*Some references can be found in multiple categories*

D |
D.E. Moulton, H. Oliveri, & A. Goriely; Multiscale integration of environmental stimuli in plant tropism produces complex behaviors.
PNAS (2020) |

D |
A. Almet, H.M. Byrne, P.K. Maini, & D.E. Moulton; The role of mechanics in the growth and homeostasis of the intestinal crypt.
Biomech and Modeling in Mechanobiology (2020) |

D |
D.E. Moulton, T. Lessinnes, & A. Goriely; Morphoelastic Rods III:
Differential Growth and Curvature Generation in Elastic Filaments.
J Mech Phys Solids (2020) |

D |
D.E. Moulton, A. Goriely & R. Chirat; Mechanics unlocks the morphogenetic puzzle of interlocking bivalved shells
.
PNAS (2019) |

D |
D.E. Moulton, A. Goriely & R. Chirat; Mechanics unlocks the morphogenetic puzzle of interlocking bivalved shells
- Supplementary Material.
PNAS (2019) |

D |
S Rudraraju, D.E. Moulton, R. Chirat., A. Goriely & K. Garikipati; Seashell morphogenesis: A computational framework for the three-dimensional evolution of surface and volumetric growth in gastropods.
PLOS (2019) |

D |
A. Erlich, D.E. Moulton, & A. Goriely; Are homeostatic states stable? Dynamical stability in morphoelasticity.
Bulletin Math Bio (2019) |

D |
A.A. Almet, H.M. Byrne, P.K. Maini, & D.E. Moulton; Post-buckling behaviour of a growing elastic rod.
J Theor Biology (2018) |

D |
D.E. Moulton, P. Grandgeorge & S. Neukirch. ; Stable elastic knots with no self-contact.
J Mech Phys Solids (2018) |

D |
M. Gomez, D.E. Moulton, & D. Vella ; Passive Control of Viscous Flow via Elastic Snap-Through.
Physical Review Letters (2018) |

D |
M. Gomez, D.E. Moulton, & D. Vella ; Critical slowing down in purely elastic `snap-through' instabilities.
Nature Physics (2017) |

D |
A. Erlich, D.E. Moulton, Goriely, A, & R. Chirat; Morphomechanics and developmental constraints in the evolution of ammonites shell form. J Exp Zoology B (2016) |

D |
M. Gomez, D.E. Moulton, & D. Vella ; The shallow shell approach to Pogorelov's problem and the breakdown of `mirror buckling'. Proc Roy Soc A (2016) |

D |
T. Lessinnes, D.E. Moulton, & A. Goriely ; Morphoelastic rods: Part II: Growing birods. J Mech Phys Solids (2015) |

D |
D.E. Moulton, R. Chirat., & A. Goriely; The morpho-mechanical basis of ammonite form. J Theor Biology (2015) |

D |
A. Pandey, D.E. Moulton, D. Vella, & D.P. Holmes; Dynamics of snapping beams and jumping poppers. Europhys. Lett. (EPL) (2014) |

D |
R. Chirat, D.E. Moulton, and A. Goriely;The mechanical basis of morphogenesis and convergent evolution of spiny seashells, PNAS (2013) |

D |
S. O'Keefe, D.E. Moulton, S. Waters, and A. Goriely; |

D |
D.E. Moulton, T. Lessinnes, and A. Goriely;Morphoelastic rods Part I: A single growing elastic rod, J. Mech. Phys. Solids (2012) |

D |
D.E. Moulton and A. Goriely;Surface growth kinematics via local curve evolution; J. Math Bio (2012) |

D |
D.E. Moulton, A. Goriely and R. Chirat; Mechanical growth and morphogenesis of seashells; J. Theor. Bio (2012) |

D |
D.E. Moulton and A. Goriely; Circumferential buckling instability of a growingJ. Mech. Phys. of Solids (2011)cylindrical tube; |

D |
D.E. Moulton and A. Goriely; Anticavitation and differential growth in elastic shells; J. Elasticity (2010) |

D |
A. Goriely, D.E. Moulton and R. Vandiver; Elastic cavitation, tube hollowing, and differential growth in plants and biological tissues; EPL (2010) |

D |
D.E. Moulton, A. Goriely & R. Chirat; Mechanics unlocks the morphogenetic puzzle of interlocking bivalved shells
.
PNAS (2019) |

D |
D.E. Moulton, A. Goriely & R. Chirat; Mechanics unlocks the morphogenetic puzzle of interlocking bivalved shells
- Supplementary Material.
PNAS (2019) |

D |
S. Rudraraju, D.E. Moulton R. Chirat., A. Goriely & K. Garikipati. ; Seashell morphogenesis: A computational framework for the three-dimensional evolution of surface and volumetric growth in gastropods.
PLOS (2019) |

D |
A. Erlich, D.E. Moulton, Goriely, A, & R. Chirat; Morphomechanics and developmental constraints in the evolution of ammonites shell form. J Exp Zoology B (2016) |

D |
A. Erlich, R. Howell, A. Goriely, R. Chirat., & D.E. Moulton; Mechanical feedback in seashell growth and form. The ANZIAM Journal (2018) |

