Industrial Mathematics Group

Papers

Under Review

[87] Bubble racing in a Hele-Shaw cell

D. Booth K.S. Wu, I.M. Griffiths, P.D. Howell, J.K. Nunes & H.A. Stone
Under review (2024).

Microfluidics

[86] A homogenised model for dispersive transport and sorption in a heterogeneous porous medium

L.C. Auton, M.P. Dalwadi & I.M. Griffiths
Under review (2024).

Filtration

[85] The motion of a bubble in a non-uniform Hele-Shaw flow

D.J. Booth, I.M. Griffiths & P.D. Howell
Under review (2024).

Microfluidics

2025

[84] Migration of magnetic microparticles through a liquid–liquid interface under an external magnetic field

S. Mondal, S.S.H. Tsai, N. Abbasi & I.M. Griffiths
2025
Phys. Fluids (in press).

Microfluidics

2024

[83] Surface-tension-driven buckling of a thin viscous sheet

N.P.J Ryan, C.J.W. Breward, I.M Griffiths & P.D. Howell
2024
J. Fluid Mech. (in press)

Glass manufacture

[82] The motion and deformation of a bubble in a Hele-Shaw cell

K. Wu, D.J. Booth, I.M. Griffiths, P.D. Howell, J.K. Nunes & H.A. Stone
2024
Phys. Rev. Fluids 9, 123603.

Microfluidics

[81] Mechanics of elliptical JKR-type adhesive contact

A Giudici, D. Vella & I.M. Griffiths
2024
J.Phys.D (in press)

[79] The role of temperature and drying cycles on impurity deposition in drying porous media

E.K. Luckins, CJ.W. Breward, I.M. Griffiths & C.P. Please
2024
Eur. Phys. Lett. 146: 33001.

Decontamination

[78] Mathematical modelling of impurity deposition during evaporation of dirty liquid in a porous medium

E.K. Luckins, CJ.W. Breward, I.M. Griffiths & C.P. Please
2024
J. Fluid Mech. (in press).

Decontamination

[77] The effect of pore-scale contaminant distribution on the reactive decontamination of porous media

E.K. Luckins, C.J.W. Breward, I.M. Griffiths & C.P. Please
2024
Eur. J. Appl. Math., 35, 318-358.

Decontamination

2023

[76] Extensional flow of a compressible viscous fluid

M. A. McPhail, J.M. Oliver, R. Parker & I.M. Griffiths
2023
J. Fluid Mech., 977, A43

Food science

[75] Circular bubbles in a Hele-Shaw channel: a Hele-Shaw Newton's cradle

D.J. Booth, I.M. Griffiths & P.D. Howell
2023
J. Fluid Mech. 954, A21

Microfluidics

[74] A homogenised model for the motion of evaporating fronts in porous media

E.K. Luckins, C.J. Breward, I.M. Griffiths & C.P. Please
2023
Eur. J. Appl. Math. 34, 806-837

Filtration

2022

[73] Predicting the spatio-temporal infection risk in indoor spaces using an efficient airborne transmission model

Z. Lau, I.M. Griffiths, A. English & K. Kaouri
2022
Proc. Roy. Soc. A, 478.2259, 20210383.

Filtration

[72] A model for the lifetime of a reactive filter

K.B. Kiradjiev, C.J.W. Breward & I.M. Griffiths
2022
J. Eng. Math. 133.1, 1-24.

Filtration

[71] A hybrid discrete–continuum model for modelling filtration

I.M. Griffiths & P.S. Stewart
2022
J. Membrane Sci., 647, 120258.

Filtration

[70] A homogenised model for flow, transport and sorption in a heterogeneous porous medium

L.C. Auton, S. Pramanik, M.P. Dalwadi, C.W. MacMinn & I.M. Griffiths
2022
J. Fluid Mech., 932, A34.

Filtration

2021

[69] The role of caking in optimizing the performance of a concertinaed ceramic filtration membrane

V.E. Pereira, M.P. Dalwadi & I.M. Griffiths
2021
Phys. Rev. Fluids, 6, 104301.

