition Ṽ(T n
ε ) is not definable in an algebraically closed field, for

n ≥ 2.

Proof We write A for T 2
ε . We consider the structure in the weak language.

Suppose towards the contradiction that Ṽ(A) is definable in some F′.
Then F is also definable in this algebraically closed field. But, as is well-
known, the only infinite field definable in an algebraically closed field is the
field itself. So, F′ = F and so we have to assume that Ṽ is definable in F.

Given W ∈ A, v ∈ Ṽ, x ∈ F and m ∈ V, denote Eig(W; v, x,m) the
statement:

v is an eigenvector of W in π−1(m) (or simply in Mm) with the eigenvalue
x.

For any given W the ternary relation Eig(W; v, x,m) is definable in Ṽ
by 2.2.

Let m ∈ V be such that µ is an U-eigenvalue and ν is a V-eigenvalue in
the module Mm. 〈µ`, ν`〉 determines the isomorphism type of Mm (see 2.3),
in fact m = 〈µ`, ν`〉.

Consider the definable set

Eig(U) = {v ∈ Ṽ : ∃µ,mEig(U; v, µ,m)}.

By our assumption and elimination of imaginaries in ACF this is in a defin-
able bijection with an algebraic subset S of Fn, some n, defined over some
finite C ′. We may assume that C ′ = C. Moreover the relations and functions
induced from Ṽ on Eig(U) are algebraic relations definable in F over C.

Consider µ and ν as variables running in F and let F̃ = F{µ, ν} be
the field of Puiseux series in variables µ, ν. Since S(F̃) as a structure is an
elementary extension of Eig(U) there is a tuple, say eµ, in S(F̃) which is an
U-eigenvector with the eigenvalue µ.

By definition the coordinates of eµ are Laurent series in the variables µ
1
k

and ν
1
k , for some positive integer k. Let K be the subfield of F̃ consisting of

all Laurent series in variables µ
1
k , ν

1
k , for the k above. Fix δ ∈ F such that

δk = ε.

The maps

ξ : t(µ
1
k , ν

1
k ) 7→ t(δµ

1
k , ν

1
k ) and ζ : t(µ

1
k , ν

1
k ) 7→ t(µ

1
k , δν

1
k ),
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for t(µ
1
k , ν

1
k ) Laurent series in the corresponding variables, obviously are

automorphisms of K over F. In particular ξ maps µ to εµ and leaves ν fixed,
and ζ maps ν to εν and leaves µ fixed. Also note that the two automorphisms
commute and both are of order `k.

Since U is F-definable, ξm(eµ) is a U-eigenvector with the eigenvalue εmµ,
for any integer m.

By the properties of A-modules Veµ is an U-eigenvector with the eigen-
value εµ, so there is α ∈ F̃

Veµ = αξ(eµ). (3)

But α is definable in terms of eµ, ξ(eµ) and C, so by elimination of quantifiers
α is a rational function of the coordinates of the elements, hence α ∈ K.

Since V is definable over F, we have for every automorphism γ of K,

γ(Ve) = Vγ(e).

So, (3) implies

Vξieµ = ξi(α)ξi+1(eµ), i = 0, 1, 2, . . .

and, since
Vk`eµ = νk`eµ,

applying V to both sides of (3) k` − 1 times we get

k`−1
∏

i=0

ξi(α) = νk`. (4)

Now remember that

α = a0(ν
1
k ) · µ

d
k · (1 + a1(ν

1
k )µ

1
k + a2(ν

1
k )µ

2
k + . . . )

where a0(ν
1
k ), a1(ν

1
k ), a2(ν

1
k ) . . . are Laurent series in ν

1
k and d an integer.

Substituting this into (4) we get

νk` = a0(ν
1
k )k`δ

k`(k`−1)
2 µd` · (1 + a′

1(ν
1
k )µ

1
k + a′

2(ν
1
k )µ

2
k + . . . )

It follows that d = 0 and a0(ν
1
k ) = a0 · ν, for some constant a0 ∈ F. That is

α = a0 · ν · (1 + a1(ν
1
k )µ

1
k + a2(ν

1
k )µ

2
k + . . . ) (5)
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Now we use the fact that ζ(eµ) is an U eigenvector with the same eigen-
value µ, so by the same argument as above there is β ∈ K such that

ζ(eµ) = βeµ. (6)

So,
ζ i+1(eµ) = ζ i(β)ζ i(eµ)

and taking into account that ζk` = 1 we get

k`−1
∏

i=0

ζ i(β) = 1.

Again we analyse β as a Laurent series and represent it in the form

β = b0(µ
1
k ) · ν

d
k · (1 + b1(µ

1
k )ν

1
k + b2(µ

1
k )ν

2
k + . . . )

where b0(µ
1
k ), b1(µ

1
k ), b2(µ

1
k ) . . . are Laurent series of µ

1
k and d is an integer.

By an argument similar to the above using (7) we get

β = b0 · (1 + b1(µ
1
k )ν

1
k + b2(µ

1
k )ν

2
k + . . . ) (7)

for some b0 ∈ F.
Finally we use the fact that ξ and ζ commute. Applying ζ to (3) we get

Vζ(eµ) = ζ(α)ζξ(eµ) = ζ(α)ξζ(eµ) = ξ(β)ζ(α)ξ(eµ).

On the other hand
Vζ(eµ) = βVeµ = βαξ(eµ).

That is
α

ζ(α)
=

ξ(β)

β
.

Substituting (5) and (7) and dividing on both sides we get the equality

ε−1(1 + a′
1(ν

1
k )µ

1
k + a′

2(ν
1
k )µ

2
k + . . . ) = 1 + b′1(µ

1
k )ν

1
k + b′2(µ

1
k )ν

2
k + . . .

