Hamid Rahkooy









Mathematical Institute
Radcliffe Observatory Quarter
Woodstock Road
Oxford OX2 6GG
United Kingdom

rahkooy@maths.ox.ac.uk

Papers avilable in:         Google Scholar     and     BDLP

Applications in Biochemical Reactions

  • Algebraic identifiability of partial differential equation models, with H. Byrne, H. Harrington, A. Ovchinnikov, G. Pogudin & P. Soto, https://arxiv.org/abs/2402.04241.
  • A Computational Approach to Polynomial Conservation Laws, with A. Desoeuvres, A. Iosif, C. Lüders, O. Radulescu, M. Seiß & T. Sturm, SIAM Journal on Applied Dynamical Systems, 2024. https://doi.org/10.1137/22M1544014
  • Reduction of Chemical Reaction Networks with Approximate Conservation Laws, with A. Desoeuvres, A. Iosif, C. Lüders, O. Radulescu, M. Seiß & T. Sturm, SIAM Journal on Applied Dynamical Systems, Vol 23(1), 256-296, 2024. https://doi.org/10.1137/22M1543963
  • Testing Binomiality of Chemical Reaction Networks Using Comprehensive Gröbner Systems, with T. Sturm, CASC 2021. doi:10.1007/978-3-030-85165-1_19
  • Parametric Toricity of Steady State Varieties of Reaction Networks, with T. Sturm, CASC 2021. doi:10.1007/978-3-030-85165-1_18
  • Efficiently and Effectively Recognizing Toricity of Steady State Varieties, with D. Grigoriev, A. Iosif, T. Sturm & A. Weber, Math. Comput. Sci., 2021. doi:10.1007/s11786-020-00479-9
  • A Linear Algebra Approach for Detecting Binomiality of Steady State Ideals of Reversible Chemical Reaction Networks, with O. Radulescu and T. Sturm, CASC 2020. doi:10.1007/978-3-030-60026-6_29
  • First-Order Tests for Toricity, with T. Sturm, CASC 2020. doi:10.1007/978-3-030-60026-6_30
  • A Graph Theoretical Approach for Testing Binomiality of Reversible Chemical Reaction Networks, with C. V. Montero, SYNASC 2020. doi: 10.1109/SYNASC51798.2020.00027

Computational Algebra

  • A note on the algebra structures in A_\Phi(G), with I. Akbarbaglu and H. P. Aghababa, Mediterranean Journal of Mathematics, 2022. doi: 10.1007/s00009-022-02052-z
  • Block-Krylov techniques in the context of sparse-FGLM algorithms, with S. G. Hyun, V. Neiger and É. Schost, J. Symb Comp, 2020. doi:10.1016/j.jsc.2019.07.010
  • Sparse FGLM using the block Wiedemann algorithm, with S. G. Hyun, V. Neiger and É. Schost, ACM Communications in Computer Algebra, 2018. doi:10.1145/3338637.3338641
  • Algorithms for zero-dimensional ideals using linear recurrent sequences, with V. Neiger and É. Schost, CASC 2017. doi:10.1007/978-3-319-66320-3_23
  • Efficient computation of dual space and directional multiplicity of an isolated point, with A. Mantzaflaris and Z. Zafeirakopoulos, Computer Aided Geometric Design, 2016. doi:10.1016/j.cagd.2016.05.002
  • Dual space algorithms for computing multiplicity structure of isolated points. PhD Thesis, Johannes Kepler University Linz, 2015.
  • On computing the elimination ideals using resultants with applications to Gröbner Bases, with M. Gallet and Z. Zafeirakopoulos, Preprint, 2013. arxiv.org/abs/1307.5330 (Cited in Cox, Little & O’Shea, Ideals, Varieties and Algorithms, Springer, Ed. 2015).
  • Using resultants for inductive Gröbner Bases computation, with Z. Zafeirakopoulos, ACM Communications in Computer Algebra, 2011. https://doi.org/10.1145/2016567.2016593