Filtration

[68] A mathematical model of the erosion process in a channel bend

J.G. Herterich & I.M. Griffiths
2021
Tribology International, 163, 107175.

[67] A homogenised model for a reactive filter

K.B. Kiradjiev, C.J.W. Breward, I.M. Griffiths & D. Schwendeman
2021
SIAM J. Appl. Math. 81, 591-619.

Filtration

[66] Optimising the flow through a concertinaed filtration membrane

V.E. Pereira, M.P. Dalwadi, E. Ruiz-Trejo & I.M. Griffiths
2021
J. Fluid Mech. 913, A28

Filtration

[65] Electrostatic wrapping of a microfiber around a curved particle

J.K. Nunes, J. Li, I.M. Griffiths, B. Rallabandi, J. Man & H.A. Stone
2021
Soft Matter 17, 3609-3618

Microfluidics

[64] Optimising dead-end cake filtration using poroelasticity theory

J. Kory, A.U. Krupp, C.P. Please & I.M. Griffiths
2021
Modelling 2, 18-42

Filtration

2020

[63] Time-averaged transport in oscillatory flow of a viscoelastic fluid

R. Yang, I.C. Christov, I.M. Griffiths & G.Z. Ramon
2020
Phys. Rev. Fluids, 5, 094501

[62] The effect of compressibility on the behaviour of filter media

J. Kory, A.U. Krupp, C.P. Please & I.M. Griffiths
2020
IMA J. Appl. Math., 85, 564-583

Filtration

[61] A simple model for the hygroscopy of sulphuric acid

K.B. Kiradjiev, V. Nikolakis, I.M. Griffiths, U. Beuscher, V. Venkateshwaran & C.J.W. Breward
2020
Ind. Eng. Chem. Res., 59, 4802-4808

Filtration

[60] Response to periodic disturbances in the glass redraw process

S. Marquis, D. O'Kiely, P.D. Howell, U. Lange & I.M. Griffiths
2020
J. Eng. Math., 121, 39-56

Glass manufacture

[59] The role of tortuosity in filtration efficiency: a general network model for filtration

I.M. Griffiths, I. Mitevski, I. Vujkovac, M. Illingworth & P.S. Stewart
2020
J. Membrane Sci. 598, 117664

Filtration

2019

[58] Modelling the transport and adsorption dynamics of arsenic in a soil bed filter

R. Mondal, S. Mondal, K.V. Kurada, S. Bhattacharjee, S. Sengupta, M. Mondal, S. Karmakar, S. De & I.M. Griffiths
2019
Chem. Eng. Sci., 201, 115205

Filtration

[57] Homogenisation problems in reactive decontamination

E. Luckins, C.J.W. Breward, I.M. Griffiths & Z. Wilmott
2019
Eur. J. Appl. Math., 31, 782-805

Filtration, Decontamination

[56] Forefronts in structure–performance models of separation membranes

S. Mondal, I.M. Griffiths & G.Z. Ramon
2019
J. Membrane Sci., 588, 117166

Filtration

[55] Mathematical Modelling of a viscida network

C. Mavroyiakoumou, I.M. Griffiths & P.D. Howell
2019
J. Fluid Mech., 872, 147-176

Glass manufacture

[54] Inferring filtration laws from the spreading speed of solutions of the porous medium equation

A.U. Krupp, I.M. Griffiths & C.P. Please
2019
SIAM J. Appl. Math., 79, 1389-1404

Filtration

[53] Out-of-plane buckling in two-dimensional glass drawing

D. O'Kiely, C.J.W. Breward, I.M. Griffiths, P.D. Howell & U. Lange
2019
J. Fluid Mech., 869, 587-609

Glass manufacture

[52] Reproducing the pressure-time signature of membrane filtration: the interplay between fouling, caking, and elasticity