Comparing the constant terms on both sides we get the contradiction. This
proves the proposition in the case n = 2.

To end the proof we just notice that the structure Ṽ(T 2
ε ) is definable in

any of the other Ṽ(T n
ε ), maybe with a different root of unity. This follows
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from the fact that the A-modules in all cases have similar description.¤

Corollary The structure Ṽ(Uε(sl2)) (Example 2.3.3) is not definable in
an algebraically closed field.

Indeed, consider

V0 = {(a, b, c, d) ∈ V : b 6= 0, c = 0} and Ṽ0 = π−1(V0)

with the relations induced from Ṽ.
Set U := K, V = F and consider the reduct of the structure Ṽ0 which

ignores the operators E and C. This structure is isomorphic to Ṽ(T 2
ε2) and

is definable in V(Uε(sl2)), so the latter is not definable in an algebraically
closed field.¤

Remark Note that T 2
ε here does not have any immediate connection

to the non-classical Zariski curve TN in [Z2]. So the Proposition does not
“explain” the earlier examples, though an attentive reader could spot sim-
ilarities in the proof of the Proposition and that of the non-algebraicity of
TN . A possible connection remains an open question.

3 Definable sets

3.1 Given variables v1,1, . . . , v1,r1 , . . . , vs,1 . . . , vs,rs
of the sort Ṽ, m1, . . . ,ms

of the sort V and variables x = {x1, . . . , xp} of the sort F, denote A0(e,m, t)
the formula

∧

i≤s, j≤N

E(ei,mi) & PA({tikn`}k≤d, `,n≤N ; mi) = 0 &
∧

k≤d,j≤N,i≤s

Ukei(j) =
∑

`≤N

tikj`ei(`).

Denote A(e,m, t, z, v) the formula

A0(e,m, t) &
∧

i≤s; j≤ri

vij =
∑

`≤N

zij`ei(`).

The formula of the form

∃ e1, . . . es∃ m1, . . . ,ms

17



∃ {tikjl : k ≤ d, i ≤ s, j, ` ≤ N} ⊆ F

∃ {zijl : i ≤ s, j ≤ ri, ` ≤ N} ⊆ F :

A(e,m, t, z, v)& R(m, t, x, z),

where R is a boolean combination of Zariski closed predicates in the algebraic
variety Vs×Fq over C, q = |t|+|x|+|z| (constructible predicate over C) will be
called a core ∃-formula with kernel R(m, t, x, z) over C. The enumeration
of variables vij will be referred to as the partitioning enumeration.

We also refer to this formula as ∃eR.

Comments (i) A core formula is determined by its kernel once the
partition of variables (by enumeration) is fixed. The partition sets that
π(ei(j)) = π(ei(k)), for every i, j, k, and fixes the components of the sub-
formula A(e,m, t, z, v).

(ii) The relation A0(e,m, t) defines the functions

e 7→ (m, t),

that is given a canonical basis {ei(1), . . . , ei(N)} in Mmi
we can uniquely

determine mi and tikj`.
For the same reason A(e,m, t, z, v) defines the functions

(e, v) 7→ (m, t, z).

3.2 Lemma Let

a = 〈a1,1, . . . , a1,r1 , . . . , as,1 . . . , as,rs
〉 ∈ Ṽ × · · · × Ṽ, b = 〈b1, . . . , bn〉 ∈ Fn.

The complete type tp(a, b) of the tuple over C is determined by its subtype
ctp(a, b) over C consisting of core ∃-formulas.

Proof We are going to prove that, given a′, b′ satisfying the same core type
ctp(a, b) there is an automorphism of any ℵ0-saturated model, α : (a, b) 7→
(a′, b′).

We assume that the enumeration of variables has been arranged so that
π(aij) = π(akn) if and only if i = k. Denote mi = π(aij).

Let ei be bases of modules π−1(mi), i = 1, . . . , s, j = 1, . . . , N, such that
|= A0(e,m, t) for some t = {tikj`} (see the notation in 3.1 and the assumption

18



2.1.3), in particular ei ∈ Emi
. By the assumption the correspondent systems

span Mmi
, so there exist cij` such that

∧

i≤s; j≤ri

aij =
∑

`≤N

cij`ei(`),

and let p = {Pi : i ∈ N} be the complete algebraic type of (m, t, b, c).
The type ctp(a, b) contains core formulas with kernels Pi, i = 1, 2, . . .

By assumptions and saturatedness we can find e′ m′, t′ and c′ satisfying
the correspondent relations for (a′, b′). In particular, the algebraic types of
(m, t, b, c) and (m′, t′, b′, c′) over C coincide and e′i ∈ Em′

i
. It follows that

there is an automorphism α : F → F over C such that α : (m, t, b, c) 7→
(m′, t′, b′, c′).

Extend α to π−1(m1) ∪ . . . ∪ π−1(ms) by setting

α(
∑

j

zjei(j)) =
∑

j

α(zj)e
′
i(j) (8)

for any z1, . . . , zN ∈ F and i ∈ {1, . . . , s}. In particular α(aij) = a′
ij and,

since α(Γmi
) = Γm′

i
, also α(Emi

) = Em′

i
.

Now, for each m ∈ V \ {m1, . . . ,ms} we construct the extension of α,
α+

m : π−1(m) → π−1(m′), for m′ = α(m), as in 2.4. Use 2.1.3 to choose
tijk satisfying PA for m and find bases e ∈ Em and e′ ∈ Em′ with the
Ui’s represented by the matrices {tijk : k, j = 1, . . . , N} in π−1(m) and by
{α(tijk) : k, j = 1, . . . , N} in π−1(m′). It follows that the map

α+
m :

∑

zje(j) 7→
∑

α(zj)e
′(j), z1, . . . , zN ∈ F

is an isomorphism of the A-modules

α+
m : π−1(m) → π−1(m′).

