Papers avilable in:
Google Scholar and
BDLP
Applications in Biochemical Reactions
-
Algebraic identifiability of partial differential equation models,
with H. Byrne, H. Harrington, A. Ovchinnikov, G. Pogudin & P. Soto,
https://arxiv.org/abs/2402.04241.
-
A Computational Approach to Polynomial Conservation Laws,
with A. Desoeuvres, A. Iosif, C. Lüders,
O. Radulescu, M. Seiß & T. Sturm, SIAM
Journal on Applied Dynamical Systems, 2024.
https://doi.org/10.1137/22M1544014
-
Reduction of Chemical Reaction Networks with Approximate
Conservation Laws, with A. Desoeuvres, A. Iosif, C. Lüders,
O. Radulescu, M. Seiß & T. Sturm,
SIAM Journal on Applied Dynamical Systems, Vol 23(1), 256-296, 2024.
https://doi.org/10.1137/22M1543963
-
Testing Binomiality of Chemical Reaction Networks Using
Comprehensive Gröbner Systems, with T. Sturm, CASC 2021.
doi:10.1007/978-3-030-85165-1_19
-
Parametric Toricity of Steady State Varieties of Reaction
Networks, with T. Sturm, CASC 2021.
doi:10.1007/978-3-030-85165-1_18
- Efficiently and Effectively Recognizing Toricity of
Steady State Varieties, with D. Grigoriev, A. Iosif, T. Sturm &
A. Weber, Math. Comput. Sci., 2021.
doi:10.1007/s11786-020-00479-9
-
A Linear Algebra Approach for Detecting Binomiality of Steady
State Ideals of Reversible Chemical Reaction Networks,
with O. Radulescu and T. Sturm, CASC 2020.
doi:10.1007/978-3-030-60026-6_29
- First-Order Tests for Toricity, with T. Sturm, CASC 2020.
doi:10.1007/978-3-030-60026-6_30
-
A Graph Theoretical Approach for Testing Binomiality of
Reversible Chemical Reaction Networks, with C. V. Montero,
SYNASC 2020. doi:
10.1109/SYNASC51798.2020.00027
Computational Algebra
-
A note on the algebra structures in A_\Phi(G), with
I. Akbarbaglu and H. P. Aghababa, Mediterranean Journal of
Mathematics, 2022.
doi: 10.1007/s00009-022-02052-z
- Block-Krylov techniques in the context of sparse-FGLM
algorithms, with S. G. Hyun, V. Neiger and É. Schost,
J. Symb Comp, 2020.
doi:10.1016/j.jsc.2019.07.010
- Sparse FGLM using the block Wiedemann algorithm, with
S. G. Hyun, V. Neiger and É. Schost, ACM Communications in
Computer Algebra, 2018.
doi:10.1145/3338637.3338641
- Algorithms for zero-dimensional ideals using linear
recurrent sequences, with V. Neiger and É. Schost, CASC 2017.
doi:10.1007/978-3-319-66320-3_23
- Efficient computation of dual space and directional
multiplicity of an isolated point, with A. Mantzaflaris and
Z. Zafeirakopoulos, Computer Aided Geometric Design, 2016.
doi:10.1016/j.cagd.2016.05.002
-
Dual space algorithms for computing multiplicity structure of isolated points.
PhD Thesis, Johannes Kepler University Linz, 2015.
- On computing the elimination ideals using resultants with
applications to Gröbner Bases, with M. Gallet and
Z. Zafeirakopoulos, Preprint, 2013.
arxiv.org/abs/1307.5330
(Cited in Cox, Little & O’Shea, Ideals, Varieties and
Algorithms, Springer, Ed. 2015).
-
Using resultants for inductive Gröbner Bases computation,
with Z. Zafeirakopoulos, ACM Communications in Computer
Algebra, 2011.
https://doi.org/10.1145/2016567.2016593