J. Herterich, I.M. Griffiths & D. Vella
2019
J. Membrane Sci., 577, 235-248

Filtration

[51] Surface-tension- and injection-driven thin-film flow

K.B. Kiradjiev, C.J.W. Breward & I.M. Griffiths
2019
J. Fluid Mech., 861, 765-795

Filtration

[50] The influence of porous media microstructure on filtration
(journal article)
(Case Study of the paper)

G. Printsypar, M. Bruna & I.M. Griffiths
2019
J. Fluid Mech., 861, 484-516

Filtration

[49] Curvature- and fluid-stress-driven tissue growth in a tissue-engineering scaffold pore

P. Sanaei, L.J. Cummings, S.L. Waters & I. M. Griffiths
2019
Biomechanics and Modelling in Mechanobiology, 18(3), 589-605

Tissue engineering

2018

[48] Particle Dynamics in Blenders and Food Processors
(journal article)
(Case Study of the paper)

C.M. Rooney, I.M. Griffiths, C. Brunner, J. Potter, M. Wood-Lee & C.P. Please
2018
J. Eng. Math., 112, 119-135

Food science

[47] Flow and nematic director profiles in a microfluidic channel: the interplay of nematic material constants and backflow

S. Mondal, I.M. Griffiths, F. Charlet & A. Majumdar
2018
MDPI Fluids, 3, 39

Liquid crystals

[46] Nematohydrodynamics for Colloidal Self-Assembly and Transport Phenomena

S. Mondal, A. Majumdar & I.M. Griffiths
2018
J. Coll. Interf. Sci., 528, 431-442

Liquid crystals

[45] Glass sheet redraw through a long heater zone

D. O'Kiely, C.J.W. Breward, I.M. Griffiths, P.D. Howell & U. Lange
2018
IMA J. Appl. Math., 83, 799-820

Glass manufacture

[44] Optimizing the breakaway position in cycle races using mathematical modelling
(journal article)
(Case Study of the paper)

L.H. Gaul, S.J. Thomson & I.M. Griffiths
2018
Sports Engineering, 0270-5

Sports

2017

[43] Shrinking microbubbles with microfluidics: mathematical modelling to control microbubble sizes

A. Salari, V. Gnyawali, I.M. Griffiths, R. Karshafian, M.C. Kolios, and S.S.H. Tsai
2017
Soft Matter, 13, 8796-8806

Microfluidics

[42] Solution landscapes in nematic microfluidics

M. Crespo, A. Majumdar, A. Manuel Ramos & I.M. Griffiths
2017
Physica D, 351-352, 1-13

Liquid crystals

[41] Stochastic modelling of membrane filtration

A.U. Krupp, I.M. Griffiths & C.P. Please
2017
Proc. Roy. Soc. A, 473: 20160948

Filtration

[40] Scaling up of multi-capsule depth-filtration systems by modeling flow and pressure distribution

A.U. Krupp, C.P. Please, A. Kumar & I.M. Griffiths
2017
Advances in Engineering

Filtration

[39] The role of fouling in optimizing direct-flow filtration module design

M. Wang, S. Mondal & I.M. Griffiths
2017
Chem. Eng. Sci., 163, 215-222

Filtration

[38] Lubricated wrinkles: imposed constraints affect the dynamics of wrinkle coarsening

O. Kodio, I.M. Griffiths & D. Vella
2017
Phys. Rev. Fluids, 2, 014202

[37] Scaling-up of multi-capsule depth filtration systems by modeling flow and pressure distribution

A.U. Krupp, A. Kumar, C.P. Please & I.M. Griffiths
2017
Separation and Purification Technol., 170, 350

Filtration

2016

[36] Optimizing the operation of a direct-flow filtration device

J.G. Herterich, Q. Xu, R.W. Field, D. Vella & I.M. Griffiths
2016
J. Eng. Math, 104, 195-211

Filtration

[35] A multiscale method to calculate filter blockage

M.P. Dalwadi, M. Bruna, & I.M. Griffiths
2016
J. Fluid Mech., 809, 264

Filtration

[34] Mathematical and computational modeling of a ferrofluid deformable mirror for high-contrast imaging (pdf)