Hence, the union

α+ =
⋃

m∈V

α+
m

is an automorphism of Ṽ.¤
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By the compactness theorem we immediately get from the lemma.

Corollary Every formula in Ṽ with parameters in C ⊆ F is equivalent
to the disjunction of a finite collection of core formulas.

3.3 We consider now a more general form of core formulas with parameters
in both sorts Ṽ and F.

The general core formula of variables x = {x1, . . . , xp} and v = {vij :
i ≤ s + u, j ≤ ri} and parameters C ⊆ F, ê ⊆ Ṽ will be of the form

∃ e1, . . . es∃ m1, . . . ,ms

∃ {tikjl : k ≤ d, i ≤ s, j, ` ≤ N}

∃ {zijl : i ≤ s, j ≤ ri, ` ≤ N}

∃ {yijl : i ≤ u, j ≤ rs+i, ` ≤ N}

A(e,m, t, z, v)& B(ê, y, v)& R(m, t, x, y, z),

where ê = (ês+1, . . . , ês+u) are names of fixed canonical bases of some modules
Mm̂s+1 , . . . ,Mm̂s+u

in Ṽ, m, t, z and A are the same as in 3.1, y is {yijl : i ≤
u, j ≤ rs+i, ` ≤ N}, R is a Boolean combination of Zariski closed predicates
in variables m, t, x, y, z and B(ê, y, v) is the formula

∧

i≤u; j≤rs+i

vs+i,j =
∑

`≤N

yij` · êi(`).

As before we call R appearing in the general core formula the kernel of the
formula and write ∃e R for the general core formula with kernel R.

Remark Given the set in Ṽ defined by a general core formula ∃e R the
values of parameters m̂s+1, . . . , m̂s+u are determined uniquely as π(vij) with
i = s + 1, . . . , s + u, j ≤ ri. Hence êi, s < i ≤ s + u, are determined up to
a linear transformation inside Mm̂i

. So, choosing a different ê′ = γê one can
still define the same set by using the formula ∃eR′ where R′(m, t, x, y′, z)
is obtained from R(m, t, x, y, z) by substituting y′γ in place of y. In other
words,

we may assume that two equivalent general core formulas have the same
parameters ê.
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Proposition Every formula with parameters in Ṽ is equivalent to the
disjunction of a finite collection of general core formulas.

Proof By 3.1 it is enough to prove that there is such a form for the
formula obtained from a core formula ∃eR in variables x = {x1, . . . , xp} and
v = {vij : i ≤ s + u, j ≤ ri} with parameters C ⊆ F,

∃ e1, . . . es, . . . es+u∃ m1, . . . ,ms, . . . ,ms+u

∃ {tikjl : i ≤ s + u, k ≤ d, j, ` ≤ N} (9)

∃ {zijl : i ≤ s + u, j ≤ ri, ` ≤ N}

A(e,m, t, z, v)& R(m, t, x, z)

by substituting

vs+1,1 := as+1,1, . . . , vs+1,qs+1 := as+1,qs+1 ,

. . .

vs+u,1 := as+u,1, . . . , vs+u,qs+u
:= as+u,qs+u

,

some aij ∈ Ṽ and 1 ≤ qi ≤ ri, i = s + 1, . . . , s + u.
Notice that once the substitution vs+i,1 := as+i,1 occured the value of ms+i

will be fixed as ms+i = π(as+i). Denote this m̂s+i. Correspondingly there are
finitely many possible values for es+i ∈ Em̂s+i

. Choosing any such canonical
basis ês+i, the corresponding ts+i,kjl described in A(e,m, t, z, v) will be fixed,
denote the correspondent elements in F as t̂s+i,kjl. For the same reason we
have the zs+i,jl, for j ≤ qs+i, fixed as ẑs+i,jl by A(e,m, t, z, v).

So, ∃e RvI :=aI is equivalent to

∨

ês+1∈Em̂s+1
...ês+u∈Em̂s+u

∃ e1, . . . es∃ m1, . . . ,ms

∃ {tikjl : i ≤ s, k ≤ d, j, ` ≤ N}

∃ {zijl : i ≤ s, j ≤ ri, ` ≤ N}

(A(e,m, t, z, v)& R(m, t, x, z))vI :=aI ,mI=m̂I ,tI=t̂I ,zI=ẑI

Now we rename zijl with s < i ≤ s + u and qi < j ≤ ri as yi−s,j−qi,l.

R(m, t, x, z)vI :=aI ,mI=m̂I ,tI=t̂I ,zI=ẑI becomes then some constructible predicate
in variables m, t, x, y, z and parameters C and m̂I , t̂I , ẑI .
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We now want to reduce

A(e,m, t, z, v)vI :=aI ,mI=m̂I ,tI=t̂I ,zI=ẑI

to a suitable equivalent form. To this end we delete from the formula the
conjuncts which are trivially true, namely E(êi, m̂i) and the equalities of the
form

PA({t̂ikn`}k≤d, `,n≤N ; mi) = 0, aij =
∑

l

ẑijlêi(l) and Ukêi(j) =
∑

t̂ikjlêi(l)

for i > s. The only equations with indices i > s remaining will have the form

vij =
∑

l

yi−s,j,lêi(l),

and the conjunction of all these will form our B(ê, y, v) (we rename êi as êi−s

in the final form). The remaining part of A(e,m, t, z, v)vI :=aI ,mI=m̂I ,tI=t̂I ,zI=ẑI

will be exactly A(e,m, t, z, v) where e,m, t, z, v are as in the definition of a
general core formula. ¤

Remark We have also proved that the result ∃eRvI :=aI of the substitu-
tion in a given core formula (9) with kernel R(m, t, x, z) is equivalent to a
disjunction of general core formulas each with the kernel

R(m, t, x, z)mI=m̂I ,tI=t̂I ,zI=ẑIyI ,

where the substitution zI = ẑIyI replaces zijl with s < i ≤ s + u by ẑijl, for
j ≤ qi, or by yi−s,j−qi,l, for qi < j ≤ ri.