D |
D.E. Moulton, R. Chirat., & A. Goriely; The morpho-mechanical basis of ammonite form. J Theor Biology (2015) |

D |
R. Chirat, D.E. Moulton, and A. Goriely;The mechanical basis of morphogenesis and convergent evolution of spiny seashells, PNAS (2013) |

D |
D.E. Moulton and A. Goriely;Surface growth kinematics via local curve evolution; J. Math Bio (2012) |

D |
D.E. Moulton, A. Goriely and R. Chirat; Mechanical growth and morphogenesis of seashells; J. Theor. Bio (2012) |

D |
M. Gomez, D.E. Moulton, & D. Vella ; Dynamics of viscoelastic snap-through.
Journal of the Mechanics and Physics of Solids (2019) |

D |
M. Gomez, D.E. Moulton, & D. Vella ; Passive Control of Viscous Flow via Elastic Snap-Through.
Physical Review Letters (2018) |

D |
M. Gomez, D. Vella, & D.E. Moulton; Pull-in dynamics of overdamped microbeams.
Journal of Micromechanics and Microengineering (2018) |

D |
M. Gomez, D.E. Moulton, & D. Vella ; Critical slowing down in purely elastic `snap-through' instabilities.
Nature Physics (2017) |

D |
M. Gomez, D.E. Moulton, & D. Vella ; Delayed pull-in transitions in overdamped MEMS devices.
Journal of Micromechanics and Microengineering (2017) |

D |
Pandey, A., D.E. Moulton, D. Vella, & Holmes, D. P.; Dynamics of snapping beams and jumping poppers. Europhys. Lett. (EPL) (2014) |

D |
A. Almet, H.M. Byrne, P.K. Maini, & D.E. Moulton; The role of mechanics in the growth and homeostasis of the intestinal crypt.
Biomech and Modeling in Mechanobiology (2020) |

D |
D.E. Moulton, Sulzer, V, Apodaca, G, Byrne, H.M.,& Waters, S.L.; Mathematical modelling of stretch-induced membrane traffic in bladder umbrella cells. J Theor Biology (2016) |

D |
L.G. Bowden, H.M. Byrne, P.K. Maini, & D.E. Moulton ; A morphoelastic model for dermal wound closure. Biomech and Modeling in Mechanobiology (2015) |

D |
L.G. Bowden, P.K. Maini, D.E. Moulton, J.B. Tang, X.T. Wang, P. Liu, & H.M. Byrne; An ordinary differential equation model for full thickness wounds and the effects of diabetes J Theor Biology (2014) |

D |
D.E. Moulton and A. Goriely; Possible role of differential growth in airway wall; J. Appl. Physiology (2011)remodeling in asthma |

D |
A. Goriely, D.E. Moulton and R. Vandiver; Elastic cavitation, tube hollowing, and differential growth in plants and biological tissues; EPL (2010) |

D |
Hofhuis, H. et. al; Morphomechanical Innovation Drives Explosive Seed Dispersal. Cell (2016) |

D |
D.E. Moulton, T. Lessinnes, S. O'Keeffe, L. Dorfmann, & A. Goriely; The elastic secrets of the chameleon tongue. Proc Royal Soc A (2016) |

D |
J.G. Williams, A.A. Castrejon-Pita, B.W. Turney, P.E. Farrell, S.J. Tavener, D.E. Moulton & S.L. Waters; Cavity flow characteristics and applications to kidney stone removal;
J. Fluid Mechanics (2020) |

D |
J.G. Williams, L. Rouse, B.W. Turney, S.L. Waters , & D.E. Moulton; A lumped parameter model for kidney pressure during stone removal;
IMA J. Applied Math (2020) |

D |
J.G. Williams, B.W. Turney, D.E. Moulton, & S.L. Waters; The effect of geometry on resistance in
elliptical coaxial pipe flows; J. Fluid Mechanics (2020) |

D |
J.G. Williams, B.W. Turney, N.J. Rauniyar, T.P. Harrah, S.L. Waters, & D.E. Moulton; The Fluid Mechanics of Ureteroscope Irrigation; J. Endourology (2019) |

D |
Blonder et. al Predictability in community dynamics; Ecology Letters (2017) |

D |
D.E. Moulton and J. Lega; Effect of disjoining pressure in thin film equations with non-uniform
forcing; Eur. J. Appl. Math (2013) |

D |
D.E. Moulton and J.A. Pelesko; Reverse draining of a magnetic soap film; PRE (2010) |

D |
D.E. Moulton and J. Lega; Reverse draining of a magnetic soap film - Analysis and simulation of a thin film
equation with non-uniform forcing; Physica D (2009) |

D |
D.E. Moulton and J.A. Pelesko; Catenoid in an electric field; SIAM J. Appl. Math (2009) |

D |
D.E. Moulton and J.A. Pelesko; Theory and experiment for soap-film bridge in an electric field; J. Colloid Interface Sci (2008) |

D |
D.E. Moulton (PhD Thesis); Mathematical Modeling of Field Driven Mean Curvature Surfaces; University of Delaware (2008) |