A.J. Lemmer, I.M. Griffiths, T.D. Groff, A.W. Rousing & N.J.Kasdin
2016
Proc. SPIE 9912, Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation

[33] Designing asymmetric multilayered membrane filters with improved performance

I.M. Griffiths, A. Kumar & P.S. Stewart
2016
J. Membrane Sci., 511, 108

Filtration

[32] Dissecting the self-assembly kinetics of multimeric pore-forming toxins

A.A. Lee, M.J. Senior, M.I. Wallace, T.E. Woolley & I.M. Griffiths
2016
J. Royal Society Interf., 13, 20150762

[31] Interfacial deformation and jetting of a magnetic fluid

S. Afkhami, L.J. Cummings & I.M. Griffiths
2016
Computers and Fluids, 124, 149

Microfluidics

[30] Propagation of a viscous film over an elastic membrane

Z. Zheng, I.M. Griffiths & H.A. Stone
2015
J. Fluid Mech., 784, 443

2015

[29] Edge behaviour in the glass sheet redraw process

D. O'Kiely, C.J.W. Breward, I.M. Griffiths, U. Lange & P.D. Howell
2015
J. Fluid Mech., 785, 248-269

Glass manufacture

[28] Straining flow of a weakly interacting polymer–surfactant solution

C.J.W. Breward, I.M. Griffiths, P.D. Howell & C.E. Morgan
2015
Eur. J. Appl. Math., 26, 743

Surfactants

[27] Reactive magnetospinning of nano and microfibers

A. Tokarev, O. Trotsenko, D. Asheghali, I.M. Griffiths, H.A. Stone & S. Minko
2015
Angewandte Chemie, 127, 13817

Fibre manufacture

[26] Understanding how porosity gradients can make a better filter using homogenization theory

M.P. Dalwadi, I.M. Griffiths & M. Bruna
2015
Proc. Roy. Soc. A., 471, 20150464

Filtration

[25] Touch- and brush-spinning of nanofibers

A. Tokarev, D. Asheghali, I.M. Griffiths, O. Trotsenko, A. Gruzd, X. Lin, H.A. Stone & S. Minko
2015
Advanced Materials, 27, 65

Fibre manufacture

[24] Stability of a bi-layer free film: simultaneous or individual rupture events?

P.S. Stewart, J. Feng, L.S. Kimpton, I.M. Griffiths & H.A. Stone
2015
J. Fluid Mech., 777, 27

[23] Mathematical modelling of multilayer surfactant self-assembly at interfaces

C.E. Morgan, C.J.W. Breward, I.M. Griffiths & P.D. Howell
2015
SIAM J. Appl. Math., 75, 836

Surfactants

[22] Magnetospinning of nano and microfibers

A. Tokarev, O. Trotsenko, I.M. Griffiths, H.A. Stone & S. Minko
2015
Advanced Materials, 27, 3560

Fibre-manufacture

[21] Tailoring wall permeabilities for enhanced filtration

J.G. Herterich, D. Vella, R.W. Field, N.P. Hankins & I.M. Griffiths
2015
Phys. Fluids, 27, 053102

Filtration

2014

[20] Particle capture efficiency in a multi-wire model for high gradient magnetic separation

A. Eisenträger, D. Vella & I.M. Griffiths
2014
Appl. Phys. Lett. 105, 033508

Filtration

[19] A combined network model for membrane fouling

I.M. Griffiths, A. Kumar & P.S. Stewart
2014
J. Coll. Interf. Sci. 432, 10

Filtration

[18] The Marangoni flow of soluble amphiphiles

M. Roché, Z. Li, I.M. Griffiths, S. Le Roux, I. Cantat, A. Saint-Jalmes & H.A. Stone
2014
Phys. Rev. Lett., 112, 208302

Surfactants

[17] The effect of a concentration-dependent viscosity on particle transport in a channel flow with porous walls