Corollary Every formula in Ṽ with parameters in Ṽ is equivalent to the
disjunction of a finite collection of general core formulas.

3.4 We assume from now on the stronger assumption 2.1.4 and prove in
this section that the core formulas in Corollaries of 3.2 and 3.3 can have a
form more suitable for technical purposes.

Let Γ be the group in 2.1.4. Given a Zariski closed predicate R :=
R(m, t, x, y, z) with m ranging in Vs and t, x, y, z tuples in F in accordance
with the notation in 3.2, we define, for γ = (γ1, . . . , γs) ∈ Γs, the predicate
Rγ(m, t, x, y, z) of the same variables.
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First we consider the case when R is irreducible. Set

VR := {m ∈ Vs : ∃ t, x, y, z R(m, t, x, y, z)},

the projection of R on Vs. Let VR,γ be the open subset of VR equal to the
domain of definition of the map (in variables m)

g(m, γ) := 〈g(m1, γ1), . . . , g(ms, γs)〉.

Set
Γs

R := {γ ∈ Γs : VR,γ 6= ∅}.

This is a subgroup of Γs since VR,γ is a dense open subset when nonempty.
In case γ ∈ Γs

R define Rγ to be the Zariski closure of the set

{〈m, t, x, y, z〉 : ∃t′, z′ m ∈ VR,γ & t′ = g(m, γ)−1 · t · g(m, γ) &

& z′ = z · g(m, γ) & R(m, t′, x, y, z′)}.

Remember that t is a collection of N × N matrices and z is a list of N -
tuples, coordinates of elements of Mmi

in the corresponding canonical bases
e. So in the definition above z · g(m, γ) corresponds to the coordinates of the
same elements in bases e′ = g(m, γ) · e, and g(m, γ)−1 · t ·g(m, γ) is the result
of the corresponding transformation of the matrices in t.

With an obvious abuse of notation we will often write R(m, tγ, x, y, zγ)
for Rγ(m, t, x, y, z), when γ ∈ Γs

R.
For a general Zariski closed R we first represent R = R1 ∪ · · · ∪Rk as the

union of its irreducible components and then set

Rγ = Rγ
1 ∪ · · · ∪ Rγ

k ,

Γs
R = Γs

R1
∩ · · · ∩ Γs

Rk
.

Remarks (i) Obviously, Rid = R, for id the unit element of Γs;
(ii) For γ ∈ Γs

R the set VRγ ∩ VR is a dense open subset of VR equal to
VR ∩ VR,γ;

(iii) If R does not depend on t and z then Rγ = R for every γ ∈ Γs
R;

(iv) Suppose P ⊆ R is a Zariski closed relation. Then P γ ⊆ Rγ for every
γ ∈ Γs and Γs

P ⊆ Γs
R;

(v) Let R∗ =
⋃

γ∈Γs Rγ . Then

R∗γ = R∗
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for every γ ∈ Γs
R.

We will say that R is Γ-invariant if Rγ = R for every γ ∈ Γs
R.

3.5 Lemma 1. We may assume that the kernels in core formulas in Corol-
lary 3.2 are of the form R(m, t, x, z) & ¬S(m, t, x, z), where R,S are given
by systems of equations and S is Γ-invariant.

Proof We go back to the proof of Lemma 3.2 and consider the deductively
complete type p in the language of fields, p = {Pi}, with conjunctions of Pi

appearing in the end as the kernels of core formulas. We may assume that
each Pi is either a system of equations R(m, t, x, z) in variables m, t, x, z or
the negation ¬S(m, t, x, z) of the system of equations S. We are going to
prove that, for a given ¬S ∈ p there is a system of equations R ∈ p, and a
negation ¬S̄ ∈ p, with ¬S̄γ = ¬S̄, for all γ ∈ Γs

S, such that R & ¬S̄ |= ¬S.
This implies that we can replace all Pi by R & ¬S̄ and would prove the
Lemma.

If
∧

γ∈Γs ¬Sγ ∈ p then this formula, being equivalent to a negation ¬S̄ of

a system of equations, is invariant under Γs and satisfies ¬S̄ |= ¬S.
So we assume the opposite,

∧

γ∈Γs ¬Sγ /∈ p. Hence, for some nonempty
proper subset ∆ ( Γs, with 1 ∈ ∆,

¬T =
∧

γ∈∆

¬Sγ ∈ p.

We assume ∆ to be maximal with this property.
Obviously

∨

γ∈Γs

¬T γ ∈ p.

Denote
Stab(∆) = {γ ∈ Γs : γ∆ = ∆}.

Since by maximality for any γ ∈ Γs \ Stab(∆) we have ¬T γ & ¬T /∈ p,
necessarily T γ ∈ p and so

∧

γ∈Γs\Stab∆

T γ ∈ p.

But
∨

γ∈Γs

¬T γ &
∧

γ∈Γs\Stab∆

T γ |=
∨

γ∈Stab∆

¬T γ
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The latter is equivalent to ¬T, and ¬T |= ¬S. So we can take
∧

γ∈Γs\Stab∆ T γ

for R and
∨

γ∈Γs ¬T γ for ¬S̄.¤

Lemma 2. We may assume that in Corollary 3.2 the kernels of core
formulas are of the form R&¬S with R,S given by systems of polynomial
equations and both are Γ-invariant.

Proof We use Lemma 1. Observe first that in general
Claim ∃e, t, zA(e,m, t, v, z) & P (m, t, z, x) is equivalent to

∃e, t, zA(e,m, t, v, z) & P ∗(m, t, z, x), where

P ∗ =
∨

γ∈Γs

P γ.

