D |
Moulton, D.E., Grandgeorge, P & Neukirch, S. ; Stable elastic knots with no self-contact.
J Mech Phys Solids (2018) |

D |
Gomez, M., Moulton, D.E., & Vella, D. ; Passive Control of Viscous Flow via Elastic Snap-Through.
Physical Review Letters (2018) |

D |
Gomez, M., Moulton, D.E., & Vella, D. ; Critical slowing down in purely elastic `snap-through' instabilities.
Nature Physics (2017) |

D |
Erlich, A, Moulton, D.E., Goriely, A, & Chirat, R; Morphomechanics and developmental constraints in the evolution of ammonites shell form. J Exp Zoology B (2016) |

D |
Gomez, M., Moulton, D.E., & Vella, D. ; The shallow shell approach to Pogorelov's problem and the breakdown of `mirror buckling'. Proc Roy Soc A (2016) |

D |
Lessinnes, T., Moulton, D.E., & Goriely, A. ; Morphoelastic rods: Part II: Growing birods. J Mech Phys Solids (2015) |

D |
Moulton, D. E., Chirat, R., & Goriely, A.; The morpho-mechanical basis of ammonite form. J Theor Biology (2015) |

D |
Pandey, A., Moulton, D. E., Vella, D., & Holmes, D. P.; Dynamics of snapping beams and jumping poppers. Europhys. Lett. (EPL) (2014) |

D |
R. Chirat, D.E. Moulton, and A. Goriely;The mechanical basis of morphogenesis and convergent evolution of spiny seashells, PNAS (2013) |

D |
S. O'Keefe, D.E. Moulton, S. Waters, and A. Goriely; |

D |
D.E. Moulton, T. Lessinnes, and A. Goriely;Morphoelastic rods Part I: A single growing elastic rod, J. Mech. Phys. Solids (2012) |

D |
D.E. Moulton and A. Goriely;Surface growth kinematics via local curve evolution; J. Math Bio (2012) |

D |
D.E. Moulton, A. Goriely and R. Chirat; Mechanical growth and morphogenesis of seashells; J. Theor. Bio (2012) |

D |
D.E. Moulton and A. Goriely; Circumferential buckling instability of a growingJ. Mech. Phys. of Solids (2011)cylindrical tube; |

D |
D.E. Moulton and A. Goriely; Anticavitation and differential growth in elastic shells; J. Elasticity (2010) |

D |
A. Goriely, D.E. Moulton and R. Vandiver; Elastic cavitation, tube hollowing, and differential growth in plants and biological tissues; EPL (2010) |

D |
Moulton, D.E., Sulzer, V, Apodaca, G, Byrne, H.M.,& Waters, S.L.; Mathematical modelling of stretch-induced membrane traffic in bladder umbrella cells. J Theor Biology (2016) |

D |
Bowden, L. G., Byrne, H. M., Maini, P. K., & Moulton, D.E. ; A morphoelastic model for dermal wound closure. Biomech and Modeling in Mechanobiology (2015) |

D |
Bowden, L. G., Maini, P. K., Moulton, D. E., Tang, J. B., Wang, X. T., Liu, P. Y., & Byrne, H. M. An ordinary differential equation model for full thickness wounds and the effects of diabetes J Theor Biology (2014) |

D |
D.E. Moulton and A. Goriely; Possible role of differential growth in airway wall; J. Appl. Physiology (2011)remodeling in asthma |

D |
A. Goriely, D.E. Moulton and R. Vandiver; Elastic cavitation, tube hollowing, and differential growth in plants and biological tissues; EPL (2010) |

D |
Hofhuis, H. et. al; Morphomechanical Innovation Drives Explosive Seed Dispersal. Cell (2016) |

D |
Moulton, D. E., Lessinnes, T, O'Keeffe, S., Dorfmann, L, & Goriely, A.; The elastic secrets of the chameleon tongue. Proc Royal Soc A (2016) |

D |
Moulton, D. E., Chirat, R., & Goriely, A.; The morpho-mechanical basis of ammonite form. J of Theor Biology (2015) |

D |
R. Chirat, D.E. Moulton, and A. Goriely;The mechanical basis of morphogenesis and convergent evolution of spiny seashells, PNAS (2013) |

D |
Blonder et. al Predictability in community dynamics; Ecology Letters (2017) |

D |
D.E. Moulton and J. Lega; Effect of disjoining pressure in thin film equations with non-uniform
forcing; Eur. J. Appl. Math (2013) |

D |
D.E. Moulton and J.A. Pelesko; Reverse draining of a magnetic soap film; PRE (2010) |

D |
D.E. Moulton and J. Lega; Reverse draining of a magnetic soap film - Analysis and simulation of a thin film
equation with non-uniform forcing; Physica D (2009) |

D |
D.E. Moulton and J.A. Pelesko; Catenoid in an electric field; SIAM J. Appl. Math (2009) |

D |
D.E. Moulton and J.A. Pelesko; Theory and experiment for soap-film bridge in an electric field; J. Colloid Interface Sci (2008) |

D |
D.E. Moulton (PhD Thesis); Mathematical Modeling of Field Driven Mean Curvature Surfaces; University of Delaware (2008) |