J.G. Herterich, I.M. Griffiths, R.W. Field & D. Vella
2014
AIChE J., 60, 1891

Filtration

2013

[16] The spreading of hydrosoluble surfactants on water

M. Roché, Z. Li, I.M. Griffiths, A. Saint-Jalmes & H.A. Stone
2013
Phys. Fluids, 25, 091108

Surfactants

[15] Interfacial deflection and jetting of a paramagnetic particle-laden fluid: theory and experiment

S.S.H. Tsai & I.M. Griffiths (joint first authors), Z. Li, P. Kim & H.A. Stone
2013
Soft Matter, 9, 8600

Microfluidics

[14] An experimental and theoretical investigation of particle–wall impacts in a T-junction

D. Vigolo & I.M. Griffiths (joint first authors), S. Radl & H.A. Stone
2013
J. Fluid Mech., 727, 236

Microfluidics

[13] Control and optimization of solute transport in a thin porous tube

I.M. Griffiths, P.D. Howell & R.J. Shipley
2013
Phys. Fluids, 25, 033101

Filtration, Tissue engineering

[12] Asymptotic solutions of glass temperature profiles during steady optical fibre drawing

M. Taroni, C.J.W. Breward, L.J. Cummings & I.M. Griffiths
2013
J. Eng. Math., 80, 1

Fibre manufacture, Glass manufacture

[11] A new pathway for the re-equilibration of a micellar surfactant solution

I.M. Griffiths, C.J.W. Breward, D.M. Colegate, P.D Howell & C.D. Bain
2013
Soft Matter, 9, 853

Surfactants

2012

[10] Kinetics of surfactant desorption at the air–solution interface

C.E. Morgan, C.J.W. Breward, I.M. Griffiths, P.D. Howell, J. Penfold, R.K. Thomas, I. Tucker, J.T. Petkov & J.R.P. Webster
2012
Langmuir, 28, 17339

Surfactants

[9] Axial dispersion via shear-enhanced diffusion in colloidal suspensions

I.M. Griffiths & H.A. Stone
2012
Europhys. Lett., 97, 58005

Microfluidics

[8] An asymptotic theory for the re-equilibration of a micellar surfactant solution

I.M. Griffiths, C.D. Bain, C.J.W. Breward, S.J. Chapman, P.D. Howell & S.L. Waters
2012
SIAM J. Appl. Math., 72, 201

Surfactants

2011

[7] On the predictions and limitations of the Becker-Döring model for reaction kinetics in micellar surfactant solutions

I.M. Griffiths, C.D. Bain, C.J.W. Breward, D.M. Colegate, P.D. Howell & S.L. Waters
2011
J. Coll. Interf. Sci. 360, 662

Surfactants

[6] Microfluidic immunomagnetic multi-target sorting – A model for controlling deflection of paramagnetic beads

S.S.H. Tsai, I.M. Griffiths & H.A. Stone
2011
Lab on a Chip, 11, 2577

Microfluidics

[5] Design of the ITER In-Vessel Coils

C. Neumeyer, I.M. Griffiths et al.
2011
Fusion Sci. and Technol, 60, 95

[4] Separation of magnetic beads in a microfluidic device – Modeling and experimentation

S.S.H. Tsai, J.S. Wexler, I.M. Griffiths, & H.A. Stone
2011
Proc. ASME Int. Mech. Eng. Cong. Exp., 6, 615

Microfluidics

2009

[3] The surface-tension-driven retraction of a viscida

I.M. Griffiths & P.D. Howell
2009
SIAM J. Appl. Math. 70, 1453

Glass manufacture

2008

[2] Mathematical modelling of non-axisymmetric capillary tube drawing

I.M. Griffiths & P.D. Howell
2008
J. Fluid Mech. 605, 181

Glass manufacture

2007

[1] The surface-tension-driven evolution of a two dimensional annular viscous tube

I.M. Griffiths & P.D. Howell
2007
J. Fluid Mech. 593, 181

Glass manufacture