Indeed, ∃e P obviously implies ∃e P ∗. To see the converse note that, given
v and x, if for some e and γ ∈ Γs we have |= A(e,m, t, v, z) & P (m, tγ, zγ, x)
then, letting e′ = γe, we will have |= A(e′,m, tγ , v, zγ) and so,
|= A(e′,m, t′, v, z′) & P (m, t′, z′, x) for t′ = tγ and z′ = zγ.

Applying the Claim to our ∃e R & ¬S we will get the equivalent formula
∃e R∗ & ¬S since S∗ = S. ¤

Combining Lemma 2 with the Remark in 3.3 we get.

Corollary We may assume that in Corollary 3.3 the kernels of general
core formulas are of the form R&¬S with R,S given by systems of polyno-
mial equations and both are Γ-invariant.

Now we discuss general core formulas with Γ-invariant kernels.

Lemma 3. Assuming that R2 is Γ-invariant we have
(i) ∃e (R1 & R2) ≡ (∃e R1) & (∃e R2);
(ii) ∃e ¬R2 ≡ ¬∃e R2.
Proof (i) The left-hand-side obviously implies the formula on the right.

Assume for converse that the right-hand-side is true. That is for given v, x
and y there is e and e′ such that |= A(e,m, t, v, z) & B(ê, y, v)& R1(m, t, x, y, z)
and |= A(e′,m, t′, v, z′) & B(ê, y, v)& R2(m, t′, x, y, z′). Since e′ = γe for some
γ ∈ Γs, we have |= A(e,m, t, v, z) & B(ê, y, v)& R2(m, tγ, x, y, zγ). But R2 is
Γ-invariant, hence we get |= A(e,m, t, v, z) & B(ê, y, v)& R1(m, t, z, x) & R2(m, t, z, x),
as requred.
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(ii) We need only prove the implication from left to right. Assume that
|= A(e,m, t, v, z) & B(ê, y, v)& ¬R2(m, t, x, y, z). We need to check that for
no e′ it is possible |= A(e′,m, t′, v, z′) & B(ê, y, v)& R2(m, t′, x, y, z′). Indeed,
as above by Γ-invariance the latter is equivalent to
|= A(e,m, t, v, z) & B(ê, y, v)& R2(m, t, x, y, z), which would contradict the
former. ¤

Lemma 4 Suppose ∃eR1 ≡ ∃eR2, both sides are general core formulas
with the same partition of v-variables, u and ê1, . . . , êu are same in both
formulas, and R1, R2 are Γ-invariant. Then R1 ≡ R2.

Proof By Lemma 3

∃e (R1 & ¬R2) ≡ ∃e R1 & ∃e ¬R2 ≡ ∃e R1 & ¬∃e R2

and so R1 & ¬R2 is inconsistent, that is |= R1 → R2. By symmetry R1 ≡
R2.¤

4 Zariski geometry

In this section we introduce on Ṽ and its finite cartesian powers a topology
which is naturally coming from the coordinate algebra A. To see that this is
a Noetherean topology satisfying also the definition of a pre-smooth Zariski
geometry (see [Z1] for this) we have to have more than just a quantifier
elimination to existential formulas. To this end we carry out a more detailed
analysis of general core formulas and their behavior under Boolean operations
and projections.

4.1 We introduce the A-topology declaring basic closed subsets of Ṽn×Fp

the subsets defined by general core formulas ∃eR with kernels R given by Γ-
invariant systems of polynomial equations with coefficients in F.

We also assume that R contains the equation PA(t,m) = 0 (see 2.1.3),
which is in the A-part of ∃eR.

We often denote R̂ the closed set defined by the formula ∃eR.
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The closed subsets of the topology are given by applying finite unions
and arbitrary intersections to basic closed subsets.

Claim 1 Intersection of an infinite family of basic closed subsets of a
Cartesian power of Ṽ is equal to the intersection of its finite subfamily.

Indeed, since for a given set of variables there are finite number of ways to
partition (enumerate) the variables as {vij : i ≤ s, j ≤ ri}, we may assume
that all core formulas defining the members of the family have the same par-
tition of variables. Now by Lemma 2 and Lemma 3(i) of 3.5 the intersection
of sets defined by ∃e Rα, α ∈ I, reduces to the intersection of Zariski closed
sets defined by Rα, α ∈ I, which obviously stabilises.

Using Koenig’s Lemma we get
Claim 2 The A-topology is Noetherian.

Since for s+u = 0 a general core formula ∃eR takes the form R(x, y) the
following is obvious.

Claim 3 The restriction of the A-topology to the sort F is the classical
Zariski topology.

Claim 4 Any definable subset of a Cartesian power of Ṽ is equal to the
Boolean combination of closed subsets, that is, is constructible.

Indeed, by the Corollary in 3.3 it is sufficient to prove the statement for
subsets defined by general core formulas. The Corollary in 3.5 together with
Lemmas 3(ii) provide the rest.

We will also need a more detailed presentation of sets obtained by pro-
jecting closed sets onto coordinate subspaces, as well as fibers of these pro-
jections.

Lemma 1 Let ∃e R be the general core formula in the notation of 3.3 and
a ∈ {1, . . . , s + u}, b ∈ {1 . . . , ra} some indices. Then the formula ∃vab∃eR
is equivalent to a general core formula ∃e′ R′ with the kernel R′ equivalent to
one of the following

(i) ∃ya−s,b1 . . . ya−s,bNR,
(ii) ∃zab1 . . . zabNR or
(iii) ∃ma∃{takjl : k ≤ d, j, l ≤ N}∃zab1 . . . zabNR.

Proof (i) Suppose s < a ≤ s + u. Since vab does not occur in A(e,m, t, z, v)
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and R(m, t, x, y, z), the formula ∃vab∃eR is equivalent to

∃ e1, . . . es∃ . . .

A(e,m, t, z, v)& (∃vabB(ê, y, v)) & R(m, t, x, y, z),

with the quantifier prefix the same as in ∃eR. Looking at the form of
B(ê, y, v) one sees that (∃vabB(ê, y, v)) is equivalent to some B(ê, y′, v′) with
y′ = y \ {ya−s,b1 . . . ya−s,bN} and v′ = v \ {vab}. Now we can equivalently
rewrite the formula as

∃ e1, . . . es∃ . . .

A(e,m, t, z, v)& B(ê, y′, v′)& ∃ya−s,b1 . . . ya−s,bNR(m, t, x, y, z),

where ∃ya−s,b1 . . . ya−s,bN moved from the quantifier prefix to the end of the
formula. Of course, by quantifier elimination in algebraically closed fields,
∃ya−s,b1 . . . ya−s,bNR is a constructible predicate.

(ii) and (iii). Suppose a ≤ s. Then the formula ∃vab∃eR is equivalent to

∃ e1, . . . es∃ . . .

(∃vabA(e,m, t, z, v)) & B(ê, y, v)& R(m, t, x, y, z).

One can obviously eliminate the quantifier from ∃vabA(e,m, t, z, v) by sub-
stituting vab everywhere in A(e,m, t, z, v) by the term

∑

`≤N zab`ea(`). This
makes the conjunct vab =

∑

`≤N zab`ea(`) in A(e,m, t, z, v) a tautology and
after removing it we get a formula without vab which in the case ra 6= 1 is
again of the form A(e,m, t, z′, v′), where v′ = v\{vab}, z′ = z\{zab1 . . . zabN}.
This gives us a general core formula of the form (ii) for ∃vab∃e R.

In case ra = 1 the conjunct vab =
∑

`≤N zab`ea(`) is the only one that uses
the variables ea. By eliminating this conjunct we made other subformulas
containing ea redundant. So we eliminate

∧

j≤N

E(ea,ma) & PA({takn`}k≤d, `,n≤N ; ma) = 0 &
∧

k≤d,j≤N

Ukea(j) =
∑

`≤N

takj`ea(`)

from A(e,m, t, z, v) as well (notice that by our assumptions
PA({takn`}k≤d, `,n≤N ; ma) = 0 is also copied in R). The resulting formula
is again of the form A(e′,m′, t′, z′, v′), with v′ = v \ {vab}, m′ = m \ {ma},
z′ = z \ {zab1 . . . zabN} and t′ = t \ {takjl : k ≤ d, j, ` ≤ N}. Now we may
push the quantifiers ∃ma, ∃{zab1 . . . zabN} and ∃{takj` : k ≤ d, j, ` ≤ N} to
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the end of the formula and get the general core formula of the form (iii).¤

Lemma 2 Suppose ∃e R does not contain x, free variables of the sort F.
Let ∃e′R′ be the general core formula equivalent to ∃vab∃eR as in the above
Lemma. More precisely R′ = ∃uR(u,w), some u depending on the case. Let
v′ = v \ {vab} and v̂′ is a tuple in Ṽ satisfying ∃e′R′. Then (∃eR)v′:=v̂′

has
kernel of the form R(u, ŵ), for some ŵ.

Proof Follow the analysis in the proof of Proposition in 3.3. In case (i) the
substituition v′ := v̂′ fixes the whole of e, m, t, z and y\{ya−s,b,1 . . . , ya−s,b,N},

so the kernel is Rm=m̂,t=t̂,z=ẑ,y′=ŷ′

. In other words, in this case we satisfied
the requirement of the Lemma with u = (ya−s,b,1 . . . , ya−s,b,N) and w =
(m, t, z, y′).

In case (ii) again v̂′ fixes the whole of e, m, t, y and z \ {zab1 . . . zabN}. In
case (iii) v̂′ fixes e \ ea m \ ma, t \ ta, y and z \ {zab1 . . . zabN}.¤

4.2 For further purposes we need a more detailed understanding of inter-
sections of closed sets.

Let {v1, . . . , vn} be a linear reenumeration of variables {vij : i ≤ s, j ≤
ri}, n = r1 + · · · + rs, of sort Ṽ in a general core formula ∃eR (the variables
{vij : s < i ≤ s + u, j ≤ ri} remain unchanged). We write k ∼R k′

for k, k′ ∈ {1, . . . , n} if k and k′ correspond to some (i, j) and (i, j′) in
the old enumeration. This is an equivalence relation. We denote IR the
subset {1, . . . , n} corresponding to {(i, 1) : i = 1, . . . , s} in the partitioning
enumeration, the set of representatives of ∼R-classes.

We use the abbreviation ei for {ei(1), . . . , ei(N)}, ti for {tikj` : k ≤
d; j, l ≤ N} and zi for {zij` : j ≤ ri; ` ≤ N}, i = 1, . . . , n, along with
other obvious abbreviations. In particular, Uei = tiei stands for

∧

k≤d,j≤N,i≤s

Ukei(j) =
∑

`≤N

tikj`ei(`).

We rewrite equivalently the general core formula ∃eR of 3.3 as R̃(v, x) :

∃ e1, . . . en ∃ t1, . . . , tn, ∃ z1, . . . , zn y ∃ m1, . . . mn

∧

i≤n

E(ei,mi) & Uei = tiei & vi = ziei &
∧

i∼Rj

ei = ej & B(ê, y, v)
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& R(m, t, z, x, y) &
∧

i∼Rj

mi = mj & ti = tj.

This is not a core formula because of the component
∧

i∼Rj ei = ej.

Remark 1 In R only mi, ti with i ∈ IR as well as zi, i ≤ n, y and x occur
explicitly. Let dR = dim R, the dimension of the variety defined by R in the
space given by these variables. Obviously we may assume that R depends
on all variables mi, ti, zi, i ≤ n, y and x. Then in the bigger ambient space
we still have

dR = dim[R&
∧

i∼j

mi = mj & ti = tj].

Let ∃e S be another general core formula of the same variables with pos-
sibly different partitioning enumeration {vij : i ≤ s′ + u, j ≤ r′i}. We assume
that variables {vij : s′ < i ≤ s′ + u, j ≤ r′i} and parameters ês′+1, . . . , ês′+u

are the same in both ∃e R and ∃e S.
We re-enumerate the variables {vij : i ≤ s′, j ≤ r′i} linearly as v1, . . . , vn.

We have the corresponding equivalence relation ∼S on {1, . . . , n} and a set
of its representatives IS. As above ∃eS can be equivalently rewritten as the
formula S̃(v, x) :

∃ e′1, . . . e
′
n ∃ t′1, . . . , t

′
n, ∃ z′1, . . . , z

′
n y ∃ m1, . . . mn

∧

i≤n

E(e′i,mi) & Ue′i = t′ie
′
i & vi = z′ie

′
i &

∧

i∼Sj

e′i = e′j & B(ê, y, v)

S(m′, t′, x, y, z′) &
∧

i∼Sj

mi = mj & t′i = t′j.

Lemma The formula R̃(v, x) & S̃(v, x) is equivalent to the formula
T̃ (v, x) :

∃ e1, . . . en ∃ t1, . . . , tn, ∃ z1, . . . , zn y ∃ m1, . . . mn
∧

i≤n

E(ei,mi) & Uei = tiei & vi = ziei &
∧

i∼RSj

ei = ej & B(ê, y, v)

R(m, t, x, y, z)&S(m, t, x, y, z) &
∧

i∼RSj

mi = mj & ti = tj,

where ∼RS is the transitive closure of the composition of the two equivalence
relations ∼R and ∼S .
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Proof The implication T̃ (v, x) → R̃(v, x) & S̃(v, x) is obvious.
For converse suppose R̃(v, x) & S̃(v, x) holds. This implies the existence

of ei, e
′
i, ti, t

′
i, zi, z

′
i,mi (i = 1, . . . , n) and y which satisfy

∧

i≤n

E(ei,mi) & Uei = tiei & vi = ziei &
∧

i∼Rj

ei = ej & B(ê, y, v)

R(m, t, x, y, z) &
∧

i∼Rj

mi = mj & ti = tj

and

∧

i≤n

E(e′i,mi) & Ue′i = t′ie
′
i & vi = z′ie

′
i &

∧

i∼Sj

e′i = e′j & B(ê, y, v)

S(m, t′, x, y, z′) &
∧

i∼Sj

mi = mj & t′i = t′j.

mi must be the same in both formulas since mi = π(vi). It follows from the
assumption 2.1.4 that for some γi ∈ Γm, ei = γie

′
i. Since R is Γ-invariant we

can exchange, for i ∈ IR, ei by γiei, ti by tγi

i and zi by ziγi without changing
the validity of R and so may assume that γi = 1 and ei = e′i for i ∈ IR.

By symmetry we can reduce to the situation that also ej = e′j for j ∈ IS.

Claim We can choose ei = e′i for all i ≤ n.
Proof. By induction on n. We have already ei = e′i for all i ∈ IR ∪ IS, so

we assume that IR ∪ IS ⊆ {1, . . . , n − 1} and we can choose ei = e′i for all
i ≤ n−1. We have en = e` = e′` for some ` ∈ IR, ` ∼R n, and e′n = e′k = ek, for
some k ∈ IS, k ∼S n. From the equivalences it follows that mi = mn = mk,
i.e. the modules coincide. So, en = γe′n for some γ ∈ Γm.

Let Jk = {i ≤ n : ei = ek}, J ′
k = {i ≤ n : e′i = ek}. Note that n /∈ Jk.

Apply the substitution ei 7→ γei and e′j 7→ γe′j for all i ∈ Jk, j ∈ J ′
k, leaving

ei and e′j for i /∈ Jk, j /∈ J ′
k unchanged in

∧

i≤n

E(ei,mi) & Uei = tiei & vi = ziei &
∧

i∼Rj

ei = ej

and
∧

i≤n

E(e′i,mi) & Ue′i = t′ie
′
i & vi = z′ie

′
i &

∧

i∼Sj

e′i = e′j.
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This induces the correspondent transformation of t, t′, z, z′ which by Γ-invariance
does not change the validity of R(m, t, x, y, z) and S(m, t′, x, y, z′).

This preserves all the existing equalities and gives e′n = en for the new
value of e′n. Claim proved.

This brings us to the situation with ei = e′i, ti = t′i and zi = z′i in the
formulas above. Thus

∧

i≤n

E(ei,mi) & Uei = tiei & vi = ziei &
∧

i∼RSj

ei = ej

R(m, t, z, x)&S(m, t, z, x) &
∧

i∼RSj

mi = mj & ti = tj,

hold. This proves the converse implication.¤

Corollary 1 The intersection of two basic closed sets given by general
core formulas ∃e R and ∃e S with arbitrary partitioning enumerations and the
same parameters ês+1, . . . , ês+u is a basic closed set given by a core formula
∃e T, with T equivalent to

R(m, t, x, y, z)&S(m, t, x, y, z) &
∧

i∼RSj

mi = mj & ti = tj.

Indeed, T̃ (v, x, y) can be transformed into a core formula by the following
process.

Let IRS ⊆ {1, . . . , n} be a set of representatives of ∼RS-classes. Assuming
IRS ⊆ {1, . . . , u} re-enumerate v1, . . . , vn as vij : i ≤ u, j ≤ ri}, vi1 is the vi

in the linear enumeration and indices (ij) correspond to indices equivalent
to i by ∼RS .

Using the equalities ei = ej, mi = mj and ti = tj, for i ∼RS j, we delete
ej, mj and tj, with j > u, everywhere from T̃ along with the subformulas
stating the equalities.

We re-enumerate z-variables in accordance with enumeration vij, so that
now the formula T̃ says now that vij = zijei for every i ≤ u and j ≤ ri.

After that T̃ transforms to

∃e1, . . . , eu ∃t1, . . . , tu ∃m1, . . . ,mu ∃z11, . . . , zuru
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∧

i≤u

E(ei,mi) & Uei = tiei &
∧

j≤ru

vij = zijei & B(ê, y, v)

R′(m, t, x, y, z)&S ′(m, t, x, y, z),

where R′ and S ′ obtained by substituting ti and mi instead of tj and mj, for
j ∼RS i, j > u. This is a general core formula.

Remark 2 By the Remark in 3.3 we can always assume that parameters
ê in both formulas are the same.

Combining Corollary 1 with (i) and (ii) of the definition 4.1 we get.

Corollary 2 Every closed set in the A-topology is equal to the union of a
finite family of closed sets each of the form P̂ , for P a Zariski closed predicate.

Corollary 3 Given a basic closed set P ⊆ Ṽn×Fp, there is a core formula
∃e P defining P with the finest partition of the v-variables. That is, for every
∃e R defining the same set the partition ∼P is refining ∼R .

Fixing a choice of parameters ê (one of the finitely many), the Zariski
closed relation P above is determined uniquely by the set P. Any other choice
ê′ of parameters for P determines a Zariski closed relation P ′ obtained from
P by a linear transformation in variables y.

Indeed, take for ∃e P the formula obtained by taking the conjunction of
all possible representations ∃eR of P, R Zariski closed, using Corollary 1.

Lemma 4 in 3.5 implies the uniqueness of P.¤

We will say that the algebraic constructible set P (F) for P and P as above
is associated with P. If P (F) is Zariski closed we call P (F) the variety

associated with the closed set P.

4.3 From now on when we write a basic closed set in the form P̂ (equiva-
lently, use the core formula ∃e P ) the kernel P is canonical, that is is uniquely
determined by the set P̂ .

We define
dim P̂ := dim P (F),

where dim on the right is the dimension of the algebraic variety.
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For a constructible set S we define

dim S := dim S̄, where S̄ is the closure of S.

Suppose v = va

1 v2, |v1| = n1, |v2| = n2, x = xa

1 x2, |x1| = k1, |x2| = k2

and let
pr : Ṽn1+n2 × Fk1+k2 → Ṽn1 × Fk1

be the projection pr : va

1 va

2 xa

1 x2 7→ va

1 x1.

Proposition Let S ⊆ Ṽn1+n2 × Fp1+p2 be a closed set. Then
(i) pr(S) is a constructible set;
(ii) for each a ∈ pr(S), the set S ∩ pr−1(a) is closed;
(iii) for each nonnegative integer ` the set

{a ∈ pr(S) : dim S ∩ pr−1(a) ≥ `}

is constructible. If ` > mina∈pr(S) dim S ∩pr−1(a) then the set is contained in
a proper subset closed in pr(S).

(iv) assuming S is irreducible, we have

dim S = dim pr(S) + min
a∈pr S

dim S ∩ pr−1(a).

(v) for any two irreducible S1, S2 ⊆ Ṽ n ×Fp, for every irreducible compo-
nent S0 of S1 ∩ S2,

dim S0 ≥ dim S1 + dim S2 − dim Ṽ n × Fp.

Proof (i) Follows from Claim 4 in 4.1.
(ii) Just notice that

S ∩ pr−1(a) = S ∩ {va

1 x1 = a}

and notice that {va

1 x1 = a} is a basic closed set.
(iii) By our definition of dimension and the two Lemmas in 4.1 this is

equivalent to the same statement for S an affine algebraic variety. This is a
well-known theorem for algebraic varieties used as an axiom (FC) for Zariski
geometries in [Z1].

(iv) First observe
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Claim If S is irreducible then S = P̂ with the associated variety P of
the form

⋃

γ∈Γs

Rγ , R irreducible.

Indeed, by definition S is a union of sets of the form P̂ . Since it is irreducible
there is just one such in the union. Let R(F) be an irreducible component
of the variety P (F). By Γ-invariance Rγ(F) is also a component of P, for all
γ ∈ ΓP . By irreduciblity of S the union of all Rγ is equal to P. Claim proved.

Again as in (iii), by 4.1, (iv) is equivalent to

dim P = dim pr P + min
b∈pr P

dim P ∩ pr−1(b)

for an appropriate projection pr. But this is the known addition formula for
algebraic varieties and more generally Zariski structures, see [Z1].

(v) First observe that by the Claim above irreducible Si (i = 0, 1, 2) have
to be of the form P̂i, for Pi of the form

∨

γ∈Γs Rγ
i , Ri irreducible.

The rest follows from Corollary 1 of 4.2 (see also Remark 1 in the same
section). In the present notation we get by the Corollary that the ker-
nel in P̂1 ∩ P̂2 corresponds to the intersection of two algebraic subvarieties
of dimensions dim P1 and dim P2 in the ambient affine space of dimension
dim Ṽn + dim Fp. By the Dimension Theorem for affine spaces we get the
required inequality. ¤

Theorem For any algebra A satisfying the assumptions 2.1(1-4) the
structure Ṽ is a Zariski geometry, satisfying the presmoothness condition
provided the affine algebraic variety V is smooth.

Proof The Proposition above together with the topological subsection 4.1
proves all the assumptions defining Zariski geometries, see [Z1